Skip to content
Snippets Groups Projects
r.md 10.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    # R
    
    ## Introduction
    
    R is a language and environment for statistical computing and graphics. R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, etc.) and graphical techniques, and is highly extensible.
    
    One of R's strengths is the ease with which well-designed publication-quality plots can be produced, including mathematical symbols and formulae where needed. Great care has been taken over the defaults for the minor design choices in graphics, but the user retains full control.
    
    Another convenience is the ease with which the C code or third party libraries may be integrated within R.
    
    Extensive support for parallel computing is available within R.
    
    Read more on [http://www.r-project.org/][a] and [http://cran.r-project.org/doc/manuals/r-release/R-lang.html][b].
    
    ## Modules
    
    R version 3.1.1 is available on the cluster, along with GUI interface RStudio
    
    | Application | Version           | module              |
    | ----------- | ----------------- | ------------------- |
    | **R**       | R 3.1.1           | R/3.1.1-intel-2015b |
    
    ```console
    $ ml R
    ```
    
    ## Execution
    
    
    Jan Siwiec's avatar
    Jan Siwiec committed
    R on cluster is linked to a highly optimized MKL mathematical library. This provides threaded parallelization to many R kernels, notably the linear algebra subroutines. R runs these heavy calculation kernels without any penalty. You may control the threads by setting the `OMP_NUM_THREADS` environment variable.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    ### Interactive Execution
    
    To run R interactively, using RStudio GUI, log in with the `ssh -X` parameter for X11 forwarding. Run RStudio:
    
    ```console
    $ ml RStudio
    $ rstudio
    ```
    
    ### Batch Execution
    
    
    Jan Siwiec's avatar
    Jan Siwiec committed
    To run R in batch mode, write an R script, then write a bash jobscript and execute via the `sbatch` command. By default, R will use 24 threads on Salomon when running MKL kernels.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    Example jobscript:
    
    ```bash
    #!/bin/bash
    
    # change to local scratch directory
    
    Jan Siwiec's avatar
    Jan Siwiec committed
    DIR=/scratch/project/PROJECT_ID/$SLURM_JOBID
    
    mkdir -p "$DIR"
    cd "$DIR" || exit
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    # copy input file to scratch
    
    Jan Siwiec's avatar
    Jan Siwiec committed
    cp $SLURM_SUBMIT_DIR/rscript.R .
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    # load R module
    ml R
    
    # execute the calculation
    R CMD BATCH rscript.R routput.out
    
    # copy output file to home
    
    Jan Siwiec's avatar
    Jan Siwiec committed
    cp routput.out $SLURM_SUBMIT_DIR/.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    #exit
    exit
    ```
    
    
    Jan Siwiec's avatar
    Jan Siwiec committed
    The inputs are in the `rscript.R` file, the outputs in the `routput.out` file.
    See the single node jobscript example in the [Job execution section][1].
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    ## Parallel R
    
    Parallel execution of R may be achieved in many ways. One approach is the implied parallelization due to linked libraries or specially enabled functions, as [described above][2]. In the following sections, we focus on explicit parallelization, where parallel constructs are directly stated within the R script.
    
    ## Package Parallel
    
    The package parallel provides support for parallel computation, including by forking (taken from package multicore), by sockets (taken from package snow) and random-number generation.
    
    The package is activated this way:
    
    ```console
    $ R
    > library(parallel)
    ```
    
    More information and examples may be obtained directly by reading the documentation available in R:
    
    ```r
    > ?parallel
    > library(help = "parallel")
    > vignette("parallel")
    ```
    
    Forking is the most simple to use. Forking family of functions provide parallelized, drop-in replacement for the serial `apply()` family of functions.
    
    !!! warning
        Forking via package parallel provides functionality similar to OpenMP construct omp parallel for
    
        Only cores of single node can be utilized this way!
    
    Forking example:
    
    ```r
    library(parallel)
    
    #integrand function
    f <- function(i,h) {
    x <- h*(i-0.5)
    return (4/(1 + x*x))
    }
    
    #initialize
    size <- detectCores()
    
    while (TRUE)
    {
      #read number of intervals
      cat("Enter the number of intervals: (0 quits) ")
      fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
    
      if(n<=0) break
    
      #run the calculation
      n <- max(n,size)
      h <-   1.0/n
    
      i <- seq(1,n);
      pi3 <- h*sum(simplify2array(mclapply(i,f,h,mc.cores=size)));
    
      #print results
      cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
    }
    ```
    
    The above example is the classic parallel example for calculating the number π. Note the `detectCores()` and `mclapply()` functions. Execute the example as:
    
    ```console
    $ R --slave --no-save --no-restore -f pi3p.R
    ```
    
    Every evaluation of the integrad function runs in parallel on different process.
    
    ## Package Rmpi
    
    The Rmpi package provides an interface (wrapper) to MPI APIs.
    
    It also provides interactive R slave environment. On the cluster, Rmpi provides interface to the [OpenMPI][3].
    
    Read more on Rmpi [here][c], reference manual is available [here][d].
    
    When using the Rmpi package, both the `openmpi` and `R` modules must be loaded:
    
    ```console
    $ ml OpenMPI
    $ ml R
    ```
    
    Rmpi may be used in three basic ways. The static approach is identical to executing any other MPI program. In addition, there is the Rslaves dynamic MPI approach and the mpi.apply approach. In the following section, we will use the number π integration example, to illustrate all these concepts.
    
    ### Static Rmpi
    
    Static Rmpi programs are executed via `mpiexec`, as any other MPI programs. The number of processes is static - given at the launch time.
    
    Static Rmpi example:
    
    ```r
    library(Rmpi)
    
    #integrand function
    f <- function(i,h) {
    x <- h*(i-0.5)
    return (4/(1 + x*x))
    }
    
    #initialize
    invisible(mpi.comm.dup(0,1))
    rank <- mpi.comm.rank()
    size <- mpi.comm.size()
    n<-0
    
    while (TRUE)
    {
      #read number of intervals
      if (rank==0) {
       cat("Enter the number of intervals: (0 quits) ")
       fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
      }
    
      #broadcat the intervals
      n <- mpi.bcast(as.integer(n),type=1)
    
      if(n<=0) break
    
      #run the calculation
      n <- max(n,size)
      h <-   1.0/n
    
      i <- seq(rank+1,n,size);
      mypi <- h*sum(sapply(i,f,h));
    
      pi3 <- mpi.reduce(mypi)
    
      #print results
      if (rank==0) cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
    }
    
    mpi.quit()
    ```
    
    The above is the static MPI example for calculating the number π. Note the `library(Rmpi)` and `mpi.comm.dup()` function calls. Execute the example as:
    
    ```console
    $ mpirun R --slave --no-save --no-restore -f pi3.R
    ```
    
    ### Dynamic Rmpi
    
    Dynamic Rmpi programs are executed by calling the R directly. The `OpenMPI` module must still be loaded. The R slave processes will be spawned by a function call within the Rmpi program.
    
    Dynamic Rmpi example:
    
    ```r
    #integrand function
    f <- function(i,h) {
    x <- h*(i-0.5)
    return (4/(1 + x*x))
    }
    
    #the worker function
    workerpi <- function()
    {
    #initialize
    rank <- mpi.comm.rank()
    size <- mpi.comm.size()
    n<-0
    
    while (TRUE)
    {
      #read number of intervals
      if (rank==0) {
       cat("Enter the number of intervals: (0 quits) ")
       fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
      }
    
      #broadcat the intervals
      n <- mpi.bcast(as.integer(n),type=1)
    
      if(n<=0) break
    
      #run the calculation
      n <- max(n,size)
      h <-   1.0/n
    
      i <- seq(rank+1,n,size);
      mypi <- h*sum(sapply(i,f,h));
    
      pi3 <- mpi.reduce(mypi)
    
      #print results
      if (rank==0) cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
    }
    }
    
    #main
    library(Rmpi)
    
    cat("Enter the number of slaves: ")
    fp<-file("stdin"); ns<-scan(fp,nmax=1); close(fp)
    
    mpi.spawn.Rslaves(nslaves=ns)
    mpi.bcast.Robj2slave(f)
    mpi.bcast.Robj2slave(workerpi)
    
    mpi.bcast.cmd(workerpi())
    workerpi()
    
    mpi.quit()
    ```
    
    The above example is the dynamic MPI example for calculating the number π. Both master and slave processes carry out the calculation. Note the `mpi.spawn.Rslaves()`, `mpi.bcast.Robj2slave()`, **and the `mpi.bcast.cmd()`** function calls.
    
    Execute the example as:
    
    ```console
    $ mpirun -np 1 R --slave --no-save --no-restore -f pi3Rslaves.R
    ```
    
    Note that this method uses `MPI_Comm_spawn` (Dynamic process feature of MPI-2) to start the slave processes - the master process needs to be launched with MPI. In general, Dynamic processes are not well supported among MPI implementations, some issues might arise. In addition, environment variables are not propagated to spawned processes, so they will not see paths from modules.
    
    ### mpi.apply Rmpi
    
    `mpi.apply` is a specific way of executing Dynamic Rmpi programs.
    
    `mpi.apply()` family of functions provide MPI parallelized, drop in replacement for the serial `apply()` family of functions.
    
    Execution is identical to other dynamic Rmpi programs.
    
    mpi.apply Rmpi example:
    
    ```r
    #integrand function
    f <- function(i,h) {
    x <- h*(i-0.5)
    return (4/(1 + x*x))
    }
    
    #the worker function
    workerpi <- function(rank,size,n)
    {
      #run the calculation
      n <- max(n,size)
      h <- 1.0/n
    
      i <- seq(rank,n,size);
      mypi <- h*sum(sapply(i,f,h));
    
      return(mypi)
    }
    
    #main
    library(Rmpi)
    
    cat("Enter the number of slaves: ")
    fp<-file("stdin"); ns<-scan(fp,nmax=1); close(fp)
    
    mpi.spawn.Rslaves(nslaves=ns)
    mpi.bcast.Robj2slave(f)
    mpi.bcast.Robj2slave(workerpi)
    
    while (TRUE)
    {
      #read number of intervals
      cat("Enter the number of intervals: (0 quits) ")
      fp<-file("stdin"); n<-scan(fp,nmax=1); close(fp)
      if(n<=0) break
    
      #run workerpi
      i=seq(1,2*ns)
      pi3=sum(mpi.parSapply(i,workerpi,2*ns,n))
    
      #print results
      cat(sprintf("Value of PI %16.14f, diff= %16.14fn",pi3,pi3-pi))
    }
    
    mpi.quit()
    ```
    
    The above is the mpi.apply MPI example for calculating the number π. Only the slave processes carry out the calculation. Note the `mpi.parSapply()`, function call. The package parallel example above may be trivially adapted (for much better performance) to this structure using the `mclapply()` in place of `mpi.parSapply()`.
    
    Execute the example as:
    
    ```console
    $ mpirun -np 1 R --slave --no-save --no-restore -f pi3parSapply.R
    ```
    
    ## Combining Parallel and Rmpi
    
    Currently, the two packages cannot be combined for hybrid calculations.
    
    ## Parallel Execution
    
    
    Jan Siwiec's avatar
    Jan Siwiec committed
    R parallel jobs are executed via the SLURM partition system exactly as any other parallel jobs. The user must create an appropriate jobscript and submit it via `sbatch`
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    An example jobscript for [static Rmpi][4] parallel R execution, running 1 process per core:
    
    ```bash
    #!/bin/bash
    
    Jan Siwiec's avatar
    Jan Siwiec committed
    #SBATCH -q qprod
    #SBATCH -N Rjob
    #SBATCH --nodes=100 --ntasks-per-node=24 --cpus-per-task=1
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    # change to scratch directory
    
    Jan Siwiec's avatar
    Jan Siwiec committed
    DIR=/scratch/project/PROJECT_ID/$SLURM_JOBID
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    # copy input file to scratch
    
    Jan Siwiec's avatar
    Jan Siwiec committed
    cp $SLURM_SUBMIT_DIR/rscript.R .
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    # load R and openmpi module
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    # execute the calculation
    
    mpirun -bycore -bind-to-core R --slave --no-save --no-restore -f rscript.R
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    # copy output file to home
    
    Jan Siwiec's avatar
    Jan Siwiec committed
    cp routput.out $SLURM_SUBMIT_DIR/.
    
    Lukáš Krupčík's avatar
    Lukáš Krupčík committed
    
    #exit
    exit
    ```
    
    For more information about jobscripts and MPI execution, refer to the [Job submission][1] and general [MPI][5] sections.
    
    [1]: ../../general/job-submission-and-execution.md
    [2]: #interactive-execution
    [4]: #static-rmpi
    [5]: ../mpi/mpi.md
    
    [a]: http://www.r-project.org/
    [b]: http://cran.r-project.org/doc/manuals/r-release/R-lang.html
    [c]: http://cran.r-project.org/web/packages/Rmpi/
    [d]: http://cran.r-project.org/web/packages/Rmpi/Rmpi.pdf