Skip to content
Snippets Groups Projects
Commit 9abfa9b2 authored by Filip Staněk's avatar Filip Staněk
Browse files

Update compute-nodes.md

parent a0049c86
Branches
No related tags found
1 merge request!330Update compute-nodes.md
Pipeline #20673 passed
...@@ -11,7 +11,6 @@ Standard compute nodes without accelerators (such as GPUs or FPGAs) are based on ...@@ -11,7 +11,6 @@ Standard compute nodes without accelerators (such as GPUs or FPGAs) are based on
* 2x AMD EPYC™ 7H12, 64-core, 2.6 GHz processors per node * 2x AMD EPYC™ 7H12, 64-core, 2.6 GHz processors per node
* 256 GB DDR4 3200MT/s of physical memory per node * 256 GB DDR4 3200MT/s of physical memory per node
* 5,324.8 GFLOP/s per compute node * 5,324.8 GFLOP/s per compute node
* 1x 100 Gb/s Ethernet
* 1x 100 Gb/s IB port * 1x 100 Gb/s IB port
* Cn[001-720] * Cn[001-720]
...@@ -25,9 +24,8 @@ Accelerated compute nodes deliver most of the compute power usable for HPC as we ...@@ -25,9 +24,8 @@ Accelerated compute nodes deliver most of the compute power usable for HPC as we
* 9,216 cores in total * 9,216 cores in total
* 2x AMD EPYC™ 7763, 64-core, 2.45 GHz processors per node * 2x AMD EPYC™ 7763, 64-core, 2.45 GHz processors per node
* 1024 GB DDR4 3200MT/s of physical memory per node * 1024 GB DDR4 3200MT/s of physical memory per node
* 8x GPU accelerator NVIDIA A100 per node * 8x GPU accelerator NVIDIA A100 per node, 320GB HBM2 memory per node
* 5,017.6 GFLOP/s per compute node * 5,017.6 GFLOP/s per compute node
* 4x 200 Gb/s Ethernet
* 4x 200 Gb/s IB port * 4x 200 Gb/s IB port
* Acn[01-72] * Acn[01-72]
...@@ -41,10 +39,9 @@ Data analytics compute node is oriented on supporting huge memory jobs by implem ...@@ -41,10 +39,9 @@ Data analytics compute node is oriented on supporting huge memory jobs by implem
* 768 cores in total * 768 cores in total
* 32x Intel® Xeon® Platinum, 24-core, 2.9 GHz, 205W * 32x Intel® Xeon® Platinum, 24-core, 2.9 GHz, 205W
* 24 TB DDR4 2993MT/s of physical memory per node * 24 TB DDR4 2993MT/s of physical memory per node
* 2x 200 Gb/s Ethernet
* 2x 200 Gb/s IB port * 2x 200 Gb/s IB port
* 71.2704 TFLOP/s * 71.2704 TFLOP/s
* DAcn1 * Sdf1
![](img/superdomeflex.png) ![](img/superdomeflex.png)
...@@ -58,17 +55,17 @@ Cloud compute nodes support both the research and operation of the Infrastructur ...@@ -58,17 +55,17 @@ Cloud compute nodes support both the research and operation of the Infrastructur
* 256 GB DDR4 3200MT/s of physical memory per node * 256 GB DDR4 3200MT/s of physical memory per node
* HPE ProLiant XL225n Gen10 Plus servers * HPE ProLiant XL225n Gen10 Plus servers
* 5,324.8 GFLOP/s per compute node * 5,324.8 GFLOP/s per compute node
* 1x 100 Gb/s Ethernet * 2x 10 Gb/s Ethernet
* 1x 100 Gb/s IB port * 1x 100 Gb/s IB port
* CLn[01-36] * CLn[01-36]
## Compute Node Summary ## Compute Node Summary
| Node type | Count | Range | Memory | Cores | Queues (?) | | Node type | Count | Range | Memory | Cores | Queues (?) |
| ---------------------------- | ----- | ----------- | ------ | ----------- | -------------------------- | | ---------------------------- | ----- | ------------ | ------- | -------------- | -------------------------- |
| Nodes without an accelerator | 720 | Cn[001-720] | 256 GB | 128 @ 2.6 GHz | qexp, qprod, qlong, qfree | | Nodes without an accelerator | 720 | Cn[001-720] | 256 GB | 128 @ 2.6 GHz | qexp, qprod, qlong, qfree |
| Nodes with a GPU accelerator | 72 | Acn[01-72] | 1024 GB | 64 @ 2.45 GHz | qnvidia | | Nodes with a GPU accelerator | 72 | Acn[01-72] | 1024 GB | 64 @ 2.45 GHz | qnvidia |
| Data analytics nodes | 1 | DAcn1 | 24 TB | 768 @ 2.9 GHz | qfat | | Data analytics nodes | 1 | Sdf1 | 24 TB | 768 @ 2.9 GHz | qfat |
| Cloud partiton | 36 | CLn[01-36] | 256 GB | 128 @ 2.6 GHz | | | Cloud partiton | 36 | CLn[01-36] | 256 GB | 128 @ 2.6 GHz | |
## Processor Architecture ## Processor Architecture
...@@ -86,7 +83,7 @@ EPYC™ 7H12 is a 64-bit 64-core x86 server microprocessor designed and introduc ...@@ -86,7 +83,7 @@ EPYC™ 7H12 is a 64-bit 64-core x86 server microprocessor designed and introduc
* **L1D Cache**: 2 MiB, 64x32 KiB, 8-way set associative * **L1D Cache**: 2 MiB, 64x32 KiB, 8-way set associative
* **L2 Cache**: 32 MiB, 64x512 KiB, 8-way set associative, write-back * **L2 Cache**: 32 MiB, 64x512 KiB, 8-way set associative, write-back
* **L3 Cache**: 256 MiB, 16x16 MiB * **L3 Cache**: 256 MiB, 16x16 MiB
* **Instructions**(?): x86-64, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA3, F16C, BMI, BMI2, VT-x, VT-d, TXT, TSX, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVE, SGX, MPX, AVX-512 (New instructions for [Vector Neural Network Instructions][c]) * **Instructions**: x86-16, x86-32, x86-64, MMX, EMMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, SSE4a, AVX, AVX2, AES, CLMUL, RdRanD, FMA3, F16C, ABM, BMI1, BMI2, AMD-Vi, AMD-V, SHA, ADX, Real, Protected, SMM, FPU, NX, SMT, SME, TSME, SEV, SenseMI, Boost2
* **Frequency**: 2.6 GHz * **Frequency**: 2.6 GHz
* **Max turbo**: 3.3 GHz * **Max turbo**: 3.3 GHz
* **Process**: 7 nm, 14 nm * **Process**: 7 nm, 14 nm
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment