Skip to content
Snippets Groups Projects
Commit c6ddeed1 authored by Jan Siwiec's avatar Jan Siwiec
Browse files

Upload New File

parent b346793e
No related branches found
No related tags found
No related merge requests found
Pipeline #32347 failed
# Using AMD Partition
For testing your application on the AMD partition,
you need to prepare a job script for that partition or use the interactive job:
```
salloc -N 1 -c 64 -A PROJECT-ID -p p03-amd --gres=gpu:4 --time=08:00:00
```
where:
- -N 1 means allocating one server,
- -c 64 means allocation 64 cores,
- -A is your project,
- -p p03-amd is AMD partition,
- --gres=gpu:4 means allcating all 4 GPUs of the node,
- --time=08:00:00 means allocation for 8 hours.
You have also an option to allocate subset of the resources only, by reducing the -c and --gres=gpu to smaller values.
```
salloc -N 1 -c 48 -A PROJECT-ID -p p03-amd --gres=gpu:3 --time=08:00:00
salloc -N 1 -c 32 -A PROJECT-ID -p p03-amd --gres=gpu:2 --time=08:00:00
salloc -N 1 -c 16 -A PROJECT-ID -p p03-amd --gres=gpu:1 --time=08:00:00
```
### Note:
p03-amd01 server has hyperthreading enabled therefore htop shows 128 cores.
p03-amd02 server has hyperthreading dissabled therefore htop shows 64 cores.
## Using AMD MI100 GPUs
The AMD GPUs can be programmed using the ROCm open-source platform (see: https://docs.amd.com/ for more information.)
ROCm and related libraries are installed directly in the system. You can find it here:
```
/opt/rocm/
```
The actual version can be found here:
```
[user@p03-amd02.cs]$ cat /opt/rocm/.info/version
5.5.1-74
```
## Basic HIP code
The first way how to program AMD GPUs is to use HIP.
The basic vector addition code in HIP looks like this. This a full code and you can copy and paste it into a file. For this example we use `vector_add.hip.cpp` .
```
#include <cstdio>
#include <hip/hip_runtime.h>
__global__ void add_vectors(float * x, float * y, float alpha, int count)
{
long long idx = blockIdx.x * blockDim.x + threadIdx.x;
if(idx < count)
y[idx] += alpha * x[idx];
}
int main()
{
// number of elements in the vectors
long long count = 10;
// allocation and initialization of data on the host (CPU memory)
float * h_x = new float[count];
float * h_y = new float[count];
for(long long i = 0; i < count; i++)
{
h_x[i] = i;
h_y[i] = 10 * i;
}
// print the input data
printf("X:");
for(long long i = 0; i < count; i++)
printf(" %7.2f", h_x[i]);
printf("\n");
printf("Y:");
for(long long i = 0; i < count; i++)
printf(" %7.2f", h_y[i]);
printf("\n");
// allocation of memory on the GPU device
float * d_x;
float * d_y;
hipMalloc(&d_x, count * sizeof(float));
hipMalloc(&d_y, count * sizeof(float));
// copy the data from host memory to the device
hipMemcpy(d_x, h_x, count * sizeof(float), hipMemcpyHostToDevice);
hipMemcpy(d_y, h_y, count * sizeof(float), hipMemcpyHostToDevice);
int tpb = 256;
int bpg = (count - 1) / tpb + 1;
// launch the kernel on the GPU
add_vectors<<< bpg, tpb >>>(d_x, d_y, 100, count);
// hipLaunchKernelGGL(add_vectors, bpg, tpb, 0, 0, d_x, d_y, 100, count);
// copy the result back to CPU memory
hipMemcpy(h_y, d_y, count * sizeof(float), hipMemcpyDeviceToHost);
// print the results
printf("Y:");
for(long long i = 0; i < count; i++)
printf(" %7.2f", h_y[i]);
printf("\n");
// free the allocated memory
hipFree(d_x);
hipFree(d_y);
delete[] h_x;
delete[] h_y;
return 0;
}
```
To compile the code we use `hipcc` compiler. The compiler information can be found like this:
````
[user@p03-amd02.cs ~]$ hipcc --version
HIP version: 5.5.30202-eaf00c0b
AMD clang version 16.0.0 (https://github.com/RadeonOpenCompute/llvm-project roc-5.5.1 23194 69ef12a7c3cc5b0ccf820bc007bd87e8b3ac3037)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/rocm-5.5.1/llvm/bin
````
The code is compiled a follows:
```
hipcc vector_add.hip.cpp -o vector_add.x
```
The correct output of the code is:
```
[user@p03-amd02.cs ~]$ ./vector_add.x
X: 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
Y: 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00
Y: 0.00 110.00 220.00 330.00 440.00 550.00 660.00 770.00 880.00 990.00
```
## HIP and ROCm libraries
The list of official AMD libraries can be found here: https://docs.amd.com/category/libraries.
The libraries are installed in the same directory is ROCm
```
/opt/rocm/
```
Following libraries are installed:
```
drwxr-xr-x 4 root root 44 Jun 7 14:09 hipblas
drwxr-xr-x 3 root root 17 Jun 7 14:09 hipblas-clients
drwxr-xr-x 3 root root 29 Jun 7 14:09 hipcub
drwxr-xr-x 4 root root 44 Jun 7 14:09 hipfft
drwxr-xr-x 3 root root 25 Jun 7 14:09 hipfort
drwxr-xr-x 4 root root 32 Jun 7 14:09 hiprand
drwxr-xr-x 4 root root 44 Jun 7 14:09 hipsolver
drwxr-xr-x 4 root root 44 Jun 7 14:09 hipsparse
```
and
```
drwxr-xr-x 4 root root 32 Jun 7 14:09 rocalution
drwxr-xr-x 4 root root 44 Jun 7 14:09 rocblas
drwxr-xr-x 4 root root 44 Jun 7 14:09 rocfft
drwxr-xr-x 4 root root 32 Jun 7 14:09 rocprim
drwxr-xr-x 4 root root 32 Jun 7 14:09 rocrand
drwxr-xr-x 4 root root 44 Jun 7 14:09 rocsolver
drwxr-xr-x 4 root root 44 Jun 7 14:09 rocsparse
drwxr-xr-x 3 root root 29 Jun 7 14:09 rocthrust
```
### Using hipBlas library
The basic code in HIP that uses hipBlas looks like this. This a full code and you can copy and paste it into a file. For this example we use `hipblas.hip.cpp` .
```
#include <cstdio>
#include <vector>
#include <cstdlib>
#include <hip/hip_runtime.h>
#include <hipblas/hipblas.h>
int main()
{
srand(9600);
int width = 10;
int height = 7;
int elem_count = width * height;
// initialization of data in CPU memory
float * h_A;
hipHostMalloc(&h_A, elem_count * sizeof(*h_A));
for(int i = 0; i < elem_count; i++)
h_A[i] = (100.0f * rand()) / (float)RAND_MAX;
printf("Matrix A:\n");
for(int r = 0; r < height; r++)
{
for(int c = 0; c < width; c++)
printf("%6.3f ", h_A[r + height * c]);
printf("\n");
}
float * h_x;
hipHostMalloc(&h_x, width * sizeof(*h_x));
for(int i = 0; i < width; i++)
h_x[i] = (100.0f * rand()) / (float)RAND_MAX;
printf("vector x:\n");
for(int i = 0; i < width; i++)
printf("%6.3f ", h_x[i]);
printf("\n");
float * h_y;
hipHostMalloc(&h_y, height * sizeof(*h_y));
for(int i = 0; i < height; i++)
h_x[i] = 100.0f + i;
printf("vector y:\n");
for(int i = 0; i < height; i++)
printf("%6.3f ", h_x[i]);
printf("\n");
// initialization of data in GPU memory
float * d_A;
size_t pitch_A;
hipMallocPitch((void**)&d_A, &pitch_A, height * sizeof(*d_A), width);
hipMemcpy2D(d_A, pitch_A, h_A, height * sizeof(*d_A), height * sizeof(*d_A), width, hipMemcpyHostToDevice);
int lda = pitch_A / sizeof(float);
float * d_x;
hipMalloc(&d_x, width * sizeof(*d_x));
hipMemcpy(d_x, h_x, width * sizeof(*d_x), hipMemcpyHostToDevice);
float * d_y;
hipMalloc(&d_y, height * sizeof(*d_y));
hipMemcpy(d_y, h_y, height * sizeof(*d_y), hipMemcpyHostToDevice);
// basic calculation of the result on the CPU
float alpha=2.0f, beta=10.0f;
for(int i = 0; i < height; i++)
h_y[i] *= beta;
for(int r = 0; r < height; r++)
for(int c = 0; c < width; c++)
h_y[r] += alpha * h_x[c] * h_A[r + height * c];
printf("result y CPU:\n");
for(int i = 0; i < height; i++)
printf("%6.3f ", h_y[i]);
printf("\n");
// calculation of the result on the GPU using the hipBLAS library
hipblasHandle_t blas_handle;
hipblasCreate(&blas_handle);
hipblasSgemv(blas_handle, HIPBLAS_OP_N, height, width, &alpha, d_A, lda, d_x, 1, &beta, d_y, 1);
hipDeviceSynchronize();
hipblasDestroy(blas_handle);
// copy the GPU result to CPU memory and print it
hipMemcpy(h_y, d_y, height * sizeof(*d_y), hipMemcpyDeviceToHost);
printf("result y BLAS:\n");
for(int i = 0; i < height; i++)
printf("%6.3f ", h_y[i]);
printf("\n");
// free all the allocated memory
hipFree(d_A);
hipFree(d_x);
hipFree(d_y);
hipHostFree(h_A);
hipHostFree(h_x);
hipHostFree(h_y);
return 0;
}
```
The code compilation can be done as follows:
```
hipcc hipblas.hip.cpp -o hipblas.x -lhipblas
```
### Using hipSolver library
The basic code in HIP that uses hipSolver looks like this. This a full code and you can copy and paste it into a file. For this example we use `hipsolver.hip.cpp` .
```
#include <cstdio>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <hipsolver/hipsolver.h>
#include <hipblas/hipblas.h>
int main()
{
srand(63456);
int size = 10;
// allocation and initialization of data on host. this time we use std::vector
int h_A_ld = size;
int h_A_pitch = h_A_ld * sizeof(float);
std::vector<float> h_A(size * h_A_ld);
for(int r = 0; r < size; r++)
for(int c = 0; c < size; c++)
h_A[r * h_A_ld + c] = (10.0 * rand()) / RAND_MAX;
printf("System matrix A:\n");
for(int r = 0; r < size; r++)
{
for(int c = 0; c < size; c++)
printf("%6.3f ", h_A[r * h_A_ld + c]);
printf("\n");
}
std::vector<float> h_b(size);
for(int i = 0; i < size; i++)
h_b[i] = (10.0 * rand()) / RAND_MAX;
printf("RHS vector b:\n");
for(int i = 0; i < size; i++)
printf("%6.3f ", h_b[i]);
printf("\n");
std::vector<float> h_x(size);
// memory allocation on the device and initialization
float * d_A;
size_t d_A_pitch;
hipMallocPitch((void**)&d_A, &d_A_pitch, size, size);
int d_A_ld = d_A_pitch / sizeof(float);
float * d_b;
hipMalloc(&d_b, size * sizeof(float));
float * d_x;
hipMalloc(&d_x, size * sizeof(float));
int * d_piv;
hipMalloc(&d_piv, size * sizeof(int));
int * info;
hipMallocManaged(&info, sizeof(int));
hipMemcpy2D(d_A, d_A_pitch, h_A.data(), h_A_pitch, size * sizeof(float), size, hipMemcpyHostToDevice);
hipMemcpy(d_b, h_b.data(), size * sizeof(float), hipMemcpyHostToDevice);
// solving the system using hipSOLVER
hipsolverHandle_t solverHandle;
hipsolverCreate(&solverHandle);
int wss_trf, wss_trs; // wss = WorkSpace Size
hipsolverSgetrf_bufferSize(solverHandle, size, size, d_A, d_A_ld, &wss_trf);
hipsolverSgetrs_bufferSize(solverHandle, HIPSOLVER_OP_N, size, 1, d_A, d_A_ld, d_piv, d_b, size, &wss_trs);
float * workspace;
int wss = std::max(wss_trf, wss_trs);
hipMalloc(&workspace, wss * sizeof(float));
hipsolverSgetrf(solverHandle, size, size, d_A, d_A_ld, workspace, wss, d_piv, info);
hipsolverSgetrs(solverHandle, HIPSOLVER_OP_N, size, 1, d_A, d_A_ld, d_piv, d_b, size, workspace, wss, info);
hipMemcpy(d_x, d_b, size * sizeof(float), hipMemcpyDeviceToDevice);
hipMemcpy(h_x.data(), d_x, size * sizeof(float), hipMemcpyDeviceToHost);
printf("Solution vector x:\n");
for(int i = 0; i < size; i++)
printf("%6.3f ", h_x[i]);
printf("\n");
hipFree(workspace);
hipsolverDestroy(solverHandle);
// perform matrix-vector multiplication A*x using hipBLAS to check if the solution is correct
hipblasHandle_t blasHandle;
hipblasCreate(&blasHandle);
float alpha = 1;
float beta = 0;
hipMemcpy2D(d_A, d_A_pitch, h_A.data(), h_A_pitch, size * sizeof(float), size, hipMemcpyHostToDevice);
hipblasSgemv(blasHandle, HIPBLAS_OP_N, size, size, &alpha, d_A, d_A_ld, d_x, 1, &beta, d_b, 1);
hipDeviceSynchronize();
hipblasDestroy(blasHandle);
for(int i = 0; i < size; i++)
h_b[i] = 0;
hipMemcpy(h_b.data(), d_b, size * sizeof(float), hipMemcpyDeviceToHost);
printf("Check multiplication vector Ax:\n");
for(int i = 0; i < size; i++)
printf("%6.3f ", h_b[i]);
printf("\n");
// free all the allocated memory
hipFree(info);
hipFree(d_piv);
hipFree(d_x);
hipFree(d_b);
hipFree(d_A);
return 0;
}
```
The code compilation can be done as follows:
```
hipcc hipsolver.hip.cpp -o hipsolver.x -lhipblas -lhipsolver
```
### Other AMD libraries and frameworks
Please see [gcc options](https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html) for more advanced compilation settings.
No complications are expected as long as the application does not use any intrinsic for `x64` architecture.
If you want to use intrinsic,
[SVE](https://developer.arm.com/documentation/102699/0100/Optimizing-with-intrinsics) instruction set is available.
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment