Skip to content
Snippets Groups Projects
Commit 7b7450ae authored by Easy Build's avatar Easy Build
Browse files

Tue, 20 Feb 2018 14:15:05 +0100

parent bdf731d2
No related branches found
No related tags found
No related merge requests found
...@@ -225,6 +225,7 @@ CORALbenchmark/1.00-foss-2016a,2 ...@@ -225,6 +225,7 @@ CORALbenchmark/1.00-foss-2016a,2
CP2K/2.6.0-intel-2015b,2 CP2K/2.6.0-intel-2015b,2
CP2K/5.1,2 CP2K/5.1,2
Cube/4.3.4-intel-2015b,2 Cube/4.3.4-intel-2015b,2
Cube/4.3.5,2
CUDA/7.5.18,2 CUDA/7.5.18,2
CUDA/8.0.61,2 CUDA/8.0.61,2
CUDA/9.1.85,2 CUDA/9.1.85,2
...@@ -244,6 +245,7 @@ DDT/4.2,2 ...@@ -244,6 +245,7 @@ DDT/4.2,2
DDT/5.0.1,2 DDT/5.0.1,2
Debian/8.0,2 Debian/8.0,2
Debian/8.0-shell,2 Debian/8.0-shell,2
decorator/4.2.1-Py-3.6,2
deMonNano/4.3.6,2 deMonNano/4.3.6,2
Digimat/5.0.1-COM,2 Digimat/5.0.1-COM,2
Digimat/5.0.1-EDU,2 Digimat/5.0.1-EDU,2
...@@ -1140,6 +1142,7 @@ nettle/3.2-intel-2017a,2 ...@@ -1140,6 +1142,7 @@ nettle/3.2-intel-2017a,2
nettle/3.3-foss-2017a,2 nettle/3.3-foss-2017a,2
nettle/3.3-intel-2017a,2 nettle/3.3-intel-2017a,2
networkx/1.11-Python-2.7.13,2 networkx/1.11-Python-2.7.13,2
networkx/2.1-Py-3.6,2
NLopt/2.4.2,2 NLopt/2.4.2,2
NLopt/2.4.2-intel-2017a,2 NLopt/2.4.2-intel-2017a,2
NodeJS/6.10.1-foss-2016a,2 NodeJS/6.10.1-foss-2016a,2
...@@ -1174,6 +1177,7 @@ Octave/4.2.1-intel-2017a-without-X11,2 ...@@ -1174,6 +1177,7 @@ Octave/4.2.1-intel-2017a-without-X11,2
Octopus/7.1-intel-2017a,2 Octopus/7.1-intel-2017a,2
OPARI2/1.1.4-intel-2015b,2 OPARI2/1.1.4-intel-2015b,2
OPARI2/2.0,2 OPARI2/2.0,2
OPARI2/2.0.2,2
OpenBabel/2.4.1-Python-2.7.13,2 OpenBabel/2.4.1-Python-2.7.13,2
OpenBLAS/0.2.14-GNU-4.9.3-2.25-LAPACK-3.5.0,2 OpenBLAS/0.2.14-GNU-4.9.3-2.25-LAPACK-3.5.0,2
OpenBLAS/0.2.14-GNU-5.1.0-2.25-LAPACK-3.5.0,2 OpenBLAS/0.2.14-GNU-5.1.0-2.25-LAPACK-3.5.0,2
...@@ -1228,6 +1232,7 @@ OSPRay/1.3.0-intel-2017a,2 ...@@ -1228,6 +1232,7 @@ OSPRay/1.3.0-intel-2017a,2
OTF2/1.4-intel-2015b,2 OTF2/1.4-intel-2015b,2
OTF2/2.0,2 OTF2/2.0,2
OTF2/2.0-intel-2015b-mic,2 OTF2/2.0-intel-2015b-mic,2
OTF2/2.1,2
p4vasp/0.3.30,2 p4vasp/0.3.30,2
palettable/3.1.0-Py-3.6,2 palettable/3.1.0-Py-3.6,2
pandas/0.22.0-Py-3.6,2 pandas/0.22.0-Py-3.6,2
...@@ -1261,6 +1266,7 @@ PCRE/8.37-foss-2015g,2 ...@@ -1261,6 +1266,7 @@ PCRE/8.37-foss-2015g,2
PCRE/8.39-intel-2017.00,2 PCRE/8.39-intel-2017.00,2
PCRE/8.40,2 PCRE/8.40,2
PDT/3.18.1,2 PDT/3.18.1,2
PDT/3.24,2
perfboost/1.0,2 perfboost/1.0,2
perfcatcher/1.0,2 perfcatcher/1.0,2
PerformanceReports/5.1-43967,2 PerformanceReports/5.1-43967,2
......
...@@ -335,6 +335,7 @@ ...@@ -335,6 +335,7 @@
| [perfcatcher](http://www.sgi.com/) | Light-weight application profiler for SGI MPI | | [perfcatcher](http://www.sgi.com/) | Light-weight application profiler for SGI MPI |
| [PerfReports](http://www.allinea.com/") | helps you address the question of quality of utilization. It provides a one page HTML report - collecting, analyzing and reporting the key metrics that impact performance. It can be used without changing either the source code or the application - removing the barriers and opening access to everyon | | [PerfReports](http://www.allinea.com/") | helps you address the question of quality of utilization. It provides a one page HTML report - collecting, analyzing and reporting the key metrics that impact performance. It can be used without changing either the source code or the application - removing the barriers and opening access to everyon |
| [PerfSuite](http://perfsuite.ncsa.illinois.edu/") | PerfSuite is a collection of tools, utilities, and libraries for software performance analysis where the primary design goals are ease of use, comprehensibility, interoperability, and simplicity. This software can provide a good "entry point" for more detailed performance analysis and can help point the way towards selecting other tools and/or techniques using more specialized software if necessary (for example, tools/libraries from academic research groups or third-party commercial software | | [PerfSuite](http://perfsuite.ncsa.illinois.edu/") | PerfSuite is a collection of tools, utilities, and libraries for software performance analysis where the primary design goals are ease of use, comprehensibility, interoperability, and simplicity. This software can provide a good "entry point" for more detailed performance analysis and can help point the way towards selecting other tools and/or techniques using more specialized software if necessary (for example, tools/libraries from academic research groups or third-party commercial software |
| [Score-P](http://www.vi-hps.org/projects/score-p//) | Score-P offers the user a maximum of convenience by supporting a number of analysis tools. Currently, it works with Periscope, Scalasca, Vampir, and Tau and is open for other tools. Score-P comes together with the new Open Trace Format Version 2, the Cube4 profiling format and the Opari2 instrumenter (see below). Score-P is available under the New BSD Open Source license. |
| [Vampir](http://www.vampir.eu) | The Vampir software tool provides an easy-to-use framework that enables developers to quickly display and analyze arbitrary program behavior at any level of detail. The tool suite implements optimized event analysis algorithms and customizable displays that enable fast and interactive rendering of very complex performance monitoring data. | | [Vampir](http://www.vampir.eu) | The Vampir software tool provides an easy-to-use framework that enables developers to quickly display and analyze arbitrary program behavior at any level of detail. The tool suite implements optimized event analysis algorithms and customizable displays that enable fast and interactive rendering of very complex performance monitoring data. |
| [VampirServer](http://www.vampir.eu) | The Vampir software tool provides an easy-to-use framework that enables developers to quickly display and analyze arbitrary program behavior at any level of detail. The tool suite implements optimized event analysis algorithms and customizable displays that enable fast and interactive rendering of very complex performance monitoring data. | | [VampirServer](http://www.vampir.eu) | The Vampir software tool provides an easy-to-use framework that enables developers to quickly display and analyze arbitrary program behavior at any level of detail. The tool suite implements optimized event analysis algorithms and customizable displays that enable fast and interactive rendering of very complex performance monitoring data. |
...@@ -369,6 +370,7 @@ ...@@ -369,6 +370,7 @@
| [certifi](https://pypi.python.org/pypi/certifi) | Python package for providing Mozillas CA Bundle. | | [certifi](https://pypi.python.org/pypi/certifi) | Python package for providing Mozillas CA Bundle. |
| [click](https://pypi.python.org/pypi/click) | A simple wrapper around optparse for powerful command line utilities. | | [click](https://pypi.python.org/pypi/click) | A simple wrapper around optparse for powerful command line utilities. |
| [cycler](https://matplotlib.org/cycler) | Composable style cycles. | | [cycler](https://matplotlib.org/cycler) | Composable style cycles. |
| [decorator](https://pypi.python.org/pypi/decorator) | Better living through Python with decorators. |
| [Flask](https://pypi.python.org/pypi/flask) | A microframework based on Werkzeug, Jinja2 and good intentions. | | [Flask](https://pypi.python.org/pypi/flask) | A microframework based on Werkzeug, Jinja2 and good intentions. |
| [h5py](http://www.h5py.org/) | HDF5 for Python (h5py) is a general-purpose Python interface to the Hierarchical Data Format library, version 5. HDF5 is a versatile, mature scientific software library designed for the fast, flexible storage of enormous amounts of data. | | [h5py](http://www.h5py.org/) | HDF5 for Python (h5py) is a general-purpose Python interface to the Hierarchical Data Format library, version 5. HDF5 is a versatile, mature scientific software library designed for the fast, flexible storage of enormous amounts of data. |
| [itsdangerous](https://pypi.python.org/pypi/itsdangerous) | Various helpers to pass trusted data to untrusted environments and back. | | [itsdangerous](https://pypi.python.org/pypi/itsdangerous) | Various helpers to pass trusted data to untrusted environments and back. |
...@@ -382,6 +384,7 @@ ...@@ -382,6 +384,7 @@
| [monty](https://pypi.python.org/pypi/monty) | Monty is the missing complement to Python. | | [monty](https://pypi.python.org/pypi/monty) | Monty is the missing complement to Python. |
| [mpi4py](http://mpi4py.scipy.org/docs) | MPI for Python (mpi4py) provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors. | | [mpi4py](http://mpi4py.scipy.org/docs) | MPI for Python (mpi4py) provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors. |
| [mpmath](https://pypi.python.org/pypi/mpmath) | Python library for arbitrary-precision floating-point arithmetic. | | [mpmath](https://pypi.python.org/pypi/mpmath) | Python library for arbitrary-precision floating-point arithmetic. |
| [networkx](https://pypi.python.org/pypi/networkx) | NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. |
| [numpy](http://www.numpy.org) | NumPy is the fundamental package for scientific computing with Python. It contains among other things: a powerful N-dimensional array object, sophisticated (broadcasting) functions, tools for integrating C/C++ and Fortran code, useful linear algebra, Fourier transform, and random number capabilities. Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. | | [numpy](http://www.numpy.org) | NumPy is the fundamental package for scientific computing with Python. It contains among other things: a powerful N-dimensional array object, sophisticated (broadcasting) functions, tools for integrating C/C++ and Fortran code, useful linear algebra, Fourier transform, and random number capabilities. Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. |
| [palettable](https://pypi.python.org/pypi/palettable) | Color palettes for Python. | | [palettable](https://pypi.python.org/pypi/palettable) | Color palettes for Python. |
| [pandas](https://pypi.python.org/pypi/pandas) | Powerful data structures for data analysis, time series,and statistics. | | [pandas](https://pypi.python.org/pypi/pandas) | Powerful data structures for data analysis, time series,and statistics. |
...@@ -399,6 +402,7 @@ ...@@ -399,6 +402,7 @@
| [pyzmq](https://pypi.python.org/pypi/pyzmq) | Python bindings for 0MQ. | | [pyzmq](https://pypi.python.org/pypi/pyzmq) | Python bindings for 0MQ. |
| [requests](https://pypi.python.org/pypi/requests) | Python HTTP for Humans. | | [requests](https://pypi.python.org/pypi/requests) | Python HTTP for Humans. |
| [ruamel.yaml](https://pypi.python.org/pypi/ruamel.yaml) | ruamel.yaml is a YAML parser/emitter that supports roundtrip preservation of comments, seq/map flow style, and map key order | | [ruamel.yaml](https://pypi.python.org/pypi/ruamel.yaml) | ruamel.yaml is a YAML parser/emitter that supports roundtrip preservation of comments, seq/map flow style, and map key order |
| [scikit-image](http://scikit-learn.org/stable/index.html) | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
| [scikit-learn](http://scikit-learn.org/stable/index.html) | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. | | [scikit-learn](http://scikit-learn.org/stable/index.html) | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
| [scipy](https://github.com/jupyter/testpath) | Test utilities for code working with files and commands | | [scipy](https://github.com/jupyter/testpath) | Test utilities for code working with files and commands |
| [SCons](http://www.scons.org/) | SCons is a software construction tool. | | [SCons](http://www.scons.org/) | SCons is a software construction tool. |
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment