Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
#include "Uncertainity.h"
#include "UncertainityOptions.h"
#include "AbstractParam.h"
#include "AbstractRandom.h"
#include "PrecipitationUncertainity.h"
#include "CSVWriter.h"
#include "UniformRandom.h"
#include "NormalRandom.h"
#include "ManningUncertainity.h"
#include "CnUncertainity.h"
#include "easylogging++.h"
#include <iostream>
#include <algorithm>
#include <cmath>
#include <memory>
#include <vector>
#include <mpi.h>
#include <omp.h>
#define _ELPP_THREAD_SAFE
namespace math1d_cl {
Uncertainity::Uncertainity(std::string config_xml, std::shared_ptr<math1d_cl::MatData> matData, uint32_t mcCount)
{
MPI_Comm_size(MPI_COMM_WORLD, &m_numProc);
MPI_Comm_rank(MPI_COMM_WORLD, &m_rank);
m_options = SetOptions(config_xml);
// overwrite number of Monte Carlo samples to be simulated
m_options.simulationCount = mcCount;
m_matData = matData;
// Determine chunks of iterations per process
int modulo = m_options.simulationCount % m_numProc;
int size = (int) std::floor(m_options.simulationCount / m_numProc);
for (int p = 0; p < m_numProc; ++p)
{
int sizePerProcess = size;
if( modulo > 0 )
{
sizePerProcess++;
modulo--;
}
m_options.chunkSizes.push_back(sizePerProcess);
if(m_rank == 0)
{
CLOG(INFO, "montecarlo") << "[MPI Rank " << p << "]: Chunk distribution "<< m_options.chunkSizes[p] << "/" << m_options.simulationCount;
}
}
if(m_rank == 0)
{
// Copy original hydrographs
for (size_t i = 0; i < m_matData->getChannels().size(); ++i)
{
m_origHydrographs.push_back(m_matData->getChannels()[i]->getHydrograph());
}
}
// Check for any parameter selected
if((m_options.simParameter.precipitations || m_options.simParameter.manning || m_options.simParameter.cn) == false)
{
CLOG(FATAL,"montecarlo") << "ERROR: No parameter selected for Monte Carlo simulation.";
std::exit(-1);
}
/* Precipitations */
if(m_options.simParameter.precipitations == true)
{
std::shared_ptr<AbstractRandom> precipRandom;
// Create selected random function
switch(m_options.precipRandType) {
case RandomType::KERNEL_DENSITY :
precipRandom = std::make_shared<KernelDensity>(m_options);
break;
default:
CLOG(FATAL,"montecarlo") << "ERROR: Unknown random function, check precipitation random function options.";
std::exit(-1);
break;
}
// Create precipitation uncertainity and save it
precipRandom->seed();
m_uncertainParameters.push_back(std::make_shared<math1d_cl::PrecipitationUncertainity>(precipRandom, m_options, m_matData));
}
/* Manning's coefficient */
if(m_options.simParameter.manning == true)
{
std::shared_ptr<AbstractRandom> manningRandom;
// Create selected random function
switch(m_options.nRandType) {
case RandomType::UNIFORM :
manningRandom = std::make_shared<UniformRandom>(m_options);
break;
case RandomType::NORMAL :
manningRandom = std::make_shared<NormalRandom>(m_options);
break;
default:
CLOG(FATAL,"montecarlo") << "ERROR: Unknown random function, check Mannings random function options.";
std::exit(-1);
break;
}
manningRandom->seed();
m_uncertainParameters.push_back(std::make_shared<math1d_cl::ManningUncertainity>(manningRandom, m_options, m_matData));
}
/* CN Curve number */
if(m_options.simParameter.cn == true)
{
std::shared_ptr<AbstractRandom> cnRandom;
// Create selected random function
switch(m_options.cnRandType) {
case RandomType::UNIFORM :
cnRandom = std::make_shared<UniformRandom>(m_options);
break;
case RandomType::NORMAL :
cnRandom = std::make_shared<NormalRandom>(m_options);
break;
default:
CLOG(FATAL,"montecarlo") << "ERROR: Unknown random function, check CN random function options.";
std::exit(-1);
break;
}
cnRandom->seed();
m_uncertainParameters.push_back(std::make_shared<math1d_cl::CnUncertainity>(cnRandom, m_options, m_matData));
}
// Compute timestep count
m_timeSteps = 1 + (m_options.daysMeasured + m_options.daysPredicted) * m_options.valuesPerDay;
// Get station count
m_stationsCount = m_matData->getPrecipitations().front().second.size();
// Check if timeSteps data are correct
if(m_timeSteps != m_matData->getPrecipitations().size())
{
CLOG(FATAL,"montecarlo") << "ERROR: Timestep count of input precipitations is incorrect, check Measured/Predicted days.";
std::exit(-1);
}
}
void Uncertainity::Initialize()
{
CLOG(INFO,"montecarlo") << "Initializing Monte carlo simulation";
for (size_t p = 0; p < m_options.chunkSizes.size(); ++p)
{
m_qChunkSizes.push_back(m_options.chunkSizes[p] * m_timeSteps * m_matData->getChannels().size());
m_qChunkDispl.push_back(p * m_options.chunkSizes[p] * m_timeSteps * m_matData->getChannels().size());
//m_hChunkSizes.push_back(m_options.chunkSizes[p] * m_timeSteps * m_stationsCount);
//m_hChunkDispl.push_back(p * m_options.chunkSizes[p] * m_timeSteps * m_stationsCount);
}
/*
Generate values for monte carlo run
*/
for(std::vector<std::shared_ptr<math1d_cl::AbstractParam>>::const_iterator it = m_uncertainParameters.begin(); it != m_uncertainParameters.end(); ++it)
{
(*it)->generateValues();
}
}
/*
Make a copy of model for each thread
*/
void Uncertainity::CreateModels(size_t modelsNumber)
{
int modelsCreated = 0;
for (size_t i = m_models.size(); i < modelsNumber; ++i)
{
math1d_cl::MatData model(*(m_matData.get()));
m_models.push_back(model);
}
CLOG(INFO, "montecarlo") << modelsCreated << " models created";
}
void Uncertainity::RunMC(size_t threadsNumber)
{
CLOG(INFO,"montecarlo") << "Monte carlo simulation";
m_localQ.reserve(m_qChunkSizes[m_rank]); // Resize to fit all local hydrographs
omp_set_num_threads(threadsNumber);
int max_threads = omp_get_max_threads();
CLOG(INFO, "montecarlo") << "[OpenMP] Max " << max_threads << " threads available";
/*
Run monte carlo loop
Every process runs its corresponding number of iterations (including root rank)
*/
CLOG(INFO, "montecarlo") << "Running Monte Carlo on rank " << m_rank << " ...";
#pragma omp parallel
{
#pragma omp single
CLOG(INFO, "montecarlo") << "[OpenMP] " << omp_get_num_threads() << " threads used";
#pragma omp for schedule(dynamic)
for (size_t i = 0; i < threadsNumber; ++i) //m_options.chunkSizes[m_rank];
{
int tid = omp_get_thread_num();
//CLOG(DEBUG, "montecarlo") << "[Rank " << m_rank << " | Thread " << tid << "] MC Run no. " << (i+1) << "/" << m_options.chunkSizes[rank];
std::cout << "." << std::flush;
#pragma omp critical
{
// Get randomized value for each selected uncertain parameter
for(std::vector<std::shared_ptr<math1d_cl::AbstractParam>>::const_iterator it = m_uncertainParameters.begin(); it != m_uncertainParameters.end(); ++it)
{
(*it)->setParam(m_models[tid]);
}
}
// Run Math1D model
m_models[tid].rainfallRunoffModel();
// Collect data to intermediate array
#pragma omp critical
{
for (size_t ch = 0; ch < m_matData->getChannels().size(); ++ch)
{
m_localQ.insert(m_localQ.end(),
m_models[tid].getChannels()[ch]->getHydrograph().getQOut().begin(),
m_models[tid].getChannels()[ch]->getHydrograph().getQOut().begin() + m_timeSteps);
}
}
}// For iterations
}// OMP Parallel
std::cout << std::endl;
CLOG(INFO, "montecarlo") << "[Rank " << m_rank << "] DONE.";
}
void Uncertainity::CollectResults()
{
/* MPI Perform gathering of all results into array allocated on root rank */
// Gathered data
std::vector<double> gatheredQ;
//std::vector<double> gatheredH;
if(m_rank == 0)
{
CLOG(INFO, "montecarlo") << "[MPI]Gathering results...";
// Resize to fit all gathered Q values
gatheredQ.resize(m_options.simulationCount * m_timeSteps * m_matData->getChannels().size());
}
//MPI_Gather(intermediateHydrographs, intermediateHydrographsSize, MPI_DOUBLE, gatheredHydrographs, intermediateHydrographsSize, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gatherv(&m_localQ.front(), m_qChunkSizes[m_rank], MPI_DOUBLE,
&gatheredQ.front(), &m_qChunkSizes.front(), &m_qChunkDispl.front(), MPI_DOUBLE, 0, MPI_COMM_WORLD);
if(m_rank == 0)
{
CLOG(INFO, "montecarlo") << "[MPI]Gathering DONE.";
}
MPI_Finalize();
CLOG(INFO, "montecarlo") << "Collect quantiles...";
std::vector<std::vector<math1d_cl::Hydrograph>> hydrographs(m_options.quantiles.size()); // Holds hydrographs for each quantile and each channel
for(size_t ch = 0; ch < m_matData->getChannels().size(); ++ch)
{
CLOG(DEBUG, "montecarlo") << "Channel " << ch;
std::vector<std::vector<double>> channelHydrographQuantiles; // Holds hydrographs for one channels and all quantiles
channelHydrographQuantiles.resize(m_options.quantiles.size());
for(size_t tm = 0; tm < m_timeSteps; ++tm)
{
std::vector<double> tmResult; // Holds values for all iterations, one channel, one timestep
for(size_t it = 0; it < (size_t)m_options.simulationCount; ++it)
{
double *valptr = gatheredQ.data() + tm + (m_timeSteps * ch) + (m_timeSteps * m_matData->getChannels().size() * it);
tmResult.push_back((*valptr));
}
// Get quantiles
std::vector<double> quantilesPerTimestep = GetQuantile(tmResult, m_options.quantiles);
tmResult.clear();
// Append quantiles to output hydrographs
for (size_t q = 0; q < quantilesPerTimestep.size(); ++q)
{
channelHydrographQuantiles[q].push_back(quantilesPerTimestep[q]);
}
} // Timesteps
// Insert resulting quantiles for one channel
for (size_t chq = 0; chq < channelHydrographQuantiles.size(); ++chq)
{
math1d_cl::Hydrograph hydrograph;
hydrograph.setQOut(channelHydrographQuantiles[chq]);
hydrographs[chq].push_back(hydrograph);
}
channelHydrographQuantiles.clear();
} // Channels
// Save results
math1d_cl::CSVWriter csvwriter;
for (size_t q = 0; q < m_options.quantiles.size(); ++q)
{
CLOG(INFO, "montecarlo") << "Saving " << m_options.quantiles[q] << "pct quantile...";
std::string qFileName = m_options.resultsDir + "/Q_" + std::to_string((int)m_options.quantiles[q]) + "_quantile.csv";
std::string hFileName = m_options.resultsDir + "/H_" + std::to_string((int)m_options.quantiles[q]) + "_quantile.csv";
csvwriter.saveMCResult(m_matData,hydrographs[q], m_timeSteps, qFileName, hFileName);
CLOG(INFO, "montecarlo") << "OK";
}
}
std::vector<double> Uncertainity::GetQuantile(std::vector<double> &input, std::vector<double> quantiles)
{
std::vector<double> result;
result.reserve(quantiles.size());
std::sort(input.begin(),input.end(),std::less<double>()); // Sort the vector
for (size_t i = 0; i < quantiles.size(); ++i)
{
// Get quantile
int qIdx = floor(input.size()*(quantiles[i]/100));
double value = 0.0;
if(input.size() % 2 == 0 && qIdx+1 < (int)input.size()) // Check vector size
{
// Even element count
value = (input[qIdx]+input[qIdx+1])/2;
} else
{
// Odd element count
value = input[qIdx];
}
result.push_back(value);
}
// Return quantiles
return result;
}
math1d_cl::UncertainityOptions Uncertainity::SetOptions(std::string fileName)
{
pugi::xml_document doc;
pugi::xml_parse_result result = doc.load_file(fileName.c_str());
if (result.status != pugi::status_ok)
{
// Config file load unsuccesfull
CLOG(FATAL, "montecarlo") << "Configuration load result: " << std::string(result.description());
std::exit(EXIT_FAILURE);
}
pugi::xml_node params = doc.child("conf").child("uncertainity").child("params");
// Set options
math1d_cl::UncertainityOptions options;
options.simulationCount = params.child("mcCount").text().as_int();
pugi::xml_node quantiles = params.child("quantiles");
for (pugi::xml_node q = quantiles.first_child(); q; q = q.next_sibling())
{
options.quantiles.push_back(q.text().as_double());
}
std::string precRandType = params.child("precRandType").text().as_string();
if (precRandType == "KERNEL_DENSITY")
{
options.precipRandType = math1d_cl::RandomType::KERNEL_DENSITY;
}
options.daysMeasured = params.child("daysMeasured").text().as_int();
options.daysPredicted = params.child("daysPredicted").text().as_int();
options.valuesPerDay = params.child("valuesPerDay").text().as_int();
options.resultsDir = doc.child("conf").child("resourcesPath").text().as_string();
options.precipDeviation = params.child("precDeviation").text().as_double();
pugi::xml_node limits = params.child("precLimits");
for (pugi::xml_node l = limits.first_child(); l; l = l.next_sibling())
{
options.limits.push_back({ l.child("value").text().as_double(), l.child("file").text().as_string() });
}// Add precip. limits
// Set parameters to simulate
options.simParameter.precipitations = params.child("precEnabled").text().as_bool();
// Manning's N
options.simParameter.manning = params.child("nEnabled").text().as_bool();
options.nDeviation = params.child("nDeviation").text().as_double();
options.nLimits.lower = params.child("nLimitLower").text().as_double();
options.nLimits.upper = params.child("nLimitUpper").text().as_double();
// CN Curve number
options.simParameter.cn = params.child("cnEnabled").text().as_bool();
options.cnDeviation = params.child("cnDeviation").text().as_double();
options.cnLimits.lower = params.child("cnLimitLower").text().as_double();
options.cnLimits.upper = params.child("cnLimitUpper").text().as_double();
options.chunkSizes.reserve(1); // Chunk sizes should be initialized before copying*/
return options;
}
/* math1d_cl::Hydrograph Uncertainity::GetQuantile(std::vector<math1d_cl::Hydrograph> hydrographs, double quantile, size_t currentChannel)
{
math1d_cl::Hydrograph result;
std::vector<double> qOut; /// Qout for one timestep and all simulations
qOut.reserve(m_timeSteps);
std::vector<double> qOutRes; /// Qout with computed quantile values
qOutRes.reserve(m_timeSteps);
// size_t predictStart = (m_options.daysMeasured > 0) ? (m_options.daysMeasured * m_options.valuesPerDay) + 1 : 0;
for(size_t tm = 0; tm < m_timeSteps; ++tm)
{
if (tm < predictStart)
{
// Copy value made from (earlier) measured precipitations
// Measured values are equal across all montecarlo simulations
//qOutRes.push_back(hydrographs.front().getQOut()[tm]);
qOutRes.push_back(m_origHydrographs[currentChannel].getQOut()[tm]);
} else {
}
// Get values from predicted values for each iteration and for one timestep
for (size_t i = 0; i < hydrographs.size(); ++i)
{
qOut.push_back(hydrographs[i].getQOut()[tm]);
}
// Sort them asc
std::sort(qOut.begin(),qOut.end(),std::less<double>());
// Get quantile
int qIdx = floor(qOut.size()*(quantile/100));
double value = 0.0;
if(qOut.size() % 2 == 0 && qIdx+1 < (int)qOut.size()) // Check vector size
{
// Even element count
value = (qOut[qIdx]+qOut[qIdx+1])/2;
} else
{
// Odd element count
value = qOut[qIdx];
}
qOutRes.push_back(value);
qOut.clear();
}
result.setQOut(qOutRes);
return result;
}
*/
}