Newer
Older
double calcul::distance_dtw_euklid(vtr<double> const &u, vtr<double> const &v)
{
double sum = 0;
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
for (size_t i = 0; i < u.size(); i++)
{
sum += pow(u[i] - v[i], 2);
}
return sum;
}
double calcul::distance_dtw_euklid_mean(vtr<double> const &u, vtr<double> const &v)
{
double sum = 0;
for (size_t i = 0; i < u.size(); i++)
{
double ratio = 0;
if (u[i] > v[i])
ratio += 1 - v[i] / u[i];
else if (v[i] > u[i])
sum += 1 - u[i] / v[i];
//sum += std::abs(1 - u[i] / (v[i] + 0.00000001));
}
return sum;
}
double calcul::distance_dtw_manhattan(vtr<double> const &u, vtr<double> const &v)
{
double sum = 0;
for (size_t i = 0; i < u.size(); i++)
{
sum += abs(u[i] - v[i]);
}
return sum;
}
double calcul::distance_dtw_simd(vtr<double> const &u, vtr<double> const &v, size_t simds, size_t rest)
//if (simds > 0)
//{
// //_mm256_zeroall();
// size_t iEnd = u.size() - 4 < 0 ? 0 : u.size();
// for (size_t i = 0; i < u.size() - rest; i += 4)
// {
// //__m256d u256 = _mm256_set_pd(u[i], u[i + 1], u[i + 2], u[i + 3]);
// //__m256d v256 = _mm256_set_pd(v[i], v[i + 1], v[i + 2], v[i + 3]);
// __m256d result = _mm256_sub_pd(_mm256_set_pd(u[i], u[i + 1], u[i + 2], u[i + 3]), _mm256_set_pd(v[i], v[i + 1], v[i + 2], v[i + 3]));
// result = _mm256_mul_pd(result, result);
//
// auto r = result.m256d_f64; // == double* f = (double*)&result;
// sum += r[0] + r[1] + r[2] + r[3];
// }
//}
//for (size_t i = u.size() - rest; i < u.size(); i++)
//{
// sum += pow(u[i] - v[i], 2);
//}
double calcul::distance_dtw_csi_chroma(vtr<double> const &u, vtr<double> const &v, double treshold = 0.07)
vtr<int> u_filter(u.size());
vtr<int> v_filter(v.size());
//binary filtering
for (size_t i = 0; i < u.size(); i++)
{
if (u[i] > treshold)
u_filter[i] = 1;
if (v[i] > treshold)
v_filter[i] = 1;
}
int minU = constant::MAX_int;
int minV = constant::MAX_int;
int idxU = 0;
int idxV = 0;
//search minimal distance between filtered vectors and minor/major scale
for (size_t i = 0; i < scaleChord.size(); i++)
int sumU = 0;
int sumV = 0;
for (size_t j = 0; j < u.size(); j++)
{
sumU += std::abs(u_filter[j] - scaleChord[i][j]);
sumV += std::abs(v_filter[j] - scaleChord[i][j]);
//max value == 1 -> pow 2 -> abs
}
if (sumU < minU)
{
minU = sumU;
idxU = static_cast<int>(i);
}
if (sumV < minV)
{
minV = sumV;
idxV = static_cast<int>(i);
}
}
//calculate result (zero u/v if minimal scale vectors == 1)
for (size_t i = 0; i < u.size(); i++)
{
double tmpU;
if (scaleChord[idxU][i] == 1)
tmpU = 0;
else
tmpU = u[i];
double tmpV;
if (scaleChord[idxV][i] == 1)
tmpV = 0;
else
tmpV = v[i];
//result += std::abs(tmpU - tmpV);
result += std::pow(tmpU - tmpV, 2);
}
double calcul::distance_dtw_csi_chord(vtr<double> const &u, vtr<double> const &v, vtr<int> const &uKey, vtr<int> const &vKey)
{
int minU = constant::MAX_int;
int minV = constant::MAX_int;
int idxU = 0;
int idxV = 0;
//search minimal distance between filtered vectors and minor/major scale
for (size_t i = 0; i < scaleChord.size(); i++)
{
int sumU = 0;
int sumV = 0;
for (size_t j = 0; j < u.size(); j++)
{
sumU += (int)std::abs(u[j] - scaleChord[i][j]); //max value == 1 -> pow 2 -> abs
sumV += (int)std::abs(v[j] - scaleChord[i][j]);
}
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
if (sumU < minU)
{
minU = sumU;
idxU = static_cast<int>(i);
}
if (sumV < minV)
{
minV = sumV;
idxV = static_cast<int>(i);
}
}
if (idxU > 11) idxU -= 12;
if (idxV > 11) idxV -= 12;
auto dist1 = calcul::distance_circleOfFifth(idxU, idxV); //distance between chord roots
auto dist2 = calcul::distance_circleOfFifth(uKey[uKey.size() - 1], vKey[vKey.size() - 1]); //dist key roots
vtr<bool> pitchU(48); //pitch space of 4 levels (level e is irrelevant)
vtr<bool> pitchV(48);
pitchU[idxU] = 1; //level a root
pitchU[idxU + 12] = 1; //level b root
pitchU[idxU + 19 % 12] = 1; //level b 2.
pitchU[idxU + 24] = 1; //level c root
pitchU[idxU + 31 % 24] = 1; //level c 3.
if(idxU > 11) //level c 2.
pitchU[idxU + 27 % 24] = 1;
else
pitchU[idxU + 28 % 24] = 1;
pitchV[idxV] = 1; //level a root
pitchV[idxV + 12] = 1; //level b root
pitchV[idxV + 19 % 12] = 1; //level b 2.
pitchV[idxV + 24] = 1; //level c root
pitchV[idxV + 31 % 24] = 1; //level c 3.
if (idxV > 11) //level c 2.
pitchV[idxV + 27 % 24] = 1;
else
pitchV[idxV + 28 % 24] = 1;
//minU = int_max; //reinit variables
//minV = int_max;
//idxU = 0;
//idxV = 0;
////search minimal distance between filtered vectors and minor/major scale
//for (size_t i = 0; i < scaleChord.size(); i++)
//{
// int sumU = 0;
// int sumV = 0;
// for (size_t j = 0; j < uKey.size(); j++)
// {
// sumU += std::abs(uKey[j] - scaleKey[i][j]);
// sumV += std::abs(vKey[j] - scaleKey[i][j]);
// //max value == 1 -> pow 2 -> abs
// }
// if (sumU < minU)
// {
// minU = sumU;
// idxU = static_cast<int>(i);
// }
// if (sumV < minV)
// {
// minV = sumV;
// idxV = static_cast<int>(i);
// }
//}
//auto dist2 = calcul::distance_circleOfFifth(idxU > 11 ? idxU - 12 : idxU, idxV > 11 ? idxV - 12 : idxV);
for (size_t i = 0; i < 12; i++) //add level d to pitch spaces
{
pitchU[i + 36] = uKey[i];
pitchV[i + 36] = vKey[i];
}
int dist3 = 0; //calculation of pitch psace distance
for (size_t i = 0; i < 48; i++)
{
if (pitchU[i] != pitchV[i])
dist3++;
}
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
return dist1 + dist2 + dist3;
}
double calcul::distance_dtw_many(vtr2<double> const &points)
{
double sum = 0;
for (size_t i = 0; i < points.size(); i++)
{
for (size_t j = i + 1; j < points.size(); j++)
{
sum += distance_dtw_euklid(points[i], points[j]);
}
}
return sum;
}
double calcul::distance_lcss(vtr<double> const &u, vtr<double> const &v, int idx)
{
if (u.size() == 0 || v.size() == 0)
return 0;
double sum = abs(u[idx] - v[idx]);
return sum;
}
double calcul::score_dtw_s1(double ratioRaw)
{
return ratioRaw;
}
double calcul::score_dtw_s2(double ratioRaw, size_t pathLength)
{
return sqrt(ratioRaw) / static_cast<double>(pathLength);
}
double calcul::score_dtw_s3(size_t lenA, size_t lenB, size_t lenPath)
{
return 1 - (lenA / static_cast<double>(lenPath) + lenB / static_cast<double>(lenPath)) / 2;
}
double calcul::score_dtw_s4(double ratioRaw, double ratioRawMax)
{
return (sqrt(ratioRaw) / sqrt(ratioRawMax));
}
double calcul::score_dtw_s5(double ratioRaw, double ratioRawMax, double coeficient)
return (sqrt(ratioRaw) / sqrt(ratioRawMax)) * coeficient;
}
double calcul::score_dtw_max(vtr2<double> const &A, vtr2<double> const &B, coords start, coords end)
{
double min = constant::MAX_double;
double max = constant::MIN_double;
size_t sA = 0;
size_t eA = (int)A.size();
size_t sB = 0;
size_t eB = (int)B.size();
if (A.size() < B.size()) {
sB = start.col;
eB = end.col;
}
if (B.size() < A.size()) {
sA = start.row;
eA = end.row;
}
for (size_t i = sA; i < eA; i++)
for (size_t j = 0; j < A[i].size(); j++)
{
sum += A[i][j];
}
if (min > sum)
min = sum;
if (max < sum) //added
max = sum;
{
double sum = 0;
for (size_t j = 0; j < B[i].size(); j++)
{
sum += B[i][j];
}
if (min > sum) //added
min = sum;
if (max < sum)
max = sum;
return pow(max - min, 2) * std::max(eA - sA, eB - sB);
}
double calcul::lenRatio(size_t lenA, size_t lenB)
{
if (lenA < lenB)
return (double)lenA / lenB;
else if (lenB < lenA)
return (double)lenB / lenA;
else
return 1;
}
double calcul::ratio(size_t dividend, size_t divisor)
{
return dividend / (double)divisor;
}
double calcul::score_lcss_s1(double ratioRaw, size_t pathLength)
{
return 1 - ratioRaw / static_cast<double>(pathLength);
}
double calcul::score_lcss_s2(double ratioRaw, size_t maxABLen)
{
return 1 - ratioRaw / maxABLen;
}
double calcul::score_lcss_s3(double ratioRaw)
{
return ratioRaw;
}
//double calcul::getPairRatio_lcss(int lenIN, int rawscore)
//{
// return rawscore / (lenIN / 2.0);
//}
double calcul::score_multi_dtw(vtr3<double> const &input, vtr3<double> const &output)
size_t sumA = 0;
for (auto s : input)
sumA += s.size();
size_t sumB = 0;
for (auto s : output)
sumB += s.size();
return sumA / static_cast<double>(sumB);
//double calcul::GetMRRratio(vtr2<int> const &orderMatrix, map<int, int> &clusters)
//{
// double mapRatio = 0;
// for (size_t i = 0; i < orderMatrix.size(); i++) //query (ref sequence) //column
// {
// double pr = 0;
// double coverIdx = 0;
// for (size_t j = 1; j < orderMatrix.size(); j++) // row / rank
// {
// if (clusters[orderMatrix[j][i]] == clusters[i + 1])
// //pr += 1.0 / j;
// pr += ++coverIdx / j;
// }
// mapRatio += pr / coverIdx;
// cout << setw(5) << pr / coverIdx << " ";
// }
// cout << endl;
//
// return (orderMatrix.size() - 1);
//}
double calcul::score_averageRank(int ref, vtr<int> const &queryAnswer, input_clusters const &clusters)
int clusterSize = clusters.getClusterSize(ref);
int counter = 0;
double averageRank = 0;
for (size_t i = 0; i < queryAnswer.size(); i++) //query (ref sequence) //column
if (clusters.getClusterID(queryAnswer[i]) == clusters.getClusterID(ref))
averageRank += (int)i + 1;
counter++;
if (counter == clusterSize - 1)
break;
averageRank = averageRank / (clusterSize - 1);
return averageRank;
}
double calcul::score_averagePrecision(int ref, vtr<int> const &queryAnswer, input_clusters const &clusters)
int clusterSize = clusters.getClusterSize(ref);
int counter = 0;
for (size_t i = 0; i < queryAnswer.size(); i++) //query (ref sequence) //column
{
if (clusters.getClusterID(queryAnswer[i]) == clusters.getClusterID(ref))
{
pr += ++counter / (double)(i + 1);
if (counter == clusterSize - 1)
break;
}
}
double ap = pr / (clusterSize - 1);
return ap;
}
double calcul::score_map(vtr<double> const &averagePrecisions)
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
{
//vtr<double> ratios;
//double mapRatio = 0;
//for (size_t i = 0; i < orderMatrix.size(); i++) //query (ref sequence) //column
//{
// double pr = 0;
// double coverIdx = 0;
// for (size_t j = 1; j < orderMatrix.size(); j++) // row / rank
// {
// if (clusters.strIDcID.at(orderMatrix[j][i]).idCluster == clusters.strIDcID.at((int)i + 1).idCluster)
// pr += ++coverIdx / j;
// }
// double tmpPrecision = 0;
// if (pr == 0 && coverIdx == 0)
// tmpPrecision = 0;
// else
// tmpPrecision += pr / coverIdx;
// mapRatio += tmpPrecision;
//
// ratios.push_back(tmpPrecision);
//}
//ratios.push_back(mapRatio / (orderMatrix.size()));
return accumulate(averagePrecisions.begin(), averagePrecisions.end(), 0.0) / averagePrecisions.size();
}
double calcul::score_precision(int ref, vtr<int> const &queryAnswer, input_clusters const &clusters)
int clusterSize = clusters.getClusterSize(ref);
int truePositives = 0;
int falsePositives = 0;
//int range = min(topThreshold, (int)top.size());
for (int i = 0; i < clusterSize - 1; i++)
if (clusters.getClusterID(queryAnswer[i]) == clusters.getClusterID(ref))
truePositives++;
else
falsePositives++;
}
double precision = (double)truePositives / (truePositives + falsePositives);
return precision;
}
double calcul::score_recall(int ref, vtr<int> const &queryAnswer, input_clusters const &clusters)
int clusterSize = 0;
//if (clusters.size.size() < ref)
// return 0;
//else
clusterSize = clusters.getClusterSize(ref);
for (int i = 0; i < clusterSize - 1; i++)
if (clusters.getClusterID(queryAnswer[i]) == clusters.getClusterID(ref))
double recall = (double)truePositives / (clusterSize - 1);
//
//double GetMultiRatiolcss(Vtr<string, 3> input, vector<int> raws)
//{
// size_t sumA = 0;
// for (auto s: input)
// sumA += s.size();
//
// int sumB = 0;
// for (auto s: raws)
// sumB += s;
//
// return sumA / (double)sumB;
//}
double calcul::lb_keogh(vtr2<double> const &A, vtr2<double> const &B, parameter const ¶ms)
{
int width = 1 + 2 * (int)params.w;
int w = (int)params.w;
deque<int> maxfifo, minfifo;
maxfifo.push_back(0);
minfifo.push_back(0);
vtr<double> maxvalues(B.size());
vtr<double> minvalues(B.size());
for (int i = 1; i < static_cast<int>(A.size()); ++i) {
if (i >= w + 1) {
maxvalues[i - w - 1] = A[maxfifo.front()][0];
minvalues[i - w - 1] = A[minfifo.front()][0];
}
if (A[i][0] > A[i - 1][0]) { //overshoot
maxfifo.pop_back();
while (maxfifo.size() > 0) {
if (A[i][0] <= A[maxfifo.back()][0]) break;
maxfifo.pop_back();
}
}
else {
minfifo.pop_back();
while (minfifo.size() > 0) {
if (A[i][0] >= A[minfifo.back()][0]) break;
minfifo.pop_back();
}
}
maxfifo.push_back(static_cast<int>(i));
minfifo.push_back(static_cast<int>(i));
if (i == width + maxfifo.front()) maxfifo.pop_front();
else if (i == width + minfifo.front()) minfifo.pop_front();
}
for (size_t i = A.size(); i <= A.size() + w; ++i) {
maxvalues[i - w - 1] = A[maxfifo.front()][0];
minvalues[i - w - 1] = A[minfifo.front()][0];
if (static_cast<int>(i) - maxfifo.front() >= width) maxfifo.pop_front();
if (static_cast<int>(i) - minfifo.front() >= width) minfifo.pop_front();
}
double result = 0;
for (size_t i = 0; i < A.size(); i++)
{
if (B[i][0] > maxvalues[i])
result += pow(B[i][0] - maxvalues[i], 2);
else if (B[i][0] < minvalues[i])
result += pow(B[i][0] - minvalues[i], 2);
}
double calcul::distance_circleOfFifth(int idx1, int idx2)
{
double distance = std::abs(idx1 - idx2);
if (distance > 6)
distance = 6 - (distance - 6);
return distance;
}
double calcul::vtr_mean(vtr<double> const &v)
{
double sum = 0;
for (auto &i : v)
sum += i;
return sum / v.size();
}
double calcul::vtr_std(vtr<double> const &v)
{
double mean = vtr_mean(v);
double sum = 0;
for (auto &i : v)
sum += pow(i - mean, 2);
return sqrt(sum / v.size());
}