Newer
Older
Paul Marshall
committed
# Stairbuilder - Stringer generation
#
# Generates stringer mesh for stair generation.
# Stair Type (typ):
# - id1 = Freestanding staircase
# - id2 = Housed-open staircase
# - id3 = Box staircase
# - id4 = Circular staircase
# Stringer Type (typ_s):
# - sId1 = Classic
# - sId2 = I-Beam
# - sId3 = C-Beam
#
# Paul "BrikBot" Marshall
# Created: September 19, 2011
Brendon Murphy
committed
# Last Modified: January 29, 2011
Paul Marshall
committed
# Homepage (blog): http://post.darkarsenic.com/
# //blog.darkarsenic.com/
#
Brendon Murphy
committed
# Coded in IDLE, tested in Blender 2.61.
Paul Marshall
committed
# Search for "@todo" to quickly find sections that need work.
#
# ##### BEGIN GPL LICENSE BLOCK #####
#
Paul Marshall
committed
# Copyright (C) 2011 Paul Marshall
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ##### END GPL LICENSE BLOCK #####
from math import atan, cos, radians, tan
from mathutils import Matrix, Vector
Paul Marshall
committed
from mathutils.geometry import (intersect_line_plane,
intersect_line_line)
class Stringer:
def __init__(self,G,typ,typ_s,rise,run,w,h,nT,hT,wT,tT,tO,tw,tf,tp,g,
nS=1,dis=False,notMulti=True,deg=4):
Paul Marshall
committed
self.G = G #General
self.typ = typ # Stair type
self.typ_s = typ_s # Stringer type
self.rise = rise #Stair rise
self.run = run #Stair run. Degrees if self.typ == "id4"
Paul Marshall
committed
if notMulti:
self.w = w / 100 #stringer width
Paul Marshall
committed
else:
self.w = (wT * (w / 100)) / nS
Paul Marshall
committed
self.h = h #stringer height
self.nT = nT #number of treads
self.hT = hT #tread height
self.wT = wT #tread width
self.tT = tT #tread toe
self.tO = tO #Tread overhang. Inner radius if self.typ == "id4"
Paul Marshall
committed
self.tw = self.w * (tw / 100) #stringer web thickness
self.tf = tf #stringer flange thickness
self.tp = 1 - (tp / 100) #stringer flange taper
self.g = g #does stringer intersect the ground?
self.nS = nS #number of stringers
self.dis = dis #Use distributed stringers
self.deg = deg #number of sections per "slice". Only applys if self.typ == "id4"
Paul Marshall
committed
# Default stringer object (classic / sId1):
self.faces1=[[0,1,3,2],[1,5,3],[3,5,4],[6,7,9,8],[7,11,9],[9,11,10],
[0,2,8,6],[0,1,7,6],[1,5,11,7],[2,3,9,8],[3,4,10,9],[4,5,11,10]]
# Box stair type stringer:
self.faces2=[[0,1,7,6],[1,3,9,7],[3,4,10,9],[4,10,11,5],[5,11,8,2],
[2,8,6,0],[0,1,2],[1,2,5,3],[3,4,5],[6,7,8],[7,8,11,9],[9,10,11]]
# I-beam stringer (id2 / sId2 / Taper < 100%):
Paul Marshall
committed
self.faces3a=[[0,1,17,16],[1,2,18,17],[2,3,19,18],[3,4,20,19],[4,5,21,20],[5,6,22,21],
[6,7,23,22],[7,8,24,23],[8,9,25,24],[9,10,26,25],[10,11,27,26],
[11,12,28,27],[12,13,29,28],[13,14,30,29],[14,15,31,30],[15,0,16,31],
[0,1,2,15],[2,11,14,15],[11,12,13,14],[2,3,10,11],[3,4,5,6],[3,6,7,10],
[7,8,9,10],[16,17,18,31],[18,27,30,31],[27,28,29,30],[18,19,26,27],
[19,20,21,22],[19,22,23,26],[23,24,25,26]]
# I-beam stringer (id2 / sId2 / Taper = 100%):
Paul Marshall
committed
self.faces3b=[[0,1,9,8],[1,2,10,9],[2,3,11,10],[3,4,12,11],[4,5,13,12],[5,6,14,13],
[6,7,15,14],[7,0,8,15],[0,1,6,7],[1,2,5,6],[2,3,4,5],[8,9,14,15],
[9,10,13,14],[10,11,12,13]]
# I-beam stringer (id3 / sId2 / Taper < 100%):
self.faces3c=[[0,1,2,7],[2,3,6,7],[3,4,5,6],[1,2,23,16],[2,3,22,23],
[3,4,21,22],[16,17,18,23],[18,19,22,23],[19,20,21,22],
[17,8,15,18],[18,15,14,19],[19,14,13,20],[8,9,10,15],
[10,11,14,15],[11,12,13,14],[9,10,53,52],[10,11,54,53],
[11,12,55,54],[52,53,61,60],[53,54,62,61],[54,55,63,62],
[60,61,34,33],[61,62,35,34],[62,63,36,35],[32,33,34,39],
[34,35,38,39],[35,36,37,38],[41,32,39,42],[42,39,38,43],
[43,38,37,44],[40,41,42,47],[42,43,46,47],[43,44,45,46],
[25,26,47,40],[26,27,46,47],[27,28,45,46],[24,25,26,31],
[26,27,30,31],[27,28,29,30],[24,31,57,56],[31,30,58,57],
[30,29,59,58],[48,49,57,56],[49,50,58,57],[50,51,59,58],
[0,7,49,48],[7,6,50,49],[6,5,51,50],[0,1,16,48],[16,40,56,48],
[24,25,40,56],[16,17,41,40],[8,9,52,17],[17,52,60,41],
[32,33,60,41],[12,13,20,55],[20,44,63,55],[37,44,63,36],
[20,21,45,44],[28,29,51,21],[21,51,59,45],[28,45,59,29],
[4,5,51,21]]
# C-beam stringer (id3 / sId3 / Taper < 100%):
self.faces4c=[[0,1,2,7],[2,3,6,7],[3,4,5,6],[1,2,23,16],[2,3,22,23],[3,4,21,22],
[16,17,18,23],[18,19,22,23],[19,20,21,22],[17,8,15,18],[18,15,14,19],
[19,14,13,20],[8,9,10,15],[10,11,14,15],[11,12,13,14],[0,24,25,7],
[7,25,26,6],[6,26,27,5],[9,31,30,10],[10,30,29,11],[11,29,28,12],
[24,25,30,31],[25,26,29,30],[26,27,28,29],[0,1,16,24],[16,24,31,17],
[8,9,31,17],[4,5,27,21],[20,21,27,28],[12,13,20,28]]
Paul Marshall
committed
self.Create()
Paul Marshall
committed
def Create(self):
if self.typ == "id1":
if self.typ_s == "sId1":
if self.dis or self.nS == 1:
offset = (self.wT / (self.nS + 1)) - (self.w / 2)
else:
offset = 0
Paul Marshall
committed
for i in range(self.nS):
for j in range(self.nT):
coords = []
coords.append(Vector([0, offset, -self.rise]))
coords.append(Vector([self.run, offset, -self.rise]))
coords.append(Vector([0, offset, -self.hT]))
coords.append(Vector([self.run, offset, -self.hT]))
coords.append(Vector([self.run, offset, 0]))
coords.append(Vector([self.run * 2, offset, 0]))
for k in range(6):
coords.append(coords[k]+Vector([0, self.w, 0]))
for k in coords:
k += j*Vector([self.run, 0, self.rise])
self.G.Make_mesh(coords,self.faces1,'stringer')
if self.dis or self.nS == 1:
offset += self.wT / (self.nS + 1)
else:
offset += (self.wT - self.w) / (self.nS - 1)
Paul Marshall
committed
elif self.typ_s == "sId2":
Paul Marshall
committed
elif self.typ == "id2":
if self.typ_s == "sId1":
coords = []
coords.append(Vector([-self.tT, -self.w, -self.rise]))
coords.append(Vector([self.hT / self.G.slope, -self.w, -self.rise]))
coords.append(Vector([-self.tT, -self.w, 0]))
coords.append(Vector([self.nT * self.run, -self.w,
((self.nT - 1) * self.rise) - self.hT]))
coords.append(Vector([self.nT * self.run, -self.w, self.nT * self.rise]))
coords.append(Vector([(self.nT * self.run) - self.tT, -self.w,
self.nT * self.rise]))
for i in range(6):
coords.append(coords[i] + Vector([0, self.w, 0]))
self.G.Make_mesh(coords, self.faces2, 'stringer')
for i in coords:
i += Vector([0, self.w + self.wT, 0])
self.G.Make_mesh(coords, self.faces2, 'stringer')
elif self.typ_s == "sId2":
self.housed_I_beam()
elif self.typ_s == "sId3":
self.housed_C_beam()
Paul Marshall
committed
elif self.typ == "id3":
h = (self.rise - self.hT) - self.rise #height of top section
for i in range(self.nT):
coords = []
coords.append(Vector([i * self.run,0,-self.rise]))
coords.append(Vector([(i + 1) * self.run,0,-self.rise]))
coords.append(Vector([i * self.run,0,h + (i * self.rise)]))
coords.append(Vector([(i + 1) * self.run,0,h + (i * self.rise)]))
for j in range(4):
coords.append(coords[j] + Vector([0,self.wT,0]))
self.G.Make_mesh(coords, self.G.faces, 'stringer')
Brendon Murphy
committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
offset = (self.wT / (self.nS + 1)) - (self.w / 2)
for s in range(self.nS):
base = self.tO + (offset * (s + 1))
start = [Vector([0, -base, -self.hT]),
Vector([0, -base, -self.hT - self.rise]),
Vector([0, -base - self.w, -self.hT]),
Vector([0, -base - self.w, -self.hT - self.rise])]
self.d = radians(self.run) / self.nT
for i in range(self.nT):
coords = []
# Base faces. Should be able to append more sections:
tId4_faces = [[0, 1, 3, 2]]
t_inner = Matrix.Rotation(self.d * i, 3, 'Z')
coords.append((t_inner * start[0]) + Vector([0, 0, self.rise * i]))
coords.append((t_inner * start[1]) + Vector([0, 0, self.rise * i]))
t_outer = Matrix.Rotation(self.d * i, 3, 'Z')
coords.append((t_outer * start[2]) + Vector([0, 0, self.rise * i]))
coords.append((t_outer * start[3]) + Vector([0, 0, self.rise * i]))
k = 0
for j in range(self.deg):
k = (j * 4) + 4
tId4_faces.append([k, k - 4, k - 3, k + 1])
tId4_faces.append([k - 2, k - 1, k + 3, k + 2])
tId4_faces.append([k + 1, k - 3, k - 1, k + 3])
tId4_faces.append([k, k - 4, k - 2, k + 2])
rot = Matrix.Rotation(((self.d * (j + 1)) / self.deg) + (self.d * i), 3, 'Z')
for v in start:
coords.append((rot * v) + Vector([0, 0, self.rise * i]))
for j in range(self.deg):
k = ((j + self.deg) * 4) + 4
tId4_faces.append([k, k - 4, k - 3, k + 1])
tId4_faces.append([k - 2, k - 1, k + 3, k + 2])
tId4_faces.append([k + 1, k - 3, k - 1, k + 3])
tId4_faces.append([k, k - 4, k - 2, k + 2])
rot = Matrix.Rotation(((self.d * ((j + self.deg) + 1)) / self.deg) + (self.d * i), 3, 'Z')
for v in range(4):
if v in [1, 3]:
incline = (self.rise * i) + (self.rise / self.deg) * (j + 1)
coords.append((rot * start[v]) + Vector([0, 0, incline]))
else:
coords.append((rot * start[v]) + Vector([0, 0, self.rise * i]))
self.G.Make_mesh(coords, tId4_faces, 'treads')
Paul Marshall
committed
return {'FINISHED'}
def I_beam(self):
Paul Marshall
committed
mid = self.w / 2
web = self.tw / 2
# Bottom of the stringer:
baseZ = -self.rise - self.hT - self.h
# Top of the strigner:
topZ = -self.rise - self.hT
# Vertical taper amount:
taper = self.tf * self.tp
if self.dis or self.nS == 1:
offset = (self.wT / (self.nS + 1)) - mid
else:
offset = 0
Paul Marshall
committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# taper < 100%:
if self.tp > 0:
for i in range(self.nS):
coords = []
coords.append(Vector([0, offset, baseZ]))
coords.append(Vector([0, offset, baseZ + taper]))
coords.append(Vector([0, offset + (mid - web), baseZ + self.tf]))
coords.append(Vector([0, offset + (mid - web), topZ - self.tf]))
coords.append(Vector([0, offset, topZ - taper]))
coords.append(Vector([0, offset, topZ]))
coords.append(Vector([0, offset + (mid - web), topZ]))
coords.append(Vector([0, offset + (mid + web), topZ]))
coords.append(Vector([0, offset + self.w, topZ]))
coords.append(Vector([0, offset + self.w, topZ - taper]))
coords.append(Vector([0, offset + (mid + web), topZ - self.tf]))
coords.append(Vector([0, offset + (mid + web), baseZ + self.tf]))
coords.append(Vector([0, offset + self.w, baseZ + taper]))
coords.append(Vector([0, offset + self.w, baseZ]))
coords.append(Vector([0, offset + (mid + web), baseZ]))
coords.append(Vector([0, offset + (mid - web), baseZ]))
for j in range(16):
coords.append(coords[j]+Vector([self.run * self.nT, 0, self.rise * self.nT]))
# If the bottom meets the ground:
# Bottom be flat with the xy plane, but shifted down.
# Either project onto the plane along a vector (hard) or use the built in
# interest found in mathutils.geometry (easy). Using intersect:
if self.g:
for j in range(16):
coords[j] = intersect_line_plane(coords[j], coords[j + 16],
Vector([0, 0, topZ]),
Vector([0, 0, 1]))
self.G.Make_mesh(coords, self.faces3a, 'stringer')
if self.dis or self.nS == 1:
offset += self.wT / (self.nS + 1)
else:
offset += (self.wT - self.w) / (self.nS - 1)
Paul Marshall
committed
# taper = 100%:
else:
for i in range(self.nS):
coords = []
coords.append(Vector([0, offset, baseZ]))
coords.append(Vector([0, offset + (mid - web), baseZ + self.tf]))
coords.append(Vector([0, offset + (mid - web), topZ - self.tf]))
coords.append(Vector([0, offset, topZ]))
coords.append(Vector([0, offset + self.w, topZ]))
coords.append(Vector([0, offset + (mid + web), topZ - self.tf]))
coords.append(Vector([0, offset + (mid + web), baseZ + self.tf]))
coords.append(Vector([0, offset + self.w, baseZ]))
for j in range(8):
coords.append(coords[j]+Vector([self.run * self.nT, 0, self.rise * self.nT]))
self.G.Make_mesh(coords, self.faces3b, 'stringer')
offset += self.wT / (self.nS + 1)
return {'FINISHED'}
def housed_I_beam(self):
Paul Marshall
committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
webOrth = Vector([self.rise, 0, -self.run]).normalized()
webHeight = Vector([self.run + self.tT, 0, -self.hT]).project(webOrth).length
vDelta_1 = self.tf * tan(self.G.angle)
vDelta_2 = (self.rise * (self.nT - 1)) - (webHeight + self.tf)
flange_y = (self.w - self.tw) / 2
front = -self.tT - self.tf
outer = -self.tO - self.tw - flange_y
coords = []
if self.tp > 0:
# Upper-Outer flange:
coords.append(Vector([front, outer, -self.rise]))
coords.append(Vector([-self.tT, outer, -self.rise]))
coords.append(Vector([-self.tT, outer, 0]))
coords.append(Vector([(self.run * (self.nT - 1)) - self.tT, outer,
self.rise * (self.nT - 1)]))
coords.append(Vector([self.run * self.nT, outer,
self.rise * (self.nT - 1)]))
coords.append(Vector([self.run * self.nT, outer,
(self.rise * (self.nT - 1)) + self.tf]))
coords.append(Vector([(self.run * (self.nT - 1)) - self.tT, outer,
(self.rise * (self.nT - 1)) + self.tf]))
coords.append(Vector([front, outer, self.tf - vDelta_1]))
# Lower-Outer flange:
coords.append(coords[0] + Vector([self.tf + webHeight, 0, 0]))
coords.append(coords[1] + Vector([self.tf + webHeight, 0, 0]))
coords.append(intersect_line_line(coords[9],
coords[9] - Vector([0, 0, 1]),
Vector([self.run, 0, -self.hT - self.tf]),
Vector([self.run * 2, 0, self.rise - self.hT - self.tf]))[0])
coords.append(Vector([(self.run * self.nT) - ((webHeight - self.hT) / tan(self.G.angle)),
outer, vDelta_2]))
coords.append(coords[4] - Vector([0, 0, self.tf + webHeight]))
coords.append(coords[5] - Vector([0, 0, self.tf + webHeight]))
coords.append(coords[11] + Vector([0, 0, self.tf]))
coords.append(intersect_line_line(coords[8],
coords[8] - Vector([0, 0, 1]),
Vector([self.run, 0, -self.hT]),
Vector([self.run * 2, 0, self.rise - self.hT]))[0])
# Outer web:
coords.append(coords[1] + Vector([0, flange_y, 0]))
coords.append(coords[8] + Vector([0, flange_y, 0]))
coords.append(coords[15] + Vector([0, flange_y, 0]))
coords.append(coords[14] + Vector([0, flange_y, 0]))
coords.append(coords[13] + Vector([0, flange_y, 0]))
coords.append(coords[4] + Vector([0, flange_y, 0]))
coords.append(coords[3] + Vector([0, flange_y, 0]))
coords.append(coords[2] + Vector([0, flange_y, 0]))
# Upper-Inner flange and lower-inner flange:
for i in range(16):
coords.append(coords[i] + Vector([0, self.w, 0]))
# Inner web:
for i in range(8):
coords.append(coords[i + 16] + Vector([0, self.tw, 0]))
# Mid nodes to so faces will be quads:
for i in [0,7,6,5,9,10,11,12]:
coords.append(coords[i] + Vector([0, flange_y, 0]))
for i in range(8):
coords.append(coords[i + 48] + Vector([0, self.tw, 0]))
self.G.Make_mesh(coords, self.faces3c, 'stringer')
for i in coords:
i += Vector([0, self.wT + self.tw, 0])
Paul Marshall
committed
self.G.Make_mesh(coords, self.faces3c, 'stringer')
Paul Marshall
committed
return {'FINISHED'}
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def C_Beam(self):
mid = self.w / 2
web = self.tw / 2
# Bottom of the stringer:
baseZ = -self.rise - self.hT - self.h
# Top of the strigner:
topZ = -self.rise - self.hT
# Vertical taper amount:
taper = self.tf * self.tp
if self.dis or self.nS == 1:
offset = (self.wT / (self.nS + 1)) - mid
else:
offset = 0
# taper < 100%:
if self.tp > 0:
for i in range(self.nS):
coords = []
coords.append(Vector([0, offset, baseZ]))
coords.append(Vector([0, offset, baseZ + taper]))
coords.append(Vector([0, offset + (mid - web), baseZ + self.tf]))
coords.append(Vector([0, offset + (mid - web), topZ - self.tf]))
coords.append(Vector([0, offset, topZ - taper]))
coords.append(Vector([0, offset, topZ]))
coords.append(Vector([0, offset + (mid - web), topZ]))
coords.append(Vector([0, offset + (mid + web), topZ]))
coords.append(Vector([0, offset + self.w, topZ]))
coords.append(Vector([0, offset + self.w, topZ - taper]))
coords.append(Vector([0, offset + (mid + web), topZ - self.tf]))
coords.append(Vector([0, offset + (mid + web), baseZ + self.tf]))
coords.append(Vector([0, offset + self.w, baseZ + taper]))
coords.append(Vector([0, offset + self.w, baseZ]))
coords.append(Vector([0, offset + (mid + web), baseZ]))
coords.append(Vector([0, offset + (mid - web), baseZ]))
for j in range(16):
coords.append(coords[j]+Vector([self.run * self.nT, 0, self.rise * self.nT]))
# If the bottom meets the ground:
# Bottom be flat with the xy plane, but shifted down.
# Either project onto the plane along a vector (hard) or use the built in
# interest found in mathutils.geometry (easy). Using intersect:
if self.g:
for j in range(16):
coords[j] = intersect_line_plane(coords[j], coords[j + 16],
Vector([0, 0, topZ]),
Vector([0, 0, 1]))
self.G.Make_mesh(coords, self.faces3a, 'stringer')
if self.dis or self.nS == 1:
offset += self.wT / (self.nS + 1)
else:
offset += (self.wT - self.w) / (self.nS - 1)
# taper = 100%:
else:
for i in range(self.nS):
coords = []
coords.append(Vector([0, offset, baseZ]))
coords.append(Vector([0, offset + (mid - web), baseZ + self.tf]))
coords.append(Vector([0, offset + (mid - web), topZ - self.tf]))
coords.append(Vector([0, offset, topZ]))
coords.append(Vector([0, offset + self.w, topZ]))
coords.append(Vector([0, offset + (mid + web), topZ - self.tf]))
coords.append(Vector([0, offset + (mid + web), baseZ + self.tf]))
coords.append(Vector([0, offset + self.w, baseZ]))
for j in range(8):
coords.append(coords[j]+Vector([self.run * self.nT, 0, self.rise * self.nT]))
self.G.Make_mesh(coords, self.faces3b, 'stringer')
offset += self.wT / (self.nS + 1)
return {'FINISHED'}
def housed_C_beam(self):
webOrth = Vector([self.rise, 0, -self.run]).normalized()
webHeight = Vector([self.run + self.tT, 0, -self.hT]).project(webOrth).length
vDelta_1 = self.tf * tan(self.G.angle)
vDelta_2 = (self.rise * (self.nT - 1)) - (webHeight + self.tf)
flange_y = (self.w - self.tw) / 2
front = -self.tT - self.tf
outer = -self.tO - self.tw - flange_y
coords = []
if self.tp > 0:
# Upper-Outer flange:
coords.append(Vector([front, outer, -self.rise]))
coords.append(Vector([-self.tT, outer, -self.rise]))
coords.append(Vector([-self.tT, outer, 0]))
coords.append(Vector([(self.run * (self.nT - 1)) - self.tT, outer,
self.rise * (self.nT - 1)]))
coords.append(Vector([self.run * self.nT, outer,
self.rise * (self.nT - 1)]))
coords.append(Vector([self.run * self.nT, outer,
(self.rise * (self.nT - 1)) + self.tf]))
coords.append(Vector([(self.run * (self.nT - 1)) - self.tT, outer,
(self.rise * (self.nT - 1)) + self.tf]))
coords.append(Vector([front, outer, self.tf - vDelta_1]))
# Lower-Outer flange:
coords.append(coords[0] + Vector([self.tf + webHeight, 0, 0]))
coords.append(coords[1] + Vector([self.tf + webHeight, 0, 0]))
coords.append(intersect_line_line(coords[9],
coords[9] - Vector([0, 0, 1]),
Vector([self.run, 0, -self.hT - self.tf]),
Vector([self.run * 2, 0, self.rise - self.hT - self.tf]))[0])
coords.append(Vector([(self.run * self.nT) - ((webHeight - self.hT) / tan(self.G.angle)),
outer, vDelta_2]))
coords.append(coords[4] - Vector([0, 0, self.tf + webHeight]))
coords.append(coords[5] - Vector([0, 0, self.tf + webHeight]))
coords.append(coords[11] + Vector([0, 0, self.tf]))
coords.append(intersect_line_line(coords[8],
coords[8] - Vector([0, 0, 1]),
Vector([self.run, 0, -self.hT]),
Vector([self.run * 2, 0, self.rise - self.hT]))[0])
# Outer web:
coords.append(coords[1] + Vector([0, flange_y, 0]))
coords.append(coords[8] + Vector([0, flange_y, 0]))
coords.append(coords[15] + Vector([0, flange_y, 0]))
coords.append(coords[14] + Vector([0, flange_y, 0]))
coords.append(coords[13] + Vector([0, flange_y, 0]))
coords.append(coords[4] + Vector([0, flange_y, 0]))
coords.append(coords[3] + Vector([0, flange_y, 0]))
coords.append(coords[2] + Vector([0, flange_y, 0]))
# Outer corner nodes:
for i in [0, 7, 6, 5, 12, 11, 10, 9]:
coords.append(coords[i] + Vector([0, flange_y + self.tw, 0]))
self.G.Make_mesh(coords, self.faces4c, 'stringer')
for i in range(16):
coords[i] += Vector([0, -outer * 2, 0])
for i in range(8):
coords[i + 16] += Vector([0, (-outer - flange_y) * 2, 0])
i += Vector([0, (self.tO * 2) + self.wT, 0])
self.G.Make_mesh(coords, self.faces4c, 'stringer')
Paul Marshall
committed
return {'FINISHED'}