Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
).angle(target_vector, 0), False, i] for
i, vertex in enumerate(loop1)]
dif_angles.sort()
if len(loop1) != len(loop2):
angle_limit = dif_angles[0][0] * 1.2 # 20% margin
dif_angles = [[(bm.verts[loop2[0]].co - \
bm.verts[loop1[index]].co).length, angle, index] for \
angle, distance, index in dif_angles if angle <= angle_limit]
dif_angles.sort()
loop1 = loop1[dif_angles[0][2]:] + loop1[:dif_angles[0][2]]
# have both loops face the same way
if normal_plurity and not circular:
second_to_first, second_to_second, second_to_last = \
[(bm.verts[loop1[1]].co - center1).\
angle(bm.verts[loop2[i]].co - center2) for i in [0, 1, -1]]
last_to_first, last_to_second = [(bm.verts[loop1[-1]].co - \
center1).angle(bm.verts[loop2[i]].co - center2) for \
i in [0, 1]]
if (min(last_to_first, last_to_second)*1.1 < min(second_to_first, \
second_to_second)) or (loop2_circular and second_to_last*1.1 < \
min(second_to_first, second_to_second)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
else:
angle = (bm.verts[loop1[0]].co - center1).\
cross(bm.verts[loop1[1]].co - center1).angle(normals[0], 0)
target_angle = (bm.verts[loop2[0]].co - center2).\
cross(bm.verts[loop2[1]].co - center2).angle(normals[1], 0)
limit = 1.5707964 # 0.5*pi, 90 degrees
if not ((angle > limit and target_angle > limit) or \
(angle < limit and target_angle < limit)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
elif normals[0].angle(normals[1]) > limit:
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
# both loops have the same length
if len(loop1) == len(loop2):
# manual override
if twist:
if abs(twist) < len(loop1):
loop1 = loop1[twist:]+loop1[:twist]
if reverse:
loop1.reverse()
lines.append([loop1[0], loop2[0]])
for i in range(1, len(loop1)):
lines.append([loop1[i], loop2[i]])
# loops of different lengths
else:
# make loop1 longest loop
if len(loop2) > len(loop1):
loop1, loop2 = loop2, loop1
loop1_circular, loop2_circular = loop2_circular, loop1_circular
# manual override
if twist:
if abs(twist) < len(loop1):
loop1 = loop1[twist:]+loop1[:twist]
if reverse:
loop1.reverse()
# shortest angle difference doesn't always give correct start vertex
if loop1_circular and not loop2_circular:
shifting = 1
while shifting:
if len(loop1) - shifting < len(loop2):
shifting = False
break
to_last, to_first = [(rotation_matrix *
(bm.verts[loop1[-1]].co - center1)).angle((bm.\
verts[loop2[i]].co - center2), 0) for i in [-1, 0]]
if to_first < to_last:
loop1 = [loop1[-1]] + loop1[:-1]
shifting += 1
else:
shifting = False
break
# basic shortest side first
if mode == 'basic':
lines.append([loop1[0], loop2[0]])
for i in range(1, len(loop1)):
if i >= len(loop2) - 1:
# triangles
lines.append([loop1[i], loop2[-1]])
else:
# quads
lines.append([loop1[i], loop2[i]])
# shortest edge algorithm
else: # mode == 'shortest'
lines.append([loop1[0], loop2[0]])
prev_vert2 = 0
for i in range(len(loop1) -1):
if prev_vert2 == len(loop2) - 1 and not loop2_circular:
# force triangles, reached end of loop2
tri, quad = 0, 1
elif prev_vert2 == len(loop2) - 1 and loop2_circular:
# at end of loop2, but circular, so check with first vert
tri, quad = [(bm.verts[loop1[i+1]].co -
bm.verts[loop2[j]].co).length
for j in [prev_vert2, 0]]
circle_full = 2
elif len(loop1) - 1 - i == len(loop2) - 1 - prev_vert2 and \
not circle_full:
# force quads, otherwise won't make it to end of loop2
tri, quad = 1, 0
else:
# calculate if tri or quad gives shortest edge
tri, quad = [(bm.verts[loop1[i+1]].co -
bm.verts[loop2[j]].co).length
for j in range(prev_vert2, prev_vert2+2)]
# triangle
if tri < quad:
lines.append([loop1[i+1], loop2[prev_vert2]])
if circle_full == 2:
circle_full = False
# quad
elif not circle_full:
lines.append([loop1[i+1], loop2[prev_vert2+1]])
prev_vert2 += 1
# quad to first vertex of loop2
else:
lines.append([loop1[i+1], loop2[0]])
prev_vert2 = 0
circle_full = True
# final face for circular loops
if loop1_circular and loop2_circular:
lines.append([loop1[0], loop2[0]])
return(lines)
# calculate number of segments needed
def bridge_calculate_segments(bm, lines, loops, segments):
# return if amount of segments is set by user
if segments != 0:
return segments
# edge lengths
average_edge_length = [(bm.verts[vertex].co - \
bm.verts[loop[0][i+1]].co).length for loop in loops for \
i, vertex in enumerate(loop[0][:-1])]
# closing edges of circular loops
average_edge_length += [(bm.verts[loop[0][-1]].co - \
bm.verts[loop[0][0]].co).length for loop in loops if loop[1]]
# average lengths
average_edge_length = sum(average_edge_length) / len(average_edge_length)
average_bridge_length = sum([(bm.verts[v1].co - \
bm.verts[v2].co).length for v1, v2 in lines]) / len(lines)
segments = max(1, round(average_bridge_length / average_edge_length))
return(segments)
# return dictionary with vertex index as key, and the normal vector as value
def bridge_calculate_virtual_vertex_normals(bm, lines, loops, edge_faces,
edgekey_to_edge):
if not edge_faces: # interpolation isn't set to cubic
return False
# pity reduce() isn't one of the basic functions in python anymore
def average_vector_dictionary(dic):
for key, vectors in dic.items():
#if type(vectors) == type([]) and len(vectors) > 1:
if len(vectors) > 1:
average = mathutils.Vector()
for vector in vectors:
average += vector
average /= len(vectors)
dic[key] = [average]
return dic
# get all edges of the loop
edges = [[edgekey_to_edge[tuple(sorted([loops[j][0][i],
loops[j][0][i+1]]))] for i in range(len(loops[j][0])-1)] for \
j in [0,1]]
edges = edges[0] + edges[1]
for j in [0, 1]:
if loops[j][1]: # circular
edges.append(edgekey_to_edge[tuple(sorted([loops[j][0][0],
loops[j][0][-1]]))])
"""
calculation based on face topology (assign edge-normals to vertices)
edge_normal = face_normal x edge_vector
vertex_normal = average(edge_normals)
"""
vertex_normals = dict([(vertex, []) for vertex in loops[0][0]+loops[1][0]])
for edge in edges:
faces = edge_faces[edgekey(edge)] # valid faces connected to edge
if faces:
# get edge coordinates
v1, v2 = [bm.verts[edgekey(edge)[i]].co for i in [0,1]]
edge_vector = v1 - v2
if edge_vector.length < 1e-4:
# zero-length edge, vertices at same location
continue
edge_center = (v1 + v2) / 2
# average face coordinates, if connected to more than 1 valid face
if len(faces) > 1:
face_normal = mathutils.Vector()
face_center = mathutils.Vector()
for face in faces:
face_normal += face.normal
face_center += face.calc_center_median()
face_normal /= len(faces)
face_center /= len(faces)
else:
face_normal = faces[0].normal
face_center = faces[0].calc_center_median()
if face_normal.length < 1e-4:
# faces with a surface of 0 have no face normal
continue
# calculate virtual edge normal
edge_normal = edge_vector.cross(face_normal)
edge_normal.length = 0.01
if (face_center - (edge_center + edge_normal)).length > \
(face_center - (edge_center - edge_normal)).length:
# make normal face the correct way
edge_normal.negate()
edge_normal.normalize()
# add virtual edge normal as entry for both vertices it connects
for vertex in edgekey(edge):
vertex_normals[vertex].append(edge_normal)
"""
calculation based on connection with other loop (vertex focused method)
- used for vertices that aren't connected to any valid faces
plane_normal = edge_vector x connection_vector
vertex_normal = plane_normal x edge_vector
"""
vertices = [vertex for vertex, normal in vertex_normals.items() if not \
normal]
if vertices:
# edge vectors connected to vertices
edge_vectors = dict([[vertex, []] for vertex in vertices])
for edge in edges:
for v in edgekey(edge):
if v in edge_vectors:
edge_vector = bm.verts[edgekey(edge)[0]].co - \
bm.verts[edgekey(edge)[1]].co
if edge_vector.length < 1e-4:
# zero-length edge, vertices at same location
continue
edge_vectors[v].append(edge_vector)
# connection vectors between vertices of both loops
connection_vectors = dict([[vertex, []] for vertex in vertices])
connections = dict([[vertex, []] for vertex in vertices])
for v1, v2 in lines:
if v1 in connection_vectors or v2 in connection_vectors:
new_vector = bm.verts[v1].co - bm.verts[v2].co
if new_vector.length < 1e-4:
# zero-length connection vector,
# vertices in different loops at same location
continue
if v1 in connection_vectors:
connection_vectors[v1].append(new_vector)
connections[v1].append(v2)
if v2 in connection_vectors:
connection_vectors[v2].append(new_vector)
connections[v2].append(v1)
connection_vectors = average_vector_dictionary(connection_vectors)
connection_vectors = dict([[vertex, vector[0]] if vector else \
[vertex, []] for vertex, vector in connection_vectors.items()])
for vertex, values in edge_vectors.items():
# vertex normal doesn't matter, just assign a random vector to it
if not connection_vectors[vertex]:
vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))]
continue
# calculate to what location the vertex is connected,
# used to determine what way to flip the normal
connected_center = mathutils.Vector()
for v in connections[vertex]:
connected_center += bm.verts[v].co
if len(connections[vertex]) > 1:
connected_center /= len(connections[vertex])
if len(connections[vertex]) == 0:
# shouldn't be possible, but better safe than sorry
vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))]
continue
# can't do proper calculations, because of zero-length vector
if not values:
if (connected_center - (bm.verts[vertex].co + \
connection_vectors[vertex])).length < (connected_center - \
(bm.verts[vertex].co - connection_vectors[vertex])).\
length:
connection_vectors[vertex].negate()
vertex_normals[vertex] = [connection_vectors[vertex].\
normalized()]
continue
# calculate vertex normals using edge-vectors,
# connection-vectors and the derived plane normal
for edge_vector in values:
plane_normal = edge_vector.cross(connection_vectors[vertex])
vertex_normal = edge_vector.cross(plane_normal)
vertex_normal.length = 0.1
if (connected_center - (bm.verts[vertex].co + \
vertex_normal)).length < (connected_center - \
(bm.verts[vertex].co - vertex_normal)).length:
# make normal face the correct way
vertex_normal.negate()
vertex_normal.normalize()
vertex_normals[vertex].append(vertex_normal)
# average virtual vertex normals, based on all edges it's connected to
vertex_normals = average_vector_dictionary(vertex_normals)
vertex_normals = dict([[vertex, vector[0]] for vertex, vector in \
vertex_normals.items()])
return(vertex_normals)
# add vertices to mesh
def bridge_create_vertices(bm, vertices):
for i in range(len(vertices)):
bm.verts.new(vertices[i])
# add faces to mesh
def bridge_create_faces(object, bm, faces, twist):
# have the normal point the correct way
if twist < 0:
[face.reverse() for face in faces]
faces = [face[2:]+face[:2] if face[0]==face[1] else face for \
face in faces]
# eekadoodle prevention
for i in range(len(faces)):
if not faces[i][-1]:
if faces[i][0] == faces[i][-1]:
faces[i] = [faces[i][1], faces[i][2], faces[i][3], faces[i][1]]
else:
faces[i] = [faces[i][-1]] + faces[i][:-1]
# result of converting from pre-bmesh period
if faces[i][-1] == faces[i][-2]:
faces[i] = faces[i][:-1]
for i in range(len(faces)):
bm.faces.new([bm.verts[v] for v in faces[i]])
bm.normal_update()
object.data.update(calc_edges=True) # calc_edges prevents memory-corruption
# calculate input loops
def bridge_get_input(bm):
# create list of internal edges, which should be skipped
eks_of_selected_faces = [item for sublist in [face_edgekeys(face) for \
face in bm.faces if face.select and not face.hide] for item in sublist]
edge_count = {}
for ek in eks_of_selected_faces:
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
internal_edges = [ek for ek in edge_count if edge_count[ek] > 1]
# sort correct edges into loops
selected_edges = [edgekey(edge) for edge in bm.edges if edge.select \
and not edge.hide and edgekey(edge) not in internal_edges]
loops = get_connected_selections(selected_edges)
return(loops)
# return values needed by the bridge operator
def bridge_initialise(bm, interpolation):
if interpolation == 'cubic':
# dict with edge-key as key and list of connected valid faces as value
face_blacklist = [face.index for face in bm.faces if face.select or \
face.hide]
edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if not \
edge.hide])
for face in bm.faces:
if face.index in face_blacklist:
continue
for key in face_edgekeys(face):
edge_faces[key].append(face)
# dictionary with the edge-key as key and edge as value
edgekey_to_edge = dict([[edgekey(edge), edge] for edge in \
bm.edges if edge.select and not edge.hide])
else:
edge_faces = False
edgekey_to_edge = False
# selected faces input
old_selected_faces = [face.index for face in bm.faces if face.select \
and not face.hide]
# find out if faces created by bridging should be smoothed
smooth = False
if bm.faces:
if sum([face.smooth for face in bm.faces])/len(bm.faces) \
>= 0.5:
smooth = True
return(edge_faces, edgekey_to_edge, old_selected_faces, smooth)
# return a string with the input method
def bridge_input_method(loft, loft_loop):
method = ""
if loft:
if loft_loop:
method = "Loft loop"
else:
method = "Loft no-loop"
else:
method = "Bridge"
return(method)
# match up loops in pairs, used for multi-input bridging
def bridge_match_loops(bm, loops):
# calculate average loop normals and centers
normals = []
centers = []
for vertices, circular in loops:
normal = mathutils.Vector()
center = mathutils.Vector()
for vertex in vertices:
normal += bm.verts[vertex].normal
center += bm.verts[vertex].co
normals.append(normal / len(vertices) / 10)
centers.append(center / len(vertices))
# possible matches if loop normals are faced towards the center
# of the other loop
matches = dict([[i, []] for i in range(len(loops))])
matches_amount = 0
for i in range(len(loops) + 1):
for j in range(i+1, len(loops)):
if (centers[i] - centers[j]).length > (centers[i] - (centers[j] \
+ normals[j])).length and (centers[j] - centers[i]).length > \
(centers[j] - (centers[i] + normals[i])).length:
matches_amount += 1
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
# if no loops face each other, just make matches between all the loops
if matches_amount == 0:
for i in range(len(loops) + 1):
for j in range(i+1, len(loops)):
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
for key, value in matches.items():
value.sort()
# matches based on distance between centers and number of vertices in loops
new_order = []
for loop_index in range(len(loops)):
if loop_index in new_order:
continue
loop_matches = matches[loop_index]
if not loop_matches:
continue
shortest_distance = loop_matches[0][0]
shortest_distance *= 1.1
loop_matches = [[abs(len(loops[loop_index][0]) - \
len(loops[loop[2]][0])), loop[0], loop[1], loop[2]] for loop in \
loop_matches if loop[0] < shortest_distance]
loop_matches.sort()
for match in loop_matches:
if match[3] not in new_order:
new_order += [loop_index, match[3]]
break
# reorder loops based on matches
if len(new_order) >= 2:
loops = [loops[i] for i in new_order]
return(loops)
# remove old_selected_faces
def bridge_remove_internal_faces(bm, old_selected_faces):
# collect bmesh faces and internal bmesh edges
remove_faces = [bm.faces[face] for face in old_selected_faces]
edges = collections.Counter([edge.index for face in remove_faces for \
edge in face.edges])
remove_edges = [bm.edges[edge] for edge in edges if edges[edge] > 1]
# remove internal faces and edges
for face in remove_faces:
bm.faces.remove(face)
for edge in remove_edges:
bm.edges.remove(edge)
# update list of internal faces that are flagged for removal
def bridge_save_unused_faces(bm, old_selected_faces, loops):
# key: vertex index, value: lists of selected faces using it
vertex_to_face = dict([[i, []] for i in range(len(bm.verts))])
[[vertex_to_face[vertex.index].append(face) for vertex in \
bm.faces[face].verts] for face in old_selected_faces]
# group selected faces that are connected
groups = []
grouped_faces = []
for face in old_selected_faces:
if face in grouped_faces:
continue
grouped_faces.append(face)
group = [face]
new_faces = [face]
while new_faces:
grow_face = new_faces[0]
for vertex in bm.faces[grow_face].verts:
vertex_face_group = [face for face in vertex_to_face[\
vertex.index] if face not in grouped_faces]
new_faces += vertex_face_group
grouped_faces += vertex_face_group
group += vertex_face_group
new_faces.pop(0)
groups.append(group)
# key: vertex index, value: True/False (is it in a loop that is used)
used_vertices = dict([[i, 0] for i in range(len(bm.verts))])
for loop in loops:
for vertex in loop[0]:
used_vertices[vertex] = True
# check if group is bridged, if not remove faces from internal faces list
for group in groups:
used = False
for face in group:
if used:
break
for vertex in bm.faces[face].verts:
if used_vertices[vertex.index]:
used = True
break
if not used:
for face in group:
old_selected_faces.remove(face)
# add the newly created faces to the selection
def bridge_select_new_faces(bm, amount, smooth):
for i in range(amount):
bm.faces[-(i+1)].select_set(True)
bm.faces[-(i+1)].smooth = smooth
# sort loops, so they are connected in the correct order when lofting
def bridge_sort_loops(bm, loops, loft_loop):
# simplify loops to single points, and prepare for pathfinding
x, y, z = [[sum([bm.verts[i].co[j] for i in loop[0]]) / \
len(loop[0]) for loop in loops] for j in range(3)]
nodes = [mathutils.Vector((x[i], y[i], z[i])) for i in range(len(loops))]
active_node = 0
open = [i for i in range(1, len(loops))]
path = [[0,0]]
# connect node to path, that is shortest to active_node
while len(open) > 0:
distances = [(nodes[active_node] - nodes[i]).length for i in open]
active_node = open[distances.index(min(distances))]
open.remove(active_node)
path.append([active_node, min(distances)])
# check if we didn't start in the middle of the path
for i in range(2, len(path)):
if (nodes[path[i][0]]-nodes[0]).length < path[i][1]:
temp = path[:i]
path.reverse()
path = path[:-i] + temp
break
# reorder loops
loops = [loops[i[0]] for i in path]
# if requested, duplicate first loop at last position, so loft can loop
if loft_loop:
loops = loops + [loops[0]]
return(loops)
##########################################
####### Circle functions #################
##########################################
# convert 3d coordinates to 2d coordinates on plane
def circle_3d_to_2d(bm_mod, loop, com, normal):
# project vertices onto the plane
verts = [bm_mod.verts[v] for v in loop[0]]
verts_projected = [[v.co - (v.co - com).dot(normal) * normal, v.index]
for v in verts]
# calculate two vectors (p and q) along the plane
m = mathutils.Vector((normal[0] + 1.0, normal[1], normal[2]))
p = m - (m.dot(normal) * normal)
if p.dot(p) == 0.0:
m = mathutils.Vector((normal[0], normal[1] + 1.0, normal[2]))
p = m - (m.dot(normal) * normal)
q = p.cross(normal)
# change to 2d coordinates using perpendicular projection
locs_2d = []
for loc, vert in verts_projected:
vloc = loc - com
x = p.dot(vloc) / p.dot(p)
y = q.dot(vloc) / q.dot(q)
locs_2d.append([x, y, vert])
return(locs_2d, p, q)
# calculate a best-fit circle to the 2d locations on the plane
def circle_calculate_best_fit(locs_2d):
# initial guess
x0 = 0.0
y0 = 0.0
r = 1.0
# calculate center and radius (non-linear least squares solution)
for iter in range(500):
jmat = []
k = []
for v in locs_2d:
d = (v[0]**2-2.0*x0*v[0]+v[1]**2-2.0*y0*v[1]+x0**2+y0**2)**0.5
jmat.append([(x0-v[0])/d, (y0-v[1])/d, -1.0])
k.append(-(((v[0]-x0)**2+(v[1]-y0)**2)**0.5-r))
jmat2 = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
))
k2 = mathutils.Vector((0.0, 0.0, 0.0))
for i in range(len(jmat)):
k2 += mathutils.Vector(jmat[i])*k[i]
jmat2[0][0] += jmat[i][0]**2
jmat2[1][0] += jmat[i][0]*jmat[i][1]
jmat2[2][0] += jmat[i][0]*jmat[i][2]
jmat2[1][1] += jmat[i][1]**2
jmat2[2][1] += jmat[i][1]*jmat[i][2]
jmat2[2][2] += jmat[i][2]**2
jmat2[0][1] = jmat2[1][0]
jmat2[0][2] = jmat2[2][0]
jmat2[1][2] = jmat2[2][1]
try:
jmat2.invert()
except:
pass
dx0, dy0, dr = jmat2 * k2
x0 += dx0
y0 += dy0
r += dr
# stop iterating if we're close enough to optimal solution
if abs(dx0)<1e-6 and abs(dy0)<1e-6 and abs(dr)<1e-6:
break
# return center of circle and radius
return(x0, y0, r)
# calculate circle so no vertices have to be moved away from the center
def circle_calculate_min_fit(locs_2d):
# center of circle
x0 = (min([i[0] for i in locs_2d])+max([i[0] for i in locs_2d]))/2.0
y0 = (min([i[1] for i in locs_2d])+max([i[1] for i in locs_2d]))/2.0
center = mathutils.Vector([x0, y0])
# radius of circle
r = min([(mathutils.Vector([i[0], i[1]])-center).length for i in locs_2d])
# return center of circle and radius
return(x0, y0, r)
# calculate the new locations of the vertices that need to be moved
def circle_calculate_verts(flatten, bm_mod, locs_2d, com, p, q, normal):
# changing 2d coordinates back to 3d coordinates
locs_3d = []
for loc in locs_2d:
locs_3d.append([loc[2], loc[0]*p + loc[1]*q + com])
if flatten: # flat circle
return(locs_3d)
else: # project the locations on the existing mesh
vert_edges = dict_vert_edges(bm_mod)
vert_faces = dict_vert_faces(bm_mod)
faces = [f for f in bm_mod.faces if not f.hide]
rays = [normal, -normal]
new_locs = []
for loc in locs_3d:
projection = False
if bm_mod.verts[loc[0]].co == loc[1]: # vertex hasn't moved
projection = loc[1]
else:
dif = normal.angle(loc[1]-bm_mod.verts[loc[0]].co)
if -1e-6 < dif < 1e-6 or math.pi-1e-6 < dif < math.pi+1e-6:
# original location is already along projection normal
projection = bm_mod.verts[loc[0]].co
else:
# quick search through adjacent faces
for face in vert_faces[loc[0]]:
verts = [v.co for v in bm_mod.faces[face].verts]
if len(verts) == 3: # triangle
v1, v2, v3 = verts
v4 = False
else: # assume quad
v1, v2, v3, v4 = verts[:4]
for ray in rays:
intersect = mathutils.geometry.\
intersect_ray_tri(v1, v2, v3, ray, loc[1])
if intersect:
projection = intersect
break
elif v4:
intersect = mathutils.geometry.\
intersect_ray_tri(v1, v3, v4, ray, loc[1])
if intersect:
projection = intersect
break
if projection:
break
if not projection:
# check if projection is on adjacent edges
for edgekey in vert_edges[loc[0]]:
line1 = bm_mod.verts[edgekey[0]].co
line2 = bm_mod.verts[edgekey[1]].co
intersect, dist = mathutils.geometry.intersect_point_line(\
loc[1], line1, line2)
if 1e-6 < dist < 1 - 1e-6:
projection = intersect
break
if not projection:
# full search through the entire mesh
hits = []
for face in faces:
verts = [v.co for v in face.verts]
if len(verts) == 3: # triangle
v1, v2, v3 = verts
v4 = False
else: # assume quad
v1, v2, v3, v4 = verts[:4]
for ray in rays:
intersect = mathutils.geometry.intersect_ray_tri(\
v1, v2, v3, ray, loc[1])
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
break
elif v4:
intersect = mathutils.geometry.intersect_ray_tri(\
v1, v3, v4, ray, loc[1])
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
break
if len(hits) >= 1:
# if more than 1 hit with mesh, closest hit is new loc
hits.sort()
projection = hits[0][1]
if not projection:
# nothing to project on, remain at flat location
projection = loc[1]
new_locs.append([loc[0], projection])
# return new positions of projected circle
return(new_locs)
# check loops and only return valid ones
def circle_check_loops(single_loops, loops, mapping, bm_mod):
valid_single_loops = {}
valid_loops = []
for i, [loop, circular] in enumerate(loops):
# loop needs to have at least 3 vertices
if len(loop) < 3:
continue
# loop needs at least 1 vertex in the original, non-mirrored mesh
if mapping:
all_virtual = True
for vert in loop:
if mapping[vert] > -1:
all_virtual = False
break
if all_virtual:
continue
# loop has to be non-collinear
collinear = True
loc0 = mathutils.Vector(bm_mod.verts[loop[0]].co[:])
loc1 = mathutils.Vector(bm_mod.verts[loop[1]].co[:])
for v in loop[2:]:
locn = mathutils.Vector(bm_mod.verts[v].co[:])
if loc0 == loc1 or loc1 == locn:
loc0 = loc1
loc1 = locn
continue
d1 = loc1-loc0
d2 = locn-loc1
if -1e-6 < d1.angle(d2, 0) < 1e-6:
loc0 = loc1
loc1 = locn
continue
collinear = False
break
if collinear:
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
valid_single_loops[len(valid_loops)-1] = single_loops[i]
return(valid_single_loops, valid_loops)
# calculate the location of single input vertices that need to be flattened
def circle_flatten_singles(bm_mod, com, p, q, normal, single_loop):
new_locs = []
for vert in single_loop:
loc = mathutils.Vector(bm_mod.verts[vert].co[:])
new_locs.append([vert, loc - (loc-com).dot(normal)*normal])
return(new_locs)
# calculate input loops
def circle_get_input(object, bm, scene):
# get mesh with modifiers applied
derived, bm_mod = get_derived_bmesh(object, bm, scene)
# create list of edge-keys based on selection state
faces = False
for face in bm.faces:
if face.select and not face.hide:
faces = True
break
if faces:
# get selected, non-hidden , non-internal edge-keys
eks_selected = [key for keys in [face_edgekeys(face) for face in \
bm_mod.faces if face.select and not face.hide] for key in keys]
edge_count = {}
for ek in eks_selected:
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select \
and not edge.hide and edge_count.get(edgekey(edge), 1)==1]
else:
# no faces, so no internal edges either
edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select \
and not edge.hide]
# add edge-keys around single vertices
verts_connected = dict([[vert, 1] for edge in [edge for edge in \
bm_mod.edges if edge.select and not edge.hide] for vert in \
edgekey(edge)])
single_vertices = [vert.index for vert in bm_mod.verts if \
vert.select and not vert.hide and not \
verts_connected.get(vert.index, False)]
if single_vertices and len(bm.faces)>0:
vert_to_single = dict([[v.index, []] for v in bm_mod.verts \
if not v.hide])
for face in [face for face in bm_mod.faces if not face.select \
and not face.hide]:
for vert in face.verts:
vert = vert.index
if vert in single_vertices:
for ek in face_edgekeys(face):
if not vert in ek:
edge_keys.append(ek)
if vert not in vert_to_single[ek[0]]:
vert_to_single[ek[0]].append(vert)
if vert not in vert_to_single[ek[1]]:
vert_to_single[ek[1]].append(vert)
break
# sort edge-keys into loops
loops = get_connected_selections(edge_keys)
# find out to which loops the single vertices belong
single_loops = dict([[i, []] for i in range(len(loops))])
if single_vertices and len(bm.faces)>0:
for i, [loop, circular] in enumerate(loops):
for vert in loop:
if vert_to_single[vert]:
for single in vert_to_single[vert]:
if single not in single_loops[i]:
single_loops[i].append(single)
return(derived, bm_mod, single_vertices, single_loops, loops)
# recalculate positions based on the influence of the circle shape
def circle_influence_locs(locs_2d, new_locs_2d, influence):
for i in range(len(locs_2d)):
oldx, oldy, j = locs_2d[i]
newx, newy, k = new_locs_2d[i]
altx = newx*(influence/100)+ oldx*((100-influence)/100)
alty = newy*(influence/100)+ oldy*((100-influence)/100)
locs_2d[i] = [altx, alty, j]
return(locs_2d)
# project 2d locations on circle, respecting distance relations between verts
def circle_project_non_regular(locs_2d, x0, y0, r):
for i in range(len(locs_2d)):
x, y, j = locs_2d[i]
loc = mathutils.Vector([x-x0, y-y0])
loc.length = r
locs_2d[i] = [loc[0], loc[1], j]
return(locs_2d)
# project 2d locations on circle, with equal distance between all vertices
def circle_project_regular(locs_2d, x0, y0, r):
# find offset angle and circling direction
x, y, i = locs_2d[0]
loc = mathutils.Vector([x-x0, y-y0])
loc.length = r
offset_angle = loc.angle(mathutils.Vector([1.0, 0.0]), 0.0)
loca = mathutils.Vector([x-x0, y-y0, 0.0])
if loc[1] < -1e-6:
offset_angle *= -1
x, y, j = locs_2d[1]
locb = mathutils.Vector([x-x0, y-y0, 0.0])
if loca.cross(locb)[2] >= 0:
ccw = 1
else:
ccw = -1
# distribute vertices along the circle
for i in range(len(locs_2d)):
t = offset_angle + ccw * (i / len(locs_2d) * 2 * math.pi)
x = math.cos(t) * r
y = math.sin(t) * r
locs_2d[i] = [x, y, locs_2d[i][2]]
return(locs_2d)
# shift loop, so the first vertex is closest to the center
def circle_shift_loop(bm_mod, loop, com):
verts, circular = loop
distances = [[(bm_mod.verts[vert].co - com).length, i] \
for i, vert in enumerate(verts)]
distances.sort()
shift = distances[0][1]
loop = [verts[shift:] + verts[:shift], circular]
return(loop)
##########################################
####### Curve functions ##################
##########################################
# create lists with knots and points, all correctly sorted
def curve_calculate_knots(loop, verts_selected):
knots = [v for v in loop[0] if v in verts_selected]
points = loop[0][:]
# circular loop, potential for weird splines
if loop[1]:
offset = int(len(loop[0]) / 4)
kpos = []
for k in knots:
kpos.append(loop[0].index(k))
kdif = []
for i in range(len(kpos) - 1):
kdif.append(kpos[i+1] - kpos[i])
kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
kadd = []
for k in kdif:
if k > 2 * offset:
kadd.append([kdif.index(k), True])
# next 2 lines are optional, they insert
# an extra control point in small gaps
#elif k > offset:
# kadd.append([kdif.index(k), False])
kins = []
krot = False
for k in kadd: # extra knots to be added
if k[1]: # big gap (break circular spline)
kpos = loop[0].index(knots[k[0]]) + offset