Skip to content
Snippets Groups Projects
mesh_looptools.py 150 KiB
Newer Older
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
        
        # cleaning up
        terminate(global_undo)
        
        return{'FINISHED'}


# circle operator
class Circle(bpy.types.Operator):
    bl_idname = "mesh.looptools_circle"
    bl_label = "Circle"
    bl_description = "Move selected vertices into a circle shape"
    bl_options = {'REGISTER', 'UNDO'}
    
    custom_radius = bpy.props.BoolProperty(name = "Radius",
        description = "Force a custom radius",
        default = False)
    fit = bpy.props.EnumProperty(name = "Method",
        items = (("best", "Best fit", "Non-linear least squares"),
            ("inside", "Fit inside","Only move vertices towards the center")),
        description = "Method used for fitting a circle to the vertices",
        default = 'best')
    flatten = bpy.props.BoolProperty(name = "Flatten",
        description = "Flatten the circle, instead of projecting it on the " \
            "mesh",
        default = True)
    influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    radius = bpy.props.FloatProperty(name = "Radius",
        description = "Custom radius for circle",
        default = 1.0,
        min = 0.0,
        soft_max = 1000.0)
    regular = bpy.props.BoolProperty(name = "Regular",
        description = "Distribute vertices at constant distances along the " \
            "circle",
        default = True)
    
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
    
    def draw(self, context):
        layout = self.layout
        col = layout.column()
        
        col.prop(self, "fit")
        col.separator()
        
        col.prop(self, "flatten")
        row = col.row(align=True)
        row.prop(self, "custom_radius")
        row_right = row.row(align=True)
        row_right.active = self.custom_radius
        row_right.prop(self, "radius", text="")
        col.prop(self, "regular")
        col.separator()
                
        col.prop(self, "influence")
    
    def invoke(self, context, event):
        # load custom settings
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, bm = initialise()
        settings_write(self)
        # check cache to see if we can save time
        cached, single_loops, loops, derived, mapping = cache_read("Circle",
            object, bm, False, False)
        if cached:
            derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
        else:
            # find loops
            derived, bm_mod, single_vertices, single_loops, loops = \
                circle_get_input(object, bm, context.scene)
            mapping = get_mapping(derived, bm, bm_mod, single_vertices,
                False, loops)
            single_loops, loops = circle_check_loops(single_loops, loops,
                mapping, bm_mod)
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Circle", object, bm, False, False, single_loops,
                loops, derived, mapping)
        
        move = []
        for i, loop in enumerate(loops):
            # best fitting flat plane
            com, normal = calculate_plane(bm_mod, loop)
            # if circular, shift loop so we get a good starting vertex
            if loop[1]:
                loop = circle_shift_loop(bm_mod, loop, com)
            # flatten vertices on plane
            locs_2d, p, q = circle_3d_to_2d(bm_mod, loop, com, normal)
            # calculate circle
            if self.fit == 'best':
                x0, y0, r = circle_calculate_best_fit(locs_2d)
            else: # self.fit == 'inside'
                x0, y0, r = circle_calculate_min_fit(locs_2d)
            # radius override
            if self.custom_radius:
                r = self.radius / p.length
            # calculate positions on circle
            if self.regular:
                new_locs_2d = circle_project_regular(locs_2d[:], x0, y0, r)
            else:
                new_locs_2d = circle_project_non_regular(locs_2d[:], x0, y0, r)
            # take influence into account
            locs_2d = circle_influence_locs(locs_2d, new_locs_2d,
                self.influence)
            # calculate 3d positions of the created 2d input
            move.append(circle_calculate_verts(self.flatten, bm_mod,
                locs_2d, com, p, q, normal))
            # flatten single input vertices on plane defined by loop
            if self.flatten and single_loops:
                move.append(circle_flatten_singles(bm_mod, com, p, q,
                    normal, single_loops[i]))
        
        # move vertices to new locations
        move_verts(object, bm, mapping, move, -1)
        
        # cleaning up
        if derived:
            bm_mod.free()
        terminate(global_undo)
        
        return{'FINISHED'}


# curve operator
class Curve(bpy.types.Operator):
    bl_idname = "mesh.looptools_curve"
    bl_label = "Curve"
    bl_description = "Turn a loop into a smooth curve"
    bl_options = {'REGISTER', 'UNDO'}
    
    boundaries = bpy.props.BoolProperty(name = "Boundaries",
        description = "Limit the tool to work within the boundaries of the "\
            "selected vertices",
        default = False)
    influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    interpolation = bpy.props.EnumProperty(name = "Interpolation",
        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
            ("linear", "Linear", "Simple and fast linear algorithm")),
        description = "Algorithm used for interpolation",
        default = 'cubic')
    regular = bpy.props.BoolProperty(name = "Regular",
        description = "Distribute vertices at constant distances along the" \
            "curve",
        default = True)
    restriction = bpy.props.EnumProperty(name = "Restriction",
        items = (("none", "None", "No restrictions on vertex movement"),
            ("extrude", "Extrude only","Only allow extrusions (no "\
                "indentations)"),
            ("indent", "Indent only", "Only allow indentation (no "\
                "extrusions)")),
        description = "Restrictions on how the vertices can be moved",
        default = 'none')
    
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
    
    def draw(self, context):
        layout = self.layout
        col = layout.column()
        
        col.prop(self, "interpolation")
        col.prop(self, "restriction")
        col.prop(self, "boundaries")
        col.prop(self, "regular")
        col.separator()
        
        col.prop(self, "influence")
    
    def invoke(self, context, event):
        # load custom settings
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, bm = initialise()
        settings_write(self)
        # check cache to see if we can save time
        cached, single_loops, loops, derived, mapping = cache_read("Curve",
            object, bm, False, self.boundaries)
        if cached:
            derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
        else:
            # find loops
            derived, bm_mod, loops = curve_get_input(object, bm,
                self.boundaries, context.scene)
            mapping = get_mapping(derived, bm, bm_mod, False, True, loops)
            loops = check_loops(loops, mapping, bm_mod)
        verts_selected = [v.index for v in bm_mod.verts if v.select \
            and not v.hide]
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Curve", object, bm, False, self.boundaries, False,
                loops, derived, mapping)
        
        move = []
        for loop in loops:
            knots, points = curve_calculate_knots(loop, verts_selected)
            pknots = curve_project_knots(bm_mod, verts_selected, knots,
                points, loop[1])
            tknots, tpoints = curve_calculate_t(bm_mod, knots, points,
                pknots, self.regular, loop[1])
            splines = calculate_splines(self.interpolation, bm_mod,
                tknots, knots)
            move.append(curve_calculate_vertices(bm_mod, knots, tknots,
                points, tpoints, splines, self.interpolation,
                self.restriction))
        
        # move vertices to new locations
        move_verts(object, bm, mapping, move, self.influence)
        
        # cleaning up 
        if derived:
            bm_mod.free()
        terminate(global_undo)

        return{'FINISHED'}


# flatten operator
class Flatten(bpy.types.Operator):
    bl_idname = "mesh.looptools_flatten"
    bl_label = "Flatten"
    bl_description = "Flatten vertices on a best-fitting plane"
    bl_options = {'REGISTER', 'UNDO'}
    
    influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    plane = bpy.props.EnumProperty(name = "Plane",
        items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
            ("normal", "Normal", "Derive plane from averaging vertex "\
            "normals"),
            ("view", "View", "Flatten on a plane perpendicular to the "\
            "viewing angle")),
        description = "Plane on which vertices are flattened",
        default = 'best_fit')
    restriction = bpy.props.EnumProperty(name = "Restriction",
        items = (("none", "None", "No restrictions on vertex movement"),
            ("bounding_box", "Bounding box", "Vertices are restricted to "\
            "movement inside the bounding box of the selection")),
        description = "Restrictions on how the vertices can be moved",
        default = 'none')
    
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
    
    def draw(self, context):
        layout = self.layout
        col = layout.column()
        
        col.prop(self, "plane")
        #col.prop(self, "restriction")
        col.separator()
        
        col.prop(self, "influence")
    
    def invoke(self, context, event):
        # load custom settings
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, bm = initialise()
        settings_write(self)
        # check cache to see if we can save time
        cached, single_loops, loops, derived, mapping = cache_read("Flatten",
            object, bm, False, False)
        if not cached:
            # order input into virtual loops
            loops = flatten_get_input(bm)
            loops = check_loops(loops, mapping, bm)
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Flatten", object, bm, False, False, False, loops,
                False, False)
        
        move = []
        for loop in loops:
            # calculate plane and position of vertices on them
            com, normal = calculate_plane(bm, loop, method=self.plane,
                object=object)
            to_move = flatten_project(bm, loop, com, normal)
            if self.restriction == 'none':
                move.append(to_move)
            else:
                move.append(to_move)
        move_verts(object, bm, False, move, self.influence)
        
        # cleaning up
        terminate(global_undo)
        
        return{'FINISHED'}


Bart Crouch's avatar
Bart Crouch committed
# gstretch operator
class GStretch(bpy.types.Operator):
    bl_idname = "mesh.looptools_gstretch"
    bl_label = "Gstretch"
    bl_description = "Stretch selected vertices to Grease Pencil stroke"
    bl_options = {'REGISTER', 'UNDO'}
    
    delete_strokes = bpy.props.BoolProperty(name="Delete strokes",
        description = "Remove Grease Pencil strokes if they have been used "\
            "for Gstretch",
        default = False)    
    influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    method = bpy.props.EnumProperty(name = "Method",
        items = (("project", "Project", "Project vertices onto the stroke, "\
            "using vertex normals and connected edges"),
            ("irregular", "Spread", "Distribute vertices along the full "\
            "stroke, retaining relative distances between the vertices"),
            ("regular", "Spread evenly", "Distribute vertices at regular "\
            "distances along the full stroke")),
        description = "Method of distributing the vertices over the Grease "\
            "Pencil stroke",
        default = 'regular')
        
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH'
            and ob.grease_pencil)
    
    def draw(self, context):
        layout = self.layout
        col = layout.column()
        
        col.prop(self, "delete_strokes")
        col.prop(self, "method")
        col.separator()
        col.prop(self, "influence")
    
    def invoke(self, context, event):
        # load custom settings
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, bm = initialise()
        settings_write(self)
        
        # check cache to see if we can save time
        cached, single_loops, loops, derived, mapping = cache_read("Gstretch",
            object, bm, False, False)
        if cached:
            derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
        else:
            # find loops
            derived, bm_mod, loops = get_connected_input(object, bm,
                context.scene, input='selected')
            mapping = get_mapping(derived, bm, bm_mod, False, False, loops)
            loops = check_loops(loops, mapping, bm_mod)
        strokes = gstretch_get_strokes(object)
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Gstretch", object, bm, False, False, False, loops,
                derived, mapping)
        
        # pair loops and strokes
        ls_pairs = gstretch_match_loops_strokes(loops, strokes, object, bm_mod)
        ls_pairs = gstretch_align_pairs(ls_pairs, object, bm_mod, self.method)
        
        move = []
        if ls_pairs:
            for (loop, stroke) in ls_pairs:
                move.append(gstretch_calculate_verts(loop, stroke, object,
                    bm_mod, self.method))
                if self.delete_strokes:
                    gstretch_erase_stroke(stroke, context)
        
        # move vertices to new locations
        move_verts(object, bm, mapping, move, self.influence)
        
        # cleaning up 
        if derived:
            bm_mod.free()
        terminate(global_undo)
        
        return{'FINISHED'}


# relax operator
class Relax(bpy.types.Operator):
    bl_idname = "mesh.looptools_relax"
    bl_label = "Relax"
    bl_description = "Relax the loop, so it is smoother"
    bl_options = {'REGISTER', 'UNDO'}
    
    input = bpy.props.EnumProperty(name = "Input",
        items = (("all", "Parallel (all)", "Also use non-selected "\
                "parallel loops as input"),
            ("selected", "Selection","Only use selected vertices as input")),
        description = "Loops that are relaxed",
        default = 'selected')
    interpolation = bpy.props.EnumProperty(name = "Interpolation",
        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
            ("linear", "Linear", "Simple and fast linear algorithm")),
        description = "Algorithm used for interpolation",
        default = 'cubic')
    iterations = bpy.props.EnumProperty(name = "Iterations",
        items = (("1", "1", "One"),
            ("3", "3", "Three"),
            ("5", "5", "Five"),
            ("10", "10", "Ten"),
            ("25", "25", "Twenty-five")),
        description = "Number of times the loop is relaxed",
        default = "1")
    regular = bpy.props.BoolProperty(name = "Regular",
        description = "Distribute vertices at constant distances along the" \
            "loop",
        default = True)
    
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
    
    def draw(self, context):
        layout = self.layout
        col = layout.column()
        
        col.prop(self, "interpolation")
        col.prop(self, "input")
        col.prop(self, "iterations")
        col.prop(self, "regular")
    
    def invoke(self, context, event):
        # load custom settings
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, bm = initialise()
        settings_write(self)
        # check cache to see if we can save time
        cached, single_loops, loops, derived, mapping = cache_read("Relax",
            object, bm, self.input, False)
        if cached:
            derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
        else:
            # find loops
            derived, bm_mod, loops = get_connected_input(object, bm,
                context.scene, self.input)
            mapping = get_mapping(derived, bm, bm_mod, False, False, loops)
            loops = check_loops(loops, mapping, bm_mod)
        knots, points = relax_calculate_knots(loops)
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Relax", object, bm, self.input, False, False, loops,
                derived, mapping)
        
        for iteration in range(int(self.iterations)):
            # calculate splines and new positions
            tknots, tpoints = relax_calculate_t(bm_mod, knots, points,
                self.regular)
            splines = []
            for i in range(len(knots)):
                splines.append(calculate_splines(self.interpolation, bm_mod,
                    tknots[i], knots[i]))
            move = [relax_calculate_verts(bm_mod, self.interpolation,
                tknots, knots, tpoints, points, splines)]
            move_verts(object, bm, mapping, move, -1)
        
        # cleaning up
        if derived:
            bm_mod.free()
        terminate(global_undo)
        
        return{'FINISHED'}


# space operator
class Space(bpy.types.Operator):
    bl_idname = "mesh.looptools_space"
    bl_label = "Space"
    bl_description = "Space the vertices in a regular distrubtion on the loop"
    bl_options = {'REGISTER', 'UNDO'}
    
    influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    input = bpy.props.EnumProperty(name = "Input",
        items = (("all", "Parallel (all)", "Also use non-selected "\
                "parallel loops as input"),
            ("selected", "Selection","Only use selected vertices as input")),
        description = "Loops that are spaced",
        default = 'selected')
    interpolation = bpy.props.EnumProperty(name = "Interpolation",
        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
            ("linear", "Linear", "Vertices are projected on existing edges")),
        description = "Algorithm used for interpolation",
        default = 'cubic')
    
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
    
    def draw(self, context):
        layout = self.layout
        col = layout.column()
        
        col.prop(self, "interpolation")
        col.prop(self, "input")
        col.separator()
        
        col.prop(self, "influence")
    
    def invoke(self, context, event):
        # load custom settings
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, bm = initialise()
        settings_write(self)
        # check cache to see if we can save time
        cached, single_loops, loops, derived, mapping = cache_read("Space",
            object, bm, self.input, False)
        if cached:
            derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
        else:
            # find loops
            derived, bm_mod, loops = get_connected_input(object, bm,
                context.scene, self.input)
            mapping = get_mapping(derived, bm, bm_mod, False, False, loops)
            loops = check_loops(loops, mapping, bm_mod)
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Space", object, bm, self.input, False, False, loops,
                derived, mapping)
        
        move = []
        for loop in loops:
            # calculate splines and new positions
            if loop[1]: # circular
                loop[0].append(loop[0][0])
            tknots, tpoints = space_calculate_t(bm_mod, loop[0][:])
            splines = calculate_splines(self.interpolation, bm_mod,
                tknots, loop[0][:])
            move.append(space_calculate_verts(bm_mod, self.interpolation,
                tknots, tpoints, loop[0][:-1], splines))
        # move vertices to new locations
        move_verts(object, bm, mapping, move, self.influence)
        
        # cleaning up
        if derived:
            bm_mod.free()
        terminate(global_undo)
        
        return{'FINISHED'}


##########################################
####### GUI and registration #############
##########################################

# menu containing all tools
class VIEW3D_MT_edit_mesh_looptools(bpy.types.Menu):
    bl_label = "LoopTools"
    
    def draw(self, context):
        layout = self.layout
        
        layout.operator("mesh.looptools_bridge", text="Bridge").loft = False
        layout.operator("mesh.looptools_circle")
        layout.operator("mesh.looptools_curve")
        layout.operator("mesh.looptools_flatten")
Bart Crouch's avatar
Bart Crouch committed
        layout.operator("mesh.looptools_gstretch")
        layout.operator("mesh.looptools_bridge", text="Loft").loft = True
        layout.operator("mesh.looptools_relax")
        layout.operator("mesh.looptools_space")


# panel containing all tools
class VIEW3D_PT_tools_looptools(bpy.types.Panel):
    bl_space_type = 'VIEW_3D'
    bl_region_type = 'TOOLS'
    bl_context = "mesh_edit"
    bl_label = "LoopTools"
Brendon Murphy's avatar
Brendon Murphy committed
    bl_options = {'DEFAULT_CLOSED'}

    def draw(self, context):
        layout = self.layout
        col = layout.column(align=True)
        lt = context.window_manager.looptools
        
        # bridge - first line
        split = col.split(percentage=0.15)
        if lt.display_bridge:
            split.prop(lt, "display_bridge", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_bridge", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_bridge", text="Bridge").loft = False
        # bridge - settings
        if lt.display_bridge:
            box = col.column(align=True).box().column()
            #box.prop(self, "mode")
            
            # top row
            col_top = box.column(align=True)
            row = col_top.row(align=True)
            col_left = row.column(align=True)
            col_right = row.column(align=True)
            col_right.active = lt.bridge_segments != 1
            col_left.prop(lt, "bridge_segments")
            col_right.prop(lt, "bridge_min_width", text="")
            # bottom row
            bottom_left = col_left.row()
            bottom_left.active = lt.bridge_segments != 1
            bottom_left.prop(lt, "bridge_interpolation", text="")
            bottom_right = col_right.row()
            bottom_right.active = lt.bridge_interpolation == 'cubic'
            bottom_right.prop(lt, "bridge_cubic_strength")
            # boolean properties
            col_top.prop(lt, "bridge_remove_faces")
            
            # override properties
            col_top.separator()
            row = box.row(align = True)
            row.prop(lt, "bridge_twist")
            row.prop(lt, "bridge_reverse")
        
        # circle - first line
        split = col.split(percentage=0.15)
        if lt.display_circle:
            split.prop(lt, "display_circle", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_circle", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_circle")
        # circle - settings
        if lt.display_circle:
            box = col.column(align=True).box().column()
            box.prop(lt, "circle_fit")
            box.separator()
            
            box.prop(lt, "circle_flatten")
            row = box.row(align=True)
            row.prop(lt, "circle_custom_radius")
            row_right = row.row(align=True)
            row_right.active = lt.circle_custom_radius
            row_right.prop(lt, "circle_radius", text="")
            box.prop(lt, "circle_regular")
            box.separator()
            
            box.prop(lt, "circle_influence")
        
        # curve - first line
        split = col.split(percentage=0.15)
        if lt.display_curve:
            split.prop(lt, "display_curve", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_curve", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_curve")
        # curve - settings
        if lt.display_curve:
            box = col.column(align=True).box().column()
            box.prop(lt, "curve_interpolation")
            box.prop(lt, "curve_restriction")
            box.prop(lt, "curve_boundaries")
            box.prop(lt, "curve_regular")
            box.separator()
            
            box.prop(lt, "curve_influence")
        
        # flatten - first line
        split = col.split(percentage=0.15)
        if lt.display_flatten:
            split.prop(lt, "display_flatten", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_flatten", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_flatten")
        # flatten - settings
        if lt.display_flatten:
            box = col.column(align=True).box().column()
            box.prop(lt, "flatten_plane")
            #box.prop(lt, "flatten_restriction")
            box.separator()
            
            box.prop(lt, "flatten_influence")
        
Bart Crouch's avatar
Bart Crouch committed
        # gstretch - first line
        split = col.split(percentage=0.15)
        if lt.display_gstretch:
            split.prop(lt, "display_gstretch", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_gstretch", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_gstretch")
        # gstretch settings
        if lt.display_gstretch:
            box = col.column(align=True).box().column()
            box.prop(lt, "gstretch_delete_strokes")
            box.prop(lt, "gstretch_method")
            box.separator()
            box.prop(lt, "gstretch_influence")
        
        # loft - first line
        split = col.split(percentage=0.15)
        if lt.display_loft:
            split.prop(lt, "display_loft", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_loft", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_bridge", text="Loft").loft = True
        # loft - settings
        if lt.display_loft:
            box = col.column(align=True).box().column()
            #box.prop(self, "mode")
            
            # top row
            col_top = box.column(align=True)
            row = col_top.row(align=True)
            col_left = row.column(align=True)
            col_right = row.column(align=True)
            col_right.active = lt.bridge_segments != 1
            col_left.prop(lt, "bridge_segments")
            col_right.prop(lt, "bridge_min_width", text="")
            # bottom row
            bottom_left = col_left.row()
            bottom_left.active = lt.bridge_segments != 1
            bottom_left.prop(lt, "bridge_interpolation", text="")
            bottom_right = col_right.row()
            bottom_right.active = lt.bridge_interpolation == 'cubic'
            bottom_right.prop(lt, "bridge_cubic_strength")
            # boolean properties
            col_top.prop(lt, "bridge_remove_faces")
            col_top.prop(lt, "bridge_loft_loop")
            
            # override properties
            col_top.separator()
            row = box.row(align = True)
            row.prop(lt, "bridge_twist")
            row.prop(lt, "bridge_reverse")
        
        # relax - first line
        split = col.split(percentage=0.15)
        if lt.display_relax:
            split.prop(lt, "display_relax", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_relax", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_relax")
        # relax - settings
        if lt.display_relax:
            box = col.column(align=True).box().column()
            box.prop(lt, "relax_interpolation")
            box.prop(lt, "relax_input")
            box.prop(lt, "relax_iterations")
            box.prop(lt, "relax_regular")
        
        # space - first line
        split = col.split(percentage=0.15)
        if lt.display_space:
            split.prop(lt, "display_space", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_space", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_space")
        # space - settings
        if lt.display_space:
            box = col.column(align=True).box().column()
            box.prop(lt, "space_interpolation")
            box.prop(lt, "space_input")
            box.separator()
            
            box.prop(lt, "space_influence")


# property group containing all properties for the gui in the panel
class LoopToolsProps(bpy.types.PropertyGroup):
    """
    Fake module like class
    bpy.context.window_manager.looptools
    """
    
    # general display properties
    display_bridge = bpy.props.BoolProperty(name = "Bridge settings",
        description = "Display settings of the Bridge tool",
        default = False)
    display_circle = bpy.props.BoolProperty(name = "Circle settings",
        description = "Display settings of the Circle tool",
        default = False)
    display_curve = bpy.props.BoolProperty(name = "Curve settings",
        description = "Display settings of the Curve tool",
        default = False)
    display_flatten = bpy.props.BoolProperty(name = "Flatten settings",
        description = "Display settings of the Flatten tool",
        default = False)
Bart Crouch's avatar
Bart Crouch committed
    display_gstretch = bpy.props.BoolProperty(name = "Gstretch settings",
        description = "Display settings of the Gstretch tool",
        default = False)
    display_loft = bpy.props.BoolProperty(name = "Loft settings",
        description = "Display settings of the Loft tool",
        default = False)
    display_relax = bpy.props.BoolProperty(name = "Relax settings",
        description = "Display settings of the Relax tool",
        default = False)
    display_space = bpy.props.BoolProperty(name = "Space settings",
        description = "Display settings of the Space tool",
        default = False)
    
    # bridge properties
    bridge_cubic_strength = bpy.props.FloatProperty(name = "Strength",
        description = "Higher strength results in more fluid curves",
        default = 1.0,
        soft_min = -3.0,
        soft_max = 3.0)
    bridge_interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
        items = (('cubic', "Cubic", "Gives curved results"),
            ('linear', "Linear", "Basic, fast, straight interpolation")),
        description = "Interpolation mode: algorithm used when creating "\
            "segments",
        default = 'cubic')
    bridge_loft = bpy.props.BoolProperty(name = "Loft",
        description = "Loft multiple loops, instead of considering them as "\
            "a multi-input for bridging",
        default = False)
    bridge_loft_loop = bpy.props.BoolProperty(name = "Loop",
        description = "Connect the first and the last loop with each other",
        default = False)
    bridge_min_width = bpy.props.IntProperty(name = "Minimum width",
        description = "Segments with an edge smaller than this are merged "\
            "(compared to base edge)",
        default = 0,
        min = 0,
        max = 100,
        subtype = 'PERCENTAGE')
    bridge_mode = bpy.props.EnumProperty(name = "Mode",
        items = (('basic', "Basic", "Fast algorithm"),
                 ('shortest', "Shortest edge", "Slower algorithm with " \
                                               "better vertex matching")),
        description = "Algorithm used for bridging",
        default = 'shortest')
    bridge_remove_faces = bpy.props.BoolProperty(name = "Remove faces",
        description = "Remove faces that are internal after bridging",
        default = True)
    bridge_reverse = bpy.props.BoolProperty(name = "Reverse",
        description = "Manually override the direction in which the loops "\
                      "are bridged. Only use if the tool gives the wrong " \
                      "result",
        default = False)
    bridge_segments = bpy.props.IntProperty(name = "Segments",
        description = "Number of segments used to bridge the gap "\
            "(0 = automatic)",
        default = 1,
        min = 0,
        soft_max = 20)
    bridge_twist = bpy.props.IntProperty(name = "Twist",
        description = "Twist what vertices are connected to each other",
        default = 0)
    
    # circle properties
    circle_custom_radius = bpy.props.BoolProperty(name = "Radius",
        description = "Force a custom radius",
        default = False)
    circle_fit = bpy.props.EnumProperty(name = "Method",
        items = (("best", "Best fit", "Non-linear least squares"),
            ("inside", "Fit inside","Only move vertices towards the center")),
        description = "Method used for fitting a circle to the vertices",
        default = 'best')
    circle_flatten = bpy.props.BoolProperty(name = "Flatten",
        description = "Flatten the circle, instead of projecting it on the " \
            "mesh",
        default = True)
    circle_influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    circle_radius = bpy.props.FloatProperty(name = "Radius",
        description = "Custom radius for circle",
        default = 1.0,
        min = 0.0,
        soft_max = 1000.0)
    circle_regular = bpy.props.BoolProperty(name = "Regular",
        description = "Distribute vertices at constant distances along the " \
            "circle",
        default = True)
    
    # curve properties
    curve_boundaries = bpy.props.BoolProperty(name = "Boundaries",
        description = "Limit the tool to work within the boundaries of the "\
            "selected vertices",
        default = False)
    curve_influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    curve_interpolation = bpy.props.EnumProperty(name = "Interpolation",
        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
            ("linear", "Linear", "Simple and fast linear algorithm")),
        description = "Algorithm used for interpolation",
        default = 'cubic')
    curve_regular = bpy.props.BoolProperty(name = "Regular",
Bart Crouch's avatar
Bart Crouch committed
        description = "Distribute vertices at constant distances along the " \
            "curve",
        default = True)
    curve_restriction = bpy.props.EnumProperty(name = "Restriction",
        items = (("none", "None", "No restrictions on vertex movement"),
            ("extrude", "Extrude only","Only allow extrusions (no "\
                "indentations)"),
            ("indent", "Indent only", "Only allow indentation (no "\
                "extrusions)")),
        description = "Restrictions on how the vertices can be moved",
        default = 'none')
    
    # flatten properties
    flatten_influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    flatten_plane = bpy.props.EnumProperty(name = "Plane",
        items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
            ("normal", "Normal", "Derive plane from averaging vertex "\
            "normals"),
            ("view", "View", "Flatten on a plane perpendicular to the "\
            "viewing angle")),
        description = "Plane on which vertices are flattened",
        default = 'best_fit')
    flatten_restriction = bpy.props.EnumProperty(name = "Restriction",
        items = (("none", "None", "No restrictions on vertex movement"),
            ("bounding_box", "Bounding box", "Vertices are restricted to "\
            "movement inside the bounding box of the selection")),
        description = "Restrictions on how the vertices can be moved",
        default = 'none')
    
Bart Crouch's avatar
Bart Crouch committed
    # gstretch properties
    gstretch_delete_strokes = bpy.props.BoolProperty(name="Delete strokes",
        description = "Remove Grease Pencil strokes if they have been used "\
            "for Gstretch",
        default = False)   
    gstretch_influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    gstretch_method = bpy.props.EnumProperty(name = "Method",
        items = (("project", "Project", "Project vertices onto the stroke, "\
            "using vertex normals and connected edges"),
            ("irregular", "Spread", "Distribute vertices along the full "\
            "stroke, retaining relative distances between the vertices"),
            ("regular", "Spread evenly", "Distribute vertices at regular "\
            "distances along the full stroke")),
        description = "Method of distributing the vertices over the Grease "\