Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and / or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110 - 1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
bl_info = {
"name": "Simple Curve",
"author": "Spivak Vladimir (http://cwolf3d.korostyshev.net)",
"version": (1, 5, 5),
"location": "View3D > Add > Curve",
"description": "Adds Simple Curve",
"warning": "",
"wiki_url": "https://wiki.blender.org/index.php/Extensions:2.6/"
"Py/Scripts/Curve/Simple_curves",
"category": "Add Curve"}
# ------------------------------------------------------------
from bpy_extras import object_utils
from bpy.types import (
Operator,
Menu,
Panel,
PropertyGroup,
)
from bpy.props import (
BoolProperty,
EnumProperty,
FloatProperty,
FloatVectorProperty,
IntProperty,
StringProperty,
PointerProperty,
)
from mathutils import (
Vector,
Matrix,
)
from math import (
sin, asin, sqrt,
acos, cos, pi,
radians, tan,
hypot,
)
# from bpy_extras.object_utils import *
# ------------------------------------------------------------
# Point:
def SimplePoint():
newpoints = []
newpoints.append([0.0, 0.0, 0.0])
return newpoints
# ------------------------------------------------------------
# Line:
def SimpleLine(c1=[0.0, 0.0, 0.0], c2=[2.0, 2.0, 2.0]):
newpoints = []
c3 = Vector(c2) - Vector(c1)
newpoints.append([0.0, 0.0, 0.0])
newpoints.append([c3[0], c3[1], c3[2]])
return newpoints
# ------------------------------------------------------------
# Angle:
def SimpleAngle(length=1.0, angle=45.0):
newpoints = []
angle = radians(angle)
newpoints.append([length, 0.0, 0.0])
newpoints.append([0.0, 0.0, 0.0])
newpoints.append([length * cos(angle), length * sin(angle), 0.0])
return newpoints
# ------------------------------------------------------------
# Distance:
def SimpleDistance(length=1.0, center=True):
newpoints = []
if center:
newpoints.append([-length / 2, 0.0, 0.0])
newpoints.append([length / 2, 0.0, 0.0])
else:
newpoints.append([0.0, 0.0, 0.0])
newpoints.append([length, 0.0, 0.0])
return newpoints
# ------------------------------------------------------------
# Circle:
def SimpleCircle(sides=4, radius=1.0):
newpoints = []
angle = radians(360) / sides
newpoints.append([radius, 0, 0])
Spivak Vladimir (cwolf3d)
committed
if radius != 0 :
j = 1
while j < sides:
t = angle * j
x = cos(t) * radius
y = sin(t) * radius
newpoints.append([x, y, 0])
j += 1
# ------------------------------------------------------------
# Ellipse:
def SimpleEllipse(a=2.0, b=1.0):
newpoints = []
newpoints.append([a, 0.0, 0.0])
newpoints.append([0.0, b, 0.0])
newpoints.append([-a, 0.0, 0.0])
newpoints.append([0.0, -b, 0.0])
return newpoints
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# ------------------------------------------------------------
# Arc:
def SimpleArc(sides=0, radius=1.0, startangle=0.0, endangle=45.0):
newpoints = []
startangle = radians(startangle)
endangle = radians(endangle)
sides += 1
angle = (endangle - startangle) / sides
x = cos(startangle) * radius
y = sin(startangle) * radius
newpoints.append([x, y, 0])
j = 1
while j < sides:
t = angle * j
x = cos(t + startangle) * radius
y = sin(t + startangle) * radius
newpoints.append([x, y, 0])
j += 1
x = cos(endangle) * radius
y = sin(endangle) * radius
newpoints.append([x, y, 0])
return newpoints
# ------------------------------------------------------------
# Sector:
def SimpleSector(sides=0, radius=1.0, startangle=0.0, endangle=45.0):
newpoints = []
startangle = radians(startangle)
endangle = radians(endangle)
sides += 1
newpoints.append([0, 0, 0])
angle = (endangle - startangle) / sides
x = cos(startangle) * radius
y = sin(startangle) * radius
newpoints.append([x, y, 0])
j = 1
while j < sides:
t = angle * j
x = cos(t + startangle) * radius
y = sin(t + startangle) * radius
newpoints.append([x, y, 0])
j += 1
x = cos(endangle) * radius
y = sin(endangle) * radius
newpoints.append([x, y, 0])
return newpoints
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# ------------------------------------------------------------
# Segment:
def SimpleSegment(sides=0, a=2.0, b=1.0, startangle=0.0, endangle=45.0):
newpoints = []
startangle = radians(startangle)
endangle = radians(endangle)
sides += 1
angle = (endangle - startangle) / sides
x = cos(startangle) * a
y = sin(startangle) * a
newpoints.append([x, y, 0])
j = 1
while j < sides:
t = angle * j
x = cos(t + startangle) * a
y = sin(t + startangle) * a
newpoints.append([x, y, 0])
j += 1
x = cos(endangle) * a
y = sin(endangle) * a
newpoints.append([x, y, 0])
x = cos(endangle) * b
y = sin(endangle) * b
newpoints.append([x, y, 0])
Spivak Vladimir (cwolf3d)
committed
j = sides - 1
while j > 0:
t = angle * j
x = cos(t + startangle) * b
y = sin(t + startangle) * b
newpoints.append([x, y, 0])
j -= 1
x = cos(startangle) * b
y = sin(startangle) * b
newpoints.append([x, y, 0])
return newpoints
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# ------------------------------------------------------------
# Rectangle:
def SimpleRectangle(width=2.0, length=2.0, rounded=0.0, center=True):
newpoints = []
r = rounded / 2
if center:
x = width / 2
y = length / 2
if rounded != 0.0:
newpoints.append([-x + r, y, 0.0])
newpoints.append([x - r, y, 0.0])
newpoints.append([x, y - r, 0.0])
newpoints.append([x, -y + r, 0.0])
newpoints.append([x - r, -y, 0.0])
newpoints.append([-x + r, -y, 0.0])
newpoints.append([-x, -y + r, 0.0])
newpoints.append([-x, y - r, 0.0])
else:
newpoints.append([-x, y, 0.0])
newpoints.append([x, y, 0.0])
newpoints.append([x, -y, 0.0])
newpoints.append([-x, -y, 0.0])
else:
x = width
y = length
if rounded != 0.0:
newpoints.append([r, y, 0.0])
newpoints.append([x - r, y, 0.0])
newpoints.append([x, y - r, 0.0])
newpoints.append([x, r, 0.0])
newpoints.append([x - r, 0.0, 0.0])
newpoints.append([r, 0.0, 0.0])
newpoints.append([0.0, r, 0.0])
newpoints.append([0.0, y - r, 0.0])
else:
newpoints.append([0.0, 0.0, 0.0])
newpoints.append([0.0, y, 0.0])
newpoints.append([x, y, 0.0])
newpoints.append([x, 0.0, 0.0])
return newpoints
# ------------------------------------------------------------
# Rhomb:
def SimpleRhomb(width=2.0, length=2.0, center=True):
newpoints = []
x = width / 2
y = length / 2
if center:
newpoints.append([-x, 0.0, 0.0])
newpoints.append([0.0, y, 0.0])
newpoints.append([x, 0.0, 0.0])
newpoints.append([0.0, -y, 0.0])
else:
newpoints.append([x, 0.0, 0.0])
newpoints.append([0.0, y, 0.0])
newpoints.append([x, length, 0.0])
newpoints.append([width, y, 0.0])
return newpoints
# ------------------------------------------------------------
# Polygon:
def SimplePolygon(sides=3, radius=1.0):
newpoints = []
angle = radians(360.0) / sides
j = 0
while j < sides:
t = angle * j
x = sin(t) * radius
y = cos(t) * radius
newpoints.append([x, y, 0.0])
j += 1
return newpoints
# ------------------------------------------------------------
# Polygon_ab:
def SimplePolygon_ab(sides=3, a=2.0, b=1.0):
newpoints = []
angle = radians(360.0) / sides
j = 0
while j < sides:
t = angle * j
x = sin(t) * a
y = cos(t) * b
newpoints.append([x, y, 0.0])
j += 1
return newpoints
# ------------------------------------------------------------
# Trapezoid:
def SimpleTrapezoid(a=2.0, b=1.0, h=1.0, center=True):
newpoints = []
x = a / 2
y = b / 2
r = h / 2
if center:
newpoints.append([-x, -r, 0.0])
newpoints.append([-y, r, 0.0])
newpoints.append([y, r, 0.0])
newpoints.append([x, -r, 0.0])
else:
newpoints.append([0.0, 0.0, 0.0])
newpoints.append([x - y, h, 0.0])
newpoints.append([x + y, h, 0.0])
newpoints.append([a, 0.0, 0.0])
return newpoints
# ------------------------------------------------------------
# calculates the matrix for the new object
# depending on user pref
def align_matrix(context, location):
loc = Matrix.Translation(location)
obj_align = context.preferences.edit.object_align
if (context.space_data.type == 'VIEW_3D' and
obj_align == 'VIEW'):
rot = context.space_data.region_3d.view_matrix.to_3x3().inverted().to_4x4()
else:
rot = Matrix()
# ------------------------------------------------------------
# get array of vertcoordinates according to splinetype
def vertsToPoints(Verts, splineType):
# main vars
vertArray = []
# array for BEZIER spline output (V3)
if splineType == 'BEZIER':
for v in Verts:
vertArray += v
# array for nonBEZIER output (V4)
else:
for v in Verts:
vertArray += v
if splineType == 'NURBS':
# for nurbs w=1
vertArray.append(1)
else:
# for poly w=0
vertArray.append(0)
return vertArray
# ------------------------------------------------------------
# Main Function
def main(context, self, align_matrix):
# output splineType 'POLY' 'NURBS' 'BEZIER'
splineType = self.outputType
# create object
if bpy.context.mode == 'EDIT_CURVE':
Curve = context.active_object
newSpline = Curve.data.splines.new(type=splineType) # spline
else:
name = self.Simple_Type # Type as name
Spivak Vladimir (cwolf3d)
committed
dataCurve = bpy.data.curves.new(name, type='CURVE') # curve data block
newSpline = dataCurve.splines.new(type=splineType) # spline
Spivak Vladimir (cwolf3d)
committed
# create object with new Curve
Curve = object_utils.object_data_add(context, dataCurve, operator=self) # place in active scene
Curve.matrix_world = align_matrix # apply matrix
Curve.rotation_euler = self.Simple_rotation_euler
# set newSpline Options
newSpline.use_cyclic_u = self.use_cyclic_u
newSpline.use_endpoint_u = self.endp_u
newSpline.order_u = self.order_u
# set curve Options
Curve.data.dimensions = self.shape
Curve.data.use_path = True
if self.shape == '3D':
Curve.data.fill_mode = 'FULL'
else:
Curve.data.fill_mode = 'BOTH'
sides = abs(int((self.Simple_endangle - self.Simple_startangle) / 90))
# get verts
if self.Simple_Type == 'Point':
verts = SimplePoint()
if self.Simple_Type == 'Line':
verts = SimpleLine(self.Simple_startlocation, self.Simple_endlocation)
if self.Simple_Type == 'Distance':
verts = SimpleDistance(self.Simple_length, self.Simple_center)
if self.Simple_Type == 'Angle':
verts = SimpleAngle(self.Simple_length, self.Simple_angle)
if self.Simple_Type == 'Circle':
if self.Simple_sides < 4:
self.Simple_sides = 4
Spivak Vladimir (cwolf3d)
committed
if self.Simple_radius == 0:
return {'FINISHED'}
verts = SimpleCircle(self.Simple_sides, self.Simple_radius)
if self.Simple_Type == 'Ellipse':
verts = SimpleEllipse(self.Simple_a, self.Simple_b)
if self.Simple_Type == 'Arc':
if self.Simple_sides < sides:
self.Simple_sides = sides
if self.Simple_radius == 0:
return {'FINISHED'}
verts = SimpleArc(
self.Simple_sides, self.Simple_radius,
self.Simple_startangle, self.Simple_endangle
)
if self.Simple_Type == 'Sector':
if self.Simple_sides < sides:
self.Simple_sides = sides
if self.Simple_radius == 0:
return {'FINISHED'}
verts = SimpleSector(
self.Simple_sides, self.Simple_radius,
self.Simple_startangle, self.Simple_endangle
)
if self.Simple_Type == 'Segment':
if self.Simple_sides < sides:
self.Simple_sides = sides
Spivak Vladimir (cwolf3d)
committed
if self.Simple_a == 0 or self.Simple_b == 0 or self.Simple_a == self.Simple_b:
Spivak Vladimir (cwolf3d)
committed
if self.Simple_a > self.Simple_b:
verts = SimpleSegment(
self.Simple_sides, self.Simple_a, self.Simple_b,
self.Simple_startangle, self.Simple_endangle
)
Spivak Vladimir (cwolf3d)
committed
if self.Simple_a < self.Simple_b:
verts = SimpleSegment(
self.Simple_sides, self.Simple_b, self.Simple_a,
self.Simple_startangle, self.Simple_endangle
)
if self.Simple_Type == 'Rectangle':
verts = SimpleRectangle(
self.Simple_width, self.Simple_length,
self.Simple_rounded, self.Simple_center
)
if self.Simple_Type == 'Rhomb':
verts = SimpleRhomb(
self.Simple_width, self.Simple_length, self.Simple_center
)
if self.Simple_Type == 'Polygon':
if self.Simple_sides < 3:
self.Simple_sides = 3
verts = SimplePolygon(
self.Simple_sides, self.Simple_radius
)
if self.Simple_Type == 'Polygon_ab':
if self.Simple_sides < 3:
self.Simple_sides = 3
verts = SimplePolygon_ab(
self.Simple_sides, self.Simple_a, self.Simple_b
)
if self.Simple_Type == 'Trapezoid':
verts = SimpleTrapezoid(
self.Simple_a, self.Simple_b, self.Simple_h, self.Simple_center
)
# turn verts into array
vertArray = vertsToPoints(verts, splineType)
Spivak Vladimir (cwolf3d)
committed
for spline in Curve.data.splines:
if spline.type == 'BEZIER':
for point in spline.bezier_points:
point.select_control_point = False
point.select_left_handle = False
point.select_right_handle = False
else:
for point in spline.points:
point.select = False
# create spline from vertarray
Spivak Vladimir (cwolf3d)
committed
all_points = []
if splineType == 'BEZIER':
newSpline.bezier_points.add(int(len(vertArray) * 0.33))
newSpline.bezier_points.foreach_set('co', vertArray)
for point in newSpline.bezier_points:
point.handle_right_type = self.handleType
point.handle_left_type = self.handleType
Spivak Vladimir (cwolf3d)
committed
point.select_control_point = True
point.select_left_handle = True
point.select_right_handle = True
all_points.append(point)
else:
newSpline.points.add(int(len(vertArray) * 0.25 - 1))
newSpline.points.foreach_set('co', vertArray)
newSpline.use_endpoint_u = True
Spivak Vladimir (cwolf3d)
committed
for point in newSpline.points:
all_points.append(point)
point.select = True
n = len(all_points)
if splineType == 'BEZIER':
if self.Simple_Type == 'Circle' or self.Simple_Type == 'Arc' or \
self.Simple_Type == 'Sector' or self.Simple_Type == 'Segment' or \
self.Simple_Type == 'Ellipse':
for p in all_points:
p.handle_right_type = 'FREE'
p.handle_left_type = 'FREE'
if self.Simple_Type == 'Circle':
i = 0
for p1 in all_points:
if i != (n - 1):
p2 = all_points[i + 1]
u1 = asin(p1.co.y / self.Simple_radius)
u2 = asin(p2.co.y / self.Simple_radius)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
if i == (n - 1):
p2 = all_points[0]
u1 = asin(p1.co.y / self.Simple_radius)
u2 = asin(p2.co.y / self.Simple_radius)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
i += 1
if self.Simple_Type == 'Ellipse':
all_points[0].handle_right = Vector((self.Simple_a, self.Simple_b * d, 0))
all_points[0].handle_left = Vector((self.Simple_a, -self.Simple_b * d, 0))
all_points[1].handle_right = Vector((-self.Simple_a * d, self.Simple_b, 0))
all_points[1].handle_left = Vector((self.Simple_a * d, self.Simple_b, 0))
all_points[2].handle_right = Vector((-self.Simple_a, -self.Simple_b * d, 0))
all_points[2].handle_left = Vector((-self.Simple_a, self.Simple_b * d, 0))
all_points[3].handle_right = Vector((self.Simple_a * d, -self.Simple_b, 0))
all_points[3].handle_left = Vector((-self.Simple_a * d, -self.Simple_b, 0))
if self.Simple_Type == 'Arc':
i = 0
for p1 in all_points:
if i != (n - 1):
p2 = all_points[i + 1]
u1 = asin(p1.co.y / self.Simple_radius)
u2 = asin(p2.co.y / self.Simple_radius)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
if self.Simple_startangle < self.Simple_endangle:
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
else:
v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
p1.handle_right = v1
p2.handle_left = v2
i += 1
if self.Simple_Type == 'Sector':
i = 0
for p1 in all_points:
if i == 0:
p1.handle_right_type = 'VECTOR'
p1.handle_left_type = 'VECTOR'
elif i != (n - 1):
p2 = all_points[i + 1]
u1 = asin(p1.co.y / self.Simple_radius)
u2 = asin(p2.co.y / self.Simple_radius)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
if self.Simple_startangle < self.Simple_endangle:
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
else:
v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
p1.handle_right = v1
p2.handle_left = v2
i += 1
if self.Simple_Type == 'Segment':
i = 0
if self.Simple_a > self.Simple_b:
Segment_a = self.Simple_a
Segment_b = self.Simple_b
if self.Simple_a < self.Simple_b:
Segment_b = self.Simple_a
Segment_a = self.Simple_b
for p1 in all_points:
if i < (n / 2 - 1):
p2 = all_points[i + 1]
u1 = asin(p1.co.y / Segment_a)
u2 = asin(p2.co.y / Segment_a)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / Segment_a)
u2 = acos(p2.co.x / Segment_a)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / Segment_a)
u2 = acos(p2.co.x / Segment_a)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * Segment_a
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
if self.Simple_startangle < self.Simple_endangle:
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
else:
v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
p1.handle_right = v1
p2.handle_left = v2
elif i != (n / 2 - 1) and i != (n - 1):
p2 = all_points[i + 1]
u1 = asin(p1.co.y / Segment_b)
u2 = asin(p2.co.y / Segment_b)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / Segment_b)
u2 = acos(p2.co.x / Segment_b)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / Segment_b)
u2 = acos(p2.co.x / Segment_b)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * Segment_b
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
if self.Simple_startangle < self.Simple_endangle:
v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
p1.handle_right = v1
p2.handle_left = v2
else:
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
i += 1
all_points[0].handle_left_type = 'VECTOR'
all_points[n - 1].handle_right_type = 'VECTOR'
all_points[int(n / 2) - 1].handle_right_type = 'VECTOR'
all_points[int(n / 2)].handle_left_type = 'VECTOR'
Spivak Vladimir (cwolf3d)
committed
# move and rotate spline in edit mode
if bpy.context.mode == 'EDIT_CURVE':
bpy.ops.transform.translate(value = self.Simple_startlocation)
bpy.ops.transform.rotate(value = self.Simple_rotation_euler[0], orient_axis = 'X')
bpy.ops.transform.rotate(value = self.Simple_rotation_euler[1], orient_axis = 'Y')
bpy.ops.transform.rotate(value = self.Simple_rotation_euler[2], orient_axis = 'Z')
# ### MENU append ###
def Simple_curve_edit_menu(self, context):
bl_label = 'Simple edit'
self.layout.operator("curve.bezier_points_fillet", text="Fillet")
self.layout.operator("curve.bezier_spline_divide", text="Divide")
self.layout.separator()
def menu(self, context):
oper1 = self.layout.operator(Simple.bl_idname, text="Angle", icon="MOD_CURVE")
oper1.Simple_Type = "Angle"
oper1.use_cyclic_u = False
oper2 = self.layout.operator(Simple.bl_idname, text="Arc", icon="MOD_CURVE")
oper2.Simple_Type = "Arc"
oper2.use_cyclic_u = False
oper3 = self.layout.operator(Simple.bl_idname, text="Circle", icon="MOD_CURVE")
oper3.Simple_Type = "Circle"
oper3.use_cyclic_u = True
oper4 = self.layout.operator(Simple.bl_idname, text="Distance", icon="MOD_CURVE")
oper4.Simple_Type = "Distance"
oper4.use_cyclic_u = False
oper5 = self.layout.operator(Simple.bl_idname, text="Ellipse", icon="MOD_CURVE")
oper5.Simple_Type = "Ellipse"
oper5.use_cyclic_u = True
oper6 = self.layout.operator(Simple.bl_idname, text="Line", icon="MOD_CURVE")
oper6.Simple_Type = "Line"
oper6.use_cyclic_u = False
oper6.shape = '3D'
oper7 = self.layout.operator(Simple.bl_idname, text="Point", icon="MOD_CURVE")
oper7.Simple_Type = "Point"
oper7.use_cyclic_u = False
oper8 = self.layout.operator(Simple.bl_idname, text="Polygon", icon="MOD_CURVE")
oper8.Simple_Type = "Polygon"
oper8.use_cyclic_u = True
oper9 = self.layout.operator(Simple.bl_idname, text="Polygon ab", icon="MOD_CURVE")
oper9.Simple_Type = "Polygon_ab"
oper9.use_cyclic_u = True
oper10 = self.layout.operator(Simple.bl_idname, text="Rectangle", icon="MOD_CURVE")
oper10.Simple_Type = "Rectangle"
oper10.use_cyclic_u = True
oper11 = self.layout.operator(Simple.bl_idname, text="Rhomb", icon="MOD_CURVE")
oper11.Simple_Type = "Rhomb"
oper11.use_cyclic_u = True
oper12 = self.layout.operator(Simple.bl_idname, text="Sector", icon="MOD_CURVE")
oper12.Simple_Type = "Sector"
oper12.use_cyclic_u = True
oper13 = self.layout.operator(Simple.bl_idname, text="Segment", icon="MOD_CURVE")
oper13.Simple_Type = "Segment"
oper13.use_cyclic_u = True
oper14 = self.layout.operator(Simple.bl_idname, text="Trapezoid", icon="MOD_CURVE")
oper14.Simple_Type = "Trapezoid"
oper14.use_cyclic_u = True
# ------------------------------------------------------------
# Simple operator
class Simple(Operator, object_utils.AddObjectHelper):
bl_label = "Simple Curve"
bl_description = "Construct a Simple Curve"
bl_options = {'REGISTER', 'UNDO', 'PRESET'}
# align_matrix for the invoke
name="Simple",
default=True,
description="Simple Curve"
)
name="Change",
default=False,
description="Change Simple Curve"
)
name="Delete",
description="Delete Simple Curve"
)
Types = [('Point', "Point", "Construct a Point"),
('Line', "Line", "Construct a Line"),
('Distance', "Distance", "Construct a two point Distance"),
('Angle', "Angle", "Construct an Angle"),
('Circle', "Circle", "Construct a Circle"),
('Ellipse', "Ellipse", "Construct an Ellipse"),
('Arc', "Arc", "Construct an Arc"),
('Sector', "Sector", "Construct a Sector"),
('Segment', "Segment", "Construct a Segment"),
('Rectangle', "Rectangle", "Construct a Rectangle"),
('Rhomb', "Rhomb", "Construct a Rhomb"),
('Polygon', "Polygon", "Construct a Polygon"),
('Polygon_ab', "Polygon ab", "Construct a Polygon ab"),
('Trapezoid', "Trapezoid", "Construct a Trapezoid")
]
name="Type",
description="Form of Curve to create",
items=Types
)
Simple_startlocation : FloatVectorProperty(
name="",
description="Start location",
default=(0.0, 0.0, 0.0),
subtype='TRANSLATION'
)
Simple_endlocation : FloatVectorProperty(
name="",
description="End location",
default=(2.0, 2.0, 2.0),
subtype='TRANSLATION'
)
Simple_rotation_euler : FloatVectorProperty(
name="",
description="Rotation",
default=(0.0, 0.0, 0.0),
subtype='EULER'
)
name="Side a",
default=2.0,
min=0.0, soft_min=0.0,
unit='LENGTH',
description="a side Value"
)
name="Side b",
default=1.0,
min=0.0, soft_min=0.0,
unit='LENGTH',
description="b side Value"
)
name="Height",
default=1.0,
unit='LENGTH',
description="Height of the Trapezoid - distance between a and b"
)
name="Angle",
default=45.0,
description="Angle"
)
Simple_startangle : FloatProperty(
name="Start angle",
default=0.0,
min=-360.0, soft_min=-360.0,
max=360.0, soft_max=360.0,
description="Start angle"
)
Simple_endangle : FloatProperty(
name="End angle",
default=45.0,
min=-360.0, soft_min=-360.0,
max=360.0, soft_max=360.0,
description="End angle"
)
name="Sides",
default=3,
min=0, soft_min=0,
description="Sides"
)
name="Radius",
default=1.0,
min=0.0, soft_min=0.0,
unit='LENGTH',
description="Radius"
)
name="Length center",
default=True,
description="Length center"
)
Angle_types = [('Degrees', "Degrees", "Use Degrees"),
('Radians', "Radians", "Use Radians")]
Simple_degrees_or_radians : EnumProperty(
name="Degrees or radians",
description="Degrees or radians",
items=Angle_types
)
name="Width",
default=2.0,
min=0.0, soft_min=0,
unit='LENGTH',
description="Width"
)
name="Length",
default=2.0,
min=0.0, soft_min=0.0,
unit='LENGTH',
description="Length"
)
Simple_rounded : FloatProperty(
name="Rounded",
default=0.0,
min=0.0, soft_min=0.0,
unit='LENGTH',
description="Rounded corners"
)
# Curve Options
shapeItems = [
('2D', "2D", "2D shape Curve"),
('3D', "3D", "3D shape Curve")]
name="2D / 3D",
items=shapeItems,
description="2D or 3D Curve"
)
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
outputType : EnumProperty(
name="Output splines",
description="Type of splines to output",
items=[
('POLY', "Poly", "Poly Spline type"),
('NURBS', "Nurbs", "Nurbs Spline type"),
('BEZIER', "Bezier", "Bezier Spline type")],
default='BEZIER'
)
use_cyclic_u : BoolProperty(
name="Cyclic",
default=True,
description="make curve closed"
)
endp_u : BoolProperty(
name="Use endpoint u",
default=True,
description="stretch to endpoints"
)
order_u : IntProperty(
name="Order u",
default=4,
min=2, soft_min=2,
max=6, soft_max=6,
description="Order of nurbs spline"
)
handleType : EnumProperty(
name="Handle type",
default='VECTOR',
description="Bezier handles type",
items=[
('VECTOR', "Vector", "Vector type Bezier handles"),
('AUTO', "Auto", "Automatic type Bezier handles")]
)
def draw(self, context):
layout = self.layout
# general options
col = layout.column()
col.prop(self, "Simple_Type")
l = 0
s = 0
if self.Simple_Type == 'Line':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_endlocation")
v = Vector(self.Simple_endlocation) - Vector(self.Simple_startlocation)
l = v.length
if self.Simple_Type == 'Distance':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_length")
col.prop(self, "Simple_center")
l = self.Simple_length
if self.Simple_Type == 'Angle':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_length")
col.prop(self, "Simple_angle")
#row = layout.row()
#row.prop(self, "Simple_degrees_or_radians", expand=True)
if self.Simple_Type == 'Circle':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_sides")
col.prop(self, "Simple_radius")
l = 2 * pi * abs(self.Simple_radius)
s = pi * self.Simple_radius * self.Simple_radius
if self.Simple_Type == 'Ellipse':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_a", text="Radius a")
col.prop(self, "Simple_b", text="Radius b")
l = pi * (3 * (self.Simple_a + self.Simple_b) -
sqrt((3 * self.Simple_a + self.Simple_b) *
(self.Simple_a + 3 * self.Simple_b)))
s = pi * abs(self.Simple_b) * abs(self.Simple_a)
if self.Simple_Type == 'Arc':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_sides")
col.prop(self, "Simple_radius")
col = box.column(align=True)
col.prop(self, "Simple_startangle")
col.prop(self, "Simple_endangle")
#row = layout.row()
#row.prop(self, "Simple_degrees_or_radians", expand=True)
l = abs(pi * self.Simple_radius * (self.Simple_endangle - self.Simple_startangle) / 180)
if self.Simple_Type == 'Sector':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_sides")
col.prop(self, "Simple_radius")
col = box.column(align=True)
col.prop(self, "Simple_startangle")
col.prop(self, "Simple_endangle")
#row = layout.row()
#row.prop(self, "Simple_degrees_or_radians", expand=True)
l = abs(pi * self.Simple_radius *
(self.Simple_endangle - self.Simple_startangle) / 180) + self.Simple_radius * 2
s = pi * self.Simple_radius * self.Simple_radius * \
abs(self.Simple_endangle - self.Simple_startangle) / 360
if self.Simple_Type == 'Segment':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_sides")
col.prop(self, "Simple_a", text="Radius a")
col.prop(self, "Simple_b", text="Radius b")
col = box.column(align=True)
col.prop(self, "Simple_startangle")
col.prop(self, "Simple_endangle")
#row = layout.row()
#row.prop(self, "Simple_degrees_or_radians", expand=True)
la = abs(pi * self.Simple_a * (self.Simple_endangle - self.Simple_startangle) / 180)
lb = abs(pi * self.Simple_b * (self.Simple_endangle - self.Simple_startangle) / 180)
l = abs(self.Simple_a - self.Simple_b) * 2 + la + lb
sa = pi * self.Simple_a * self.Simple_a * \
abs(self.Simple_endangle - self.Simple_startangle) / 360
sb = pi * self.Simple_b * self.Simple_b * \
abs(self.Simple_endangle - self.Simple_startangle) / 360
s = abs(sa - sb)
if self.Simple_Type == 'Rectangle':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_width")
col.prop(self, "Simple_length")
col.prop(self, "Simple_rounded")
box.prop(self, "Simple_center")
l = 2 * abs(self.Simple_width) + 2 * abs(self.Simple_length)
s = abs(self.Simple_width) * abs(self.Simple_length)
if self.Simple_Type == 'Rhomb':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_width")
col.prop(self, "Simple_length")
col.prop(self, "Simple_center")
g = hypot(self.Simple_width / 2, self.Simple_length / 2)
l = 4 * g
s = self.Simple_width * self.Simple_length / 2
if self.Simple_Type == 'Polygon':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_sides")
col.prop(self, "Simple_radius")
if self.Simple_Type == 'Polygon_ab':
box = layout.box()
col = box.column(align=True)
col.label(text="Polygon ab Options:")
col.prop(self, "Simple_sides")
col.prop(self, "Simple_a")
col.prop(self, "Simple_b")
if self.Simple_Type == 'Trapezoid':
box = layout.box()
col = box.column(align=True)
col.label(text=self.Simple_Type + " Options:")
col.prop(self, "Simple_a")
col.prop(self, "Simple_b")
col.prop(self, "Simple_h")
box.prop(self, "Simple_center")
g = hypot(self.Simple_h, (self.Simple_a - self.Simple_b) / 2)
l = self.Simple_a + self.Simple_b + g * 2
s = (abs(self.Simple_a) + abs(self.Simple_b)) / 2 * self.Simple_h
row = layout.row()
row.prop(self, "shape", expand=True)
# output options
col = layout.column()
col.label(text="Output Curve Type:")
col.row().prop(self, "outputType", expand=True)
if self.outputType == 'NURBS':
col.prop(self, "order_u")
elif self.outputType == 'BEZIER':
col.row().prop(self, 'handleType', expand=True)
col = layout.column()
col.row().prop(self, "use_cyclic_u", expand=True)
box.prop(self, "Simple_startlocation")
box.prop(self, "Simple_rotation_euler")
if l != 0 or s != 0:
box = layout.box()
box.label(text="Statistics:", icon="INFO")
if l != 0:
l_str = str(round(l, 4))
box.label(text="Length: " + l_str)
if s != 0:
s_str = str(round(s, 4))
box.label(text="Area: " + s_str)
@classmethod
def poll(cls, context):
return context.scene is not None
def execute(self, context):
# main function
self.align_matrix = align_matrix(context, self.Simple_startlocation)
main(context, self, self.align_matrix)
return {'FINISHED'}
# ------------------------------------------------------------
# Fillet
class BezierPointsFillet(Operator):
bl_idname = "curve.bezier_points_fillet"
bl_label = "Bezier points Fillet"
bl_description = "Bezier points Fillet"
bl_options = {'REGISTER', 'UNDO', 'PRESET'}
name="Radius",
default=0.25,
unit='LENGTH',
description="Radius"
)
Types = [('Round', "Round", "Round"),
('Chamfer', "Chamfer", "Chamfer")]
name="Type",
description="Fillet type",
items=Types
)
def draw(self, context):
layout = self.layout
# general options
col = layout.column()
col.prop(self, "Fillet_radius")
col.prop(self, "Fillet_Type", expand=True)
@classmethod
def poll(cls, context):
return context.scene is not None
def execute(self, context):
# main function
if bpy.ops.object.mode_set.poll():
bpy.ops.object.mode_set(mode='EDIT')
spline = bpy.context.object.data.splines.active
bpy.ops.curve.spline_type_set(type='BEZIER')
bpy.ops.curve.handle_type_set(type='VECTOR')
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
n = 0
ii = []
for p in spline.bezier_points:
if p.select_control_point:
ii.append(n)
n += 1
else:
n += 1
if n > 2:
jn = 0
for j in ii:
j += jn
selected_all = [p for p in spline.bezier_points]
bpy.ops.curve.select_all(action='DESELECT')
if j != 0 and j != n - 1:
selected_all[j].select_control_point = True
selected_all[j + 1].select_control_point = True
bpy.ops.curve.subdivide()
selected_all = [p for p in spline.bezier_points]
selected4 = [selected_all[j - 1], selected_all[j],
selected_all[j + 1], selected_all[j + 2]]
jn += 1
n += 1
elif j == 0:
selected_all[j].select_control_point = True
selected_all[j + 1].select_control_point = True
bpy.ops.curve.subdivide()
selected_all = [p for p in spline.bezier_points]
selected4 = [selected_all[n], selected_all[0],
selected_all[1], selected_all[2]]
jn += 1
n += 1
elif j == n - 1:
selected_all[j].select_control_point = True
selected_all[j - 1].select_control_point = True
bpy.ops.curve.subdivide()
selected_all = [p for p in spline.bezier_points]
selected4 = [selected_all[0], selected_all[n],
selected_all[n - 1], selected_all[n - 2]]
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
selected4[2].co = selected4[1].co
s1 = Vector(selected4[0].co) - Vector(selected4[1].co)
s2 = Vector(selected4[3].co) - Vector(selected4[2].co)
s1.normalize()
s11 = Vector(selected4[1].co) + s1 * self.Fillet_radius
selected4[1].co = s11
s2.normalize()
s22 = Vector(selected4[2].co) + s2 * self.Fillet_radius
selected4[2].co = s22
if self.Fillet_Type == 'Round':
if j != n - 1:
selected4[2].handle_right_type = 'VECTOR'
selected4[1].handle_left_type = 'VECTOR'
selected4[1].handle_right_type = 'ALIGNED'
selected4[2].handle_left_type = 'ALIGNED'
else:
selected4[1].handle_right_type = 'VECTOR'
selected4[2].handle_left_type = 'VECTOR'
selected4[2].handle_right_type = 'ALIGNED'
selected4[1].handle_left_type = 'ALIGNED'
if self.Fillet_Type == 'Chamfer':
selected4[2].handle_right_type = 'VECTOR'
selected4[1].handle_left_type = 'VECTOR'
selected4[1].handle_right_type = 'VECTOR'
selected4[2].handle_left_type = 'VECTOR'
return {'FINISHED'}
def subdivide_cubic_bezier(p1, p2, p3, p4, t):
p12 = (p2 - p1) * t + p1
p23 = (p3 - p2) * t + p2
p34 = (p4 - p3) * t + p3
p123 = (p23 - p12) * t + p12
p234 = (p34 - p23) * t + p23
p1234 = (p234 - p123) * t + p123
return [p12, p123, p1234, p234, p34]
# ------------------------------------------------------------
# BezierDivide Operator
class BezierDivide(Operator):
bl_idname = "curve.bezier_spline_divide"
bl_label = "Bezier Spline Divide"
bl_description = "Bezier Divide (enters edit mode) for Fillet Curves"
bl_options = {'REGISTER', 'UNDO'}
# align_matrix for the invoke
name="t (0% - 100%)",
default=50.0,
min=0.0, soft_min=0.0,
max=100.0, soft_max=100.0,
description="t (0% - 100%)"
)
@classmethod
def poll(cls, context):
return context.scene is not None
def execute(self, context):
# main function
if bpy.ops.object.mode_set.poll():
bpy.ops.object.mode_set(mode='EDIT')
spline = bpy.context.object.data.splines.active
bpy.ops.curve.spline_type_set(type='BEZIER')
Spivak Vladimir (cwolf3d)
committed
n = 0
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
ii = []
for p in spline.bezier_points:
if p.select_control_point:
ii.append(n)
n += 1
else:
n += 1
if n > 2:
jn = 0
for j in ii:
selected_all = [p for p in spline.bezier_points]
bpy.ops.curve.select_all(action='DESELECT')
if (j in ii) and (j + 1 in ii):
selected_all[j + jn].select_control_point = True
selected_all[j + 1 + jn].select_control_point = True
h = subdivide_cubic_bezier(
selected_all[j + jn].co, selected_all[j + jn].handle_right,
selected_all[j + 1 + jn].handle_left, selected_all[j + 1 + jn].co, self.Bezier_t / 100
)
bpy.ops.curve.subdivide(1)
selected_all = [p for p in spline.bezier_points]
selected_all[j + jn].handle_right_type = 'FREE'
selected_all[j + jn].handle_right = h[0]
selected_all[j + 1 + jn].co = h[2]
selected_all[j + 1 + jn].handle_left_type = 'FREE'
selected_all[j + 1 + jn].handle_left = h[1]
selected_all[j + 1 + jn].handle_right_type = 'FREE'
selected_all[j + 1 + jn].handle_right = h[3]
selected_all[j + 2 + jn].handle_left_type = 'FREE'
selected_all[j + 2 + jn].handle_left = h[4]
jn += 1
if j == n - 1 and (0 in ii) and spline.use_cyclic_u:
selected_all[j + jn].select_control_point = True
selected_all[0].select_control_point = True
h = subdivide_cubic_bezier(
selected_all[j + jn].co, selected_all[j + jn].handle_right,
selected_all[0].handle_left, selected_all[0].co, self.Bezier_t / 100
)
bpy.ops.curve.subdivide(1)
selected_all = [p for p in spline.bezier_points]
selected_all[j + jn].handle_right_type = 'FREE'
selected_all[j + jn].handle_right = h[0]
selected_all[j + 1 + jn].co = h[2]
selected_all[j + 1 + jn].handle_left_type = 'FREE'
selected_all[j + 1 + jn].handle_left = h[1]
selected_all[j + 1 + jn].handle_right_type = 'FREE'
selected_all[j + 1 + jn].handle_right = h[3]
selected_all[0].handle_left_type = 'FREE'
selected_all[0].handle_left = h[4]
return {'FINISHED'}
classes = [
Simple,
BezierDivide,
BezierPointsFillet
]
from bpy.utils import register_class
for cls in classes:
register_class(cls)
bpy.types.VIEW3D_MT_curve_add.append(menu)
bpy.types.VIEW3D_MT_edit_curve_context_menu.prepend(Simple_curve_edit_menu)
from bpy.utils import unregister_class
for cls in reversed(classes):
unregister_class(cls)
bpy.types.VIEW3D_MT_curve_add.remove(menu)
bpy.types.VIEW3D_MT_edit_curve_context_menu.remove(Simple_curve_edit_menu)
if __name__ == "__main__":
register()