Newer
Older
elem_props_set(props, "p_string", k.encode(), v, custom=True)
elif isinstance(v, int):
elem_props_set(props, "p_integer", k.encode(), v, custom=True)
if isinstance(v, float):
Bastien Montagne
committed
elem_props_set(props, "p_double", k.encode(), v, custom=True)
def fbx_data_empty_elements(root, empty, scene_data):
"""
Write the Empty data block.
"""
empty_key = scene_data.data_empties[empty]
null = elem_data_single_int64(root, b"NodeAttribute", get_fbxuid_from_key(empty_key))
null.add_string(fbx_name_class(empty.name.encode(), b"NodeAttribute"))
null.add_string(b"Null")
elem_data_single_string(null, b"TypeFlags", b"Null")
tmpl = scene_data.templates[b"Null"]
props = elem_properties(null)
# No custom properties, already saved with object (Model).
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
def fbx_data_lamp_elements(root, lamp, scene_data):
"""
Write the Lamp data block.
"""
gscale = scene_data.settings.global_scale
lamp_key = scene_data.data_lamps[lamp]
do_light = True
decay_type = FBX_LIGHT_DECAY_TYPES['CONSTANT']
do_shadow = False
shadow_color = Vector((0.0, 0.0, 0.0))
if lamp.type not in {'HEMI'}:
if lamp.type not in {'SUN'}:
decay_type = FBX_LIGHT_DECAY_TYPES[lamp.falloff_type]
do_light = (not lamp.use_only_shadow) and (lamp.use_specular or lamp.use_diffuse)
do_shadow = lamp.shadow_method not in {'NOSHADOW'}
shadow_color = lamp.shadow_color
light = elem_data_single_int64(root, b"NodeAttribute", get_fbxuid_from_key(lamp_key))
light.add_string(fbx_name_class(lamp.name.encode(), b"NodeAttribute"))
light.add_string(b"Light")
elem_data_single_int32(light, b"GeometryVersion", FBX_GEOMETRY_VERSION) # Sic...
tmpl = scene_data.templates[b"Light"]
props = elem_properties(light)
elem_props_template_set(tmpl, props, "p_enum", b"LightType", FBX_LIGHT_TYPES[lamp.type])
elem_props_template_set(tmpl, props, "p_bool", b"CastLight", do_light)
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_color", b"Color", lamp.color)
elem_props_template_set(tmpl, props, "p_number", b"Intensity", lamp.energy * 100.0)
elem_props_template_set(tmpl, props, "p_enum", b"DecayType", decay_type)
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_double", b"DecayStart", lamp.distance * gscale)
elem_props_template_set(tmpl, props, "p_bool", b"CastShadows", do_shadow)
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_color", b"ShadowColor", shadow_color)
if lamp.type in {'SPOT'}:
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_double", b"OuterAngle", math.degrees(lamp.spot_size))
elem_props_template_set(tmpl, props, "p_double", b"InnerAngle",
math.degrees(lamp.spot_size * (1.0 - lamp.spot_blend)))
# Custom properties.
if scene_data.settings.use_custom_properties:
fbx_data_element_custom_properties(props, lamp)
def fbx_data_camera_elements(root, cam_obj, scene_data):
"""
Write the Camera data blocks.
"""
gscale = scene_data.settings.global_scale
cam_data = cam_obj.data
cam_key = scene_data.data_cameras[cam_obj]
# Real data now, good old camera!
# Object transform info.
loc, rot, scale, matrix, matrix_rot = fbx_object_tx(scene_data, cam_obj)
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
up = matrix_rot * Vector((0.0, 1.0, 0.0))
to = matrix_rot * Vector((0.0, 0.0, -1.0))
# Render settings.
# TODO We could export much more...
render = scene_data.scene.render
width = render.resolution_x
height = render.resolution_y
aspect = width / height
# Film width & height from mm to inches
filmwidth = units_convert(cam_data.sensor_width, "millimeter", "inch")
filmheight = units_convert(cam_data.sensor_height, "millimeter", "inch")
filmaspect = filmwidth / filmheight
# Film offset
offsetx = filmwidth * cam_data.shift_x
offsety = filmaspect * filmheight * cam_data.shift_y
cam = elem_data_single_int64(root, b"NodeAttribute", get_fbxuid_from_key(cam_key))
cam.add_string(fbx_name_class(cam_data.name.encode(), b"NodeAttribute"))
cam.add_string(b"Camera")
tmpl = scene_data.templates[b"Camera"]
props = elem_properties(cam)
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_vector", b"Position", loc)
elem_props_template_set(tmpl, props, "p_vector", b"UpVector", up)
elem_props_template_set(tmpl, props, "p_vector", b"InterestPosition", loc + to) # Point, not vector!
# Should we use world value?
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_color", b"BackgroundColor", (0.0, 0.0, 0.0))
elem_props_template_set(tmpl, props, "p_bool", b"DisplayTurnTableIcon", True)
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_double", b"FilmWidth", filmwidth)
elem_props_template_set(tmpl, props, "p_double", b"FilmHeight", filmheight)
elem_props_template_set(tmpl, props, "p_double", b"FilmAspectRatio", filmaspect)
elem_props_template_set(tmpl, props, "p_double", b"FilmOffsetX", offsetx)
elem_props_template_set(tmpl, props, "p_double", b"FilmOffsetY", offsety)
elem_props_template_set(tmpl, props, "p_enum", b"ApertureMode", 3) # FocalLength.
elem_props_template_set(tmpl, props, "p_enum", b"GateFit", 2) # FitHorizontal.
elem_props_template_set(tmpl, props, "p_fov", b"FieldOfView", math.degrees(cam_data.angle_x))
elem_props_template_set(tmpl, props, "p_fov_x", b"FieldOfViewX", math.degrees(cam_data.angle_x))
elem_props_template_set(tmpl, props, "p_fov_y", b"FieldOfViewY", math.degrees(cam_data.angle_y))
# No need to convert to inches here...
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_double", b"FocalLength", cam_data.lens)
elem_props_template_set(tmpl, props, "p_double", b"SafeAreaAspectRatio", aspect)
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_double", b"NearPlane", cam_data.clip_start * gscale)
elem_props_template_set(tmpl, props, "p_double", b"FarPlane", cam_data.clip_end * gscale)
elem_props_template_set(tmpl, props, "p_enum", b"BackPlaneDistanceMode", 1) # RelativeToCamera.
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_double", b"BackPlaneDistance", cam_data.clip_end * gscale)
# Custom properties.
if scene_data.settings.use_custom_properties:
fbx_data_element_custom_properties(props, cam_data)
elem_data_single_string(cam, b"TypeFlags", b"Camera")
elem_data_single_int32(cam, b"GeometryVersion", 124) # Sic...
elem_data_vec_float64(cam, b"Position", loc)
elem_data_vec_float64(cam, b"Up", up)
elem_data_vec_float64(cam, b"LookAt", to)
elem_data_single_int32(cam, b"ShowInfoOnMoving", 1)
elem_data_single_int32(cam, b"ShowAudio", 0)
elem_data_vec_float64(cam, b"AudioColor", (0.0, 1.0, 0.0))
elem_data_single_float64(cam, b"CameraOrthoZoom", 1.0)
def fbx_data_mesh_elements(root, me, scene_data):
"""
Write the Mesh (Geometry) data block.
"""
Bastien Montagne
committed
# Ugly helper... :/
def _infinite_gen(val):
while 1:
yield val
me_key, me_obj = scene_data.data_meshes[me]
# No gscale/gmat here, all data are supposed to be in object space.
smooth_type = scene_data.settings.mesh_smooth_type
do_bake_space_transform = use_bake_space_transform(scene_data, me_obj)
# Vertices are in object space, but we are post-multiplying all transforms with the inverse of the
# global matrix, so we need to apply the global matrix to the vertices to get the correct result.
geom_mat_co = scene_data.settings.global_matrix if do_bake_space_transform else None
# We need to apply the inverse transpose of the global matrix when transforming normals.
Bastien Montagne
committed
geom_mat_no = Matrix(scene_data.settings.global_matrix_inv_transposed) if do_bake_space_transform else None
if geom_mat_no is not None:
# Remove translation & scaling!
geom_mat_no.translation = Vector()
geom_mat_no.normalize()
geom = elem_data_single_int64(root, b"Geometry", get_fbxuid_from_key(me_key))
geom.add_string(fbx_name_class(me.name.encode(), b"Geometry"))
geom.add_string(b"Mesh")
tmpl = scene_data.templates[b"Geometry"]
props = elem_properties(geom)
# Custom properties.
if scene_data.settings.use_custom_properties:
fbx_data_element_custom_properties(props, me)
elem_data_single_int32(geom, b"GeometryVersion", FBX_GEOMETRY_VERSION)
# Vertex cos.
t_co = array.array(data_types.ARRAY_FLOAT64, (0.0,)) * len(me.vertices) * 3
me.vertices.foreach_get("co", t_co)
if geom_mat_co is not None:
def _vcos_transformed_gen(raw_cos, m=None):
# Note: we could most likely get much better performances with numpy, but will leave this as TODO for now.
return chain(*(m * Vector(v) for v in zip(*(iter(raw_cos),) * 3)))
t_co = _vcos_transformed_gen(t_co, geom_mat_co)
elem_data_single_float64_array(geom, b"Vertices", t_co)
del t_co
# Polygon indices.
#
# We do loose edges as two-vertices faces, if enabled...
#
# Note we have to process Edges in the same time, as they are based on poly's loops...
loop_nbr = len(me.loops)
t_pvi = array.array(data_types.ARRAY_INT32, (0,)) * loop_nbr
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
t_ls = [None] * len(me.polygons)
me.loops.foreach_get("vertex_index", t_pvi)
me.polygons.foreach_get("loop_start", t_ls)
# Add "fake" faces for loose edges.
if scene_data.settings.use_mesh_edges:
t_le = tuple(e.vertices for e in me.edges if e.is_loose)
t_pvi.extend(chain(*t_le))
t_ls.extend(range(loop_nbr, loop_nbr + len(t_le), 2))
del t_le
# Edges...
# Note: Edges are represented as a loop here: each edge uses a single index, which refers to the polygon array.
# The edge is made by the vertex indexed py this polygon's point and the next one on the same polygon.
# Advantage: Only one index per edge.
# Drawback: Only polygon's edges can be represented (that's why we have to add fake two-verts polygons
# for loose edges).
# We also have to store a mapping from real edges to their indices in this array, for edge-mapped data
# (like e.g. crease).
t_eli = array.array(data_types.ARRAY_INT32)
edges_map = {}
edges_nbr = 0
if t_ls and t_pvi:
t_ls = set(t_ls)
todo_edges = [None] * len(me.edges) * 2
me.edges.foreach_get("vertices", todo_edges)
todo_edges = set((v1, v2) if v1 < v2 else (v2, v1) for v1, v2 in zip(*(iter(todo_edges),) * 2))
li = 0
vi = vi_start = t_pvi[0]
for li_next, vi_next in enumerate(t_pvi[1:] + t_pvi[:1], start=1):
if li_next in t_ls: # End of a poly's loop.
vi2 = vi_start
vi_start = vi_next
else:
vi2 = vi_next
e_key = (vi, vi2) if vi < vi2 else (vi2, vi)
if e_key in todo_edges:
t_eli.append(li)
todo_edges.remove(e_key)
edges_map[e_key] = edges_nbr
edges_nbr += 1
vi = vi_next
li = li_next
# End of edges!
# We have to ^-1 last index of each loop.
for ls in t_ls:
t_pvi[ls - 1] ^= -1
# And finally we can write data!
elem_data_single_int32_array(geom, b"PolygonVertexIndex", t_pvi)
elem_data_single_int32_array(geom, b"Edges", t_eli)
del t_pvi
del t_ls
del t_eli
# And now, layers!
# Smoothing.
if smooth_type in {'FACE', 'EDGE'}:
t_ps = None
_map = b""
if smooth_type == 'FACE':
t_ps = array.array(data_types.ARRAY_INT32, (0,)) * len(me.polygons)
me.polygons.foreach_get("use_smooth", t_ps)
_map = b"ByPolygon"
else: # EDGE
# Write Edge Smoothing.
t_ps = array.array(data_types.ARRAY_INT32, (0,)) * edges_nbr
for e in me.edges:
if e.key not in edges_map:
continue # Only loose edges, in theory!
t_ps[edges_map[e.key]] = not e.use_edge_sharp
_map = b"ByEdge"
lay_smooth = elem_data_single_int32(geom, b"LayerElementSmoothing", 0)
elem_data_single_int32(lay_smooth, b"Version", FBX_GEOMETRY_SMOOTHING_VERSION)
elem_data_single_string(lay_smooth, b"Name", b"")
elem_data_single_string(lay_smooth, b"MappingInformationType", _map)
elem_data_single_string(lay_smooth, b"ReferenceInformationType", b"Direct")
elem_data_single_int32_array(lay_smooth, b"Smoothing", t_ps) # Sight, int32 for bool...
del t_ps
# TODO: Edge crease (LayerElementCrease).
# And we are done with edges!
del edges_map
# Loop normals.
# NOTE: this is not supported by importer currently.
# XXX Official docs says normals should use IndexToDirect,
# but this does not seem well supported by apps currently...
me.calc_normals_split()
def _nortuples_gen(raw_nors, m):
Bastien Montagne
committed
# Great, now normals are also expected 4D!
gen = zip(*(iter(raw_nors),) * 3 + (_infinite_gen(1.0),))
return gen if m is None else (m * Vector(v) for v in gen)
t_ln = array.array(data_types.ARRAY_FLOAT64, (0.0,)) * len(me.loops) * 3
me.loops.foreach_get("normal", t_ln)
t_ln = _nortuples_gen(t_ln, geom_mat_no)
t_ln = tuple(t_ln) # No choice... :/
lay_nor = elem_data_single_int32(geom, b"LayerElementNormal", 0)
elem_data_single_int32(lay_nor, b"Version", FBX_GEOMETRY_NORMAL_VERSION)
elem_data_single_string(lay_nor, b"Name", b"")
elem_data_single_string(lay_nor, b"MappingInformationType", b"ByPolygonVertex")
elem_data_single_string(lay_nor, b"ReferenceInformationType", b"IndexToDirect")
ln2idx = tuple(set(t_ln))
elem_data_single_float64_array(lay_nor, b"Normals", chain(*ln2idx))
# Normal weights, no idea what it is.
t_lnw = array.array(data_types.ARRAY_FLOAT64, (0.0,)) * len(ln2idx)
elem_data_single_float64_array(lay_nor, b"NormalsW", t_lnw)
ln2idx = {nor: idx for idx, nor in enumerate(ln2idx)}
elem_data_single_int32_array(lay_nor, b"NormalsIndex", (ln2idx[n] for n in t_ln))
else:
lay_nor = elem_data_single_int32(geom, b"LayerElementNormal", 0)
elem_data_single_int32(lay_nor, b"Version", FBX_GEOMETRY_NORMAL_VERSION)
elem_data_single_string(lay_nor, b"Name", b"")
elem_data_single_string(lay_nor, b"MappingInformationType", b"ByPolygonVertex")
elem_data_single_string(lay_nor, b"ReferenceInformationType", b"Direct")
elem_data_single_float64_array(lay_nor, b"Normals", chain(*t_ln))
# Normal weights, no idea what it is.
t_ln = array.array(data_types.ARRAY_FLOAT64, (0.0,)) * len(me.loops)
elem_data_single_float64_array(lay_nor, b"NormalsW", t_ln)
del t_ln
# tspace
tspacenumber = 0
if scene_data.settings.use_tspace:
tspacenumber = len(me.uv_layers)
if tspacenumber:
t_ln = array.array(data_types.ARRAY_FLOAT64, (0.0,)) * len(me.loops) * 3
t_lnw = array.array(data_types.ARRAY_FLOAT64, (0.0,)) * len(me.loops)
for idx, uvlayer in enumerate(me.uv_layers):
name = uvlayer.name
me.calc_tangents(name)
# Loop bitangents (aka binormals).
# NOTE: this is not supported by importer currently.
me.loops.foreach_get("bitangent", t_ln)
lay_nor = elem_data_single_int32(geom, b"LayerElementBinormal", idx)
elem_data_single_int32(lay_nor, b"Version", FBX_GEOMETRY_BINORMAL_VERSION)
elem_data_single_string_unicode(lay_nor, b"Name", name)
elem_data_single_string(lay_nor, b"MappingInformationType", b"ByPolygonVertex")
elem_data_single_string(lay_nor, b"ReferenceInformationType", b"Direct")
elem_data_single_float64_array(lay_nor, b"Binormals", chain(*_nortuples_gen(t_ln, geom_mat_no)))
# Binormal weights, no idea what it is.
elem_data_single_float64_array(lay_nor, b"BinormalsW", t_lnw)
# Loop tangents.
# NOTE: this is not supported by importer currently.
me.loops.foreach_get("tangent", t_ln)
lay_nor = elem_data_single_int32(geom, b"LayerElementTangent", idx)
elem_data_single_int32(lay_nor, b"Version", FBX_GEOMETRY_TANGENT_VERSION)
elem_data_single_string_unicode(lay_nor, b"Name", name)
elem_data_single_string(lay_nor, b"MappingInformationType", b"ByPolygonVertex")
elem_data_single_string(lay_nor, b"ReferenceInformationType", b"Direct")
elem_data_single_float64_array(lay_nor, b"Binormals", chain(*_nortuples_gen(t_ln, geom_mat_no)))
# Tangent weights, no idea what it is.
elem_data_single_float64_array(lay_nor, b"TangentsW", t_lnw)
me.free_tangents()
me.free_normals_split()
Bastien Montagne
committed
del _nortuples_gen
# Write VertexColor Layers
# note, no programs seem to use this info :/
vcolnumber = len(me.vertex_colors)
if vcolnumber:
def _coltuples_gen(raw_cols):
return zip(*(iter(raw_cols),) * 3 + (_infinite_gen(1.0),)) # We need a fake alpha...
t_lc = array.array(data_types.ARRAY_FLOAT64, (0.0,)) * len(me.loops) * 3
for colindex, collayer in enumerate(me.vertex_colors):
collayer.data.foreach_get("color", t_lc)
lay_vcol = elem_data_single_int32(geom, b"LayerElementColor", colindex)
elem_data_single_int32(lay_vcol, b"Version", FBX_GEOMETRY_VCOLOR_VERSION)
elem_data_single_string_unicode(lay_vcol, b"Name", collayer.name)
elem_data_single_string(lay_vcol, b"MappingInformationType", b"ByPolygonVertex")
elem_data_single_string(lay_vcol, b"ReferenceInformationType", b"IndexToDirect")
col2idx = tuple(set(_coltuples_gen(t_lc)))
elem_data_single_float64_array(lay_vcol, b"Colors", chain(*col2idx)) # Flatten again...
col2idx = {col: idx for idx, col in enumerate(col2idx)}
elem_data_single_int32_array(lay_vcol, b"ColorIndex", (col2idx[c] for c in _coltuples_gen(t_lc)))
del col2idx
del t_lc
del _coltuples_gen
# Write UV layers.
# Note: LayerElementTexture is deprecated since FBX 2011 - luckily!
# Textures are now only related to materials, in FBX!
uvnumber = len(me.uv_layers)
if uvnumber:
def _uvtuples_gen(raw_uvs):
return zip(*(iter(raw_uvs),) * 2)
t_luv = array.array(data_types.ARRAY_FLOAT64, (0.0,)) * len(me.loops) * 2
for uvindex, uvlayer in enumerate(me.uv_layers):
uvlayer.data.foreach_get("uv", t_luv)
lay_uv = elem_data_single_int32(geom, b"LayerElementUV", uvindex)
elem_data_single_int32(lay_uv, b"Version", FBX_GEOMETRY_UV_VERSION)
elem_data_single_string_unicode(lay_uv, b"Name", uvlayer.name)
elem_data_single_string(lay_uv, b"MappingInformationType", b"ByPolygonVertex")
elem_data_single_string(lay_uv, b"ReferenceInformationType", b"IndexToDirect")
uv2idx = tuple(set(_uvtuples_gen(t_luv)))
elem_data_single_float64_array(lay_uv, b"UV", chain(*uv2idx)) # Flatten again...
uv2idx = {uv: idx for idx, uv in enumerate(uv2idx)}
elem_data_single_int32_array(lay_uv, b"UVIndex", (uv2idx[uv] for uv in _uvtuples_gen(t_luv)))
del uv2idx
del t_luv
del _uvtuples_gen
# Face's materials.
me_fbxmats_idx = None
if me in scene_data.mesh_mat_indices:
me_fbxmats_idx = scene_data.mesh_mat_indices[me]
me_blmats = me.materials
if me_fbxmats_idx and me_blmats:
lay_mat = elem_data_single_int32(geom, b"LayerElementMaterial", 0)
elem_data_single_int32(lay_mat, b"Version", FBX_GEOMETRY_MATERIAL_VERSION)
elem_data_single_string(lay_mat, b"Name", b"")
nbr_mats = len(me_fbxmats_idx)
if nbr_mats > 1:
t_pm = array.array(data_types.ARRAY_INT32, (0,)) * len(me.polygons)
me.polygons.foreach_get("material_index", t_pm)
# We have to validate mat indices, and map them to FBX indices.
blmats_to_fbxmats_idxs = [me_fbxmats_idx[m] for m in me_blmats]
mat_idx_limit = len(blmats_to_fbxmats_idxs)
def_mat = blmats_to_fbxmats_idxs[0]
_gen = (blmats_to_fbxmats_idxs[m] if m < mat_idx_limit else def_mat for m in t_pm)
t_pm = array.array(data_types.ARRAY_INT32, _gen)
elem_data_single_string(lay_mat, b"MappingInformationType", b"ByPolygon")
# XXX Logically, should be "Direct" reference type, since we do not have any index array, and have one
# value per polygon...
# But looks like FBX expects it to be IndexToDirect here (maybe because materials are already
# indices??? *sigh*).
elem_data_single_string(lay_mat, b"ReferenceInformationType", b"IndexToDirect")
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
elem_data_single_int32_array(lay_mat, b"Materials", t_pm)
del t_pm
else:
elem_data_single_string(lay_mat, b"MappingInformationType", b"AllSame")
elem_data_single_string(lay_mat, b"ReferenceInformationType", b"IndexToDirect")
elem_data_single_int32_array(lay_mat, b"Materials", [0])
# And the "layer TOC"...
layer = elem_data_single_int32(geom, b"Layer", 0)
elem_data_single_int32(layer, b"Version", FBX_GEOMETRY_LAYER_VERSION)
lay_nor = elem_empty(layer, b"LayerElement")
elem_data_single_string(lay_nor, b"Type", b"LayerElementNormal")
elem_data_single_int32(lay_nor, b"TypedIndex", 0)
if smooth_type in {'FACE', 'EDGE'}:
lay_smooth = elem_empty(layer, b"LayerElement")
elem_data_single_string(lay_smooth, b"Type", b"LayerElementSmoothing")
elem_data_single_int32(lay_smooth, b"TypedIndex", 0)
if vcolnumber:
lay_vcol = elem_empty(layer, b"LayerElement")
elem_data_single_string(lay_vcol, b"Type", b"LayerElementColor")
elem_data_single_int32(lay_vcol, b"TypedIndex", 0)
if uvnumber:
lay_uv = elem_empty(layer, b"LayerElement")
elem_data_single_string(lay_uv, b"Type", b"LayerElementUV")
elem_data_single_int32(lay_uv, b"TypedIndex", 0)
if me_fbxmats_idx is not None:
lay_mat = elem_empty(layer, b"LayerElement")
elem_data_single_string(lay_mat, b"Type", b"LayerElementMaterial")
elem_data_single_int32(lay_mat, b"TypedIndex", 0)
# Add other uv and/or vcol layers...
for vcolidx, uvidx, tspaceidx in zip_longest(range(1, vcolnumber), range(1, uvnumber), range(1, tspacenumber),
fillvalue=0):
layer = elem_data_single_int32(geom, b"Layer", max(vcolidx, uvidx))
elem_data_single_int32(layer, b"Version", FBX_GEOMETRY_LAYER_VERSION)
if vcolidx:
lay_vcol = elem_empty(layer, b"LayerElement")
elem_data_single_string(lay_vcol, b"Type", b"LayerElementColor")
elem_data_single_int32(lay_vcol, b"TypedIndex", vcolidx)
if uvidx:
lay_uv = elem_empty(layer, b"LayerElement")
elem_data_single_string(lay_uv, b"Type", b"LayerElementUV")
elem_data_single_int32(lay_uv, b"TypedIndex", uvidx)
if tspaceidx:
lay_binor = elem_empty(layer, b"LayerElement")
elem_data_single_string(lay_binor, b"Type", b"LayerElementBinormal")
elem_data_single_int32(lay_binor, b"TypedIndex", tspaceidx)
lay_tan = elem_empty(layer, b"LayerElement")
elem_data_single_string(lay_tan, b"Type", b"LayerElementTangent")
elem_data_single_int32(lay_tan, b"TypedIndex", tspaceidx)
def fbx_data_material_elements(root, mat, scene_data):
"""
Write the Material data block.
"""
ambient_color = (0.0, 0.0, 0.0)
if scene_data.data_world:
ambient_color = next(iter(scene_data.data_world.keys())).ambient_color
mat_key, _objs = scene_data.data_materials[mat]
# Approximation...
mat_type = b"Phong" if mat.specular_shader in {'COOKTORR', 'PHONG', 'BLINN'} else b"Lambert"
fbx_mat = elem_data_single_int64(root, b"Material", get_fbxuid_from_key(mat_key))
fbx_mat.add_string(fbx_name_class(mat.name.encode(), b"Material"))
fbx_mat.add_string(b"")
elem_data_single_int32(fbx_mat, b"Version", FBX_MATERIAL_VERSION)
# those are not yet properties, it seems...
elem_data_single_string(fbx_mat, b"ShadingModel", mat_type)
elem_data_single_int32(fbx_mat, b"MultiLayer", 0) # Should be bool...
tmpl = scene_data.templates[b"Material"]
props = elem_properties(fbx_mat)
elem_props_template_set(tmpl, props, "p_string", b"ShadingModel", mat_type.decode())
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_color", b"EmissiveColor", mat.diffuse_color)
elem_props_template_set(tmpl, props, "p_number", b"EmissiveFactor", mat.emit)
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_color", b"AmbientColor", ambient_color)
elem_props_template_set(tmpl, props, "p_number", b"AmbientFactor", mat.ambient)
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_color", b"DiffuseColor", mat.diffuse_color)
elem_props_template_set(tmpl, props, "p_number", b"DiffuseFactor", mat.diffuse_intensity)
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_color", b"TransparentColor",
mat.diffuse_color if mat.use_transparency else (1.0, 1.0, 1.0))
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_number", b"TransparencyFactor",
1.0 - mat.alpha if mat.use_transparency else 0.0)
elem_props_template_set(tmpl, props, "p_number", b"Opacity", mat.alpha if mat.use_transparency else 1.0)
elem_props_template_set(tmpl, props, "p_vector_3d", b"NormalMap", (0.0, 0.0, 0.0))
# Not sure about those...
b"Bump": ((0.0, 0.0, 0.0), "p_vector_3d"),
Bastien Montagne
committed
b"BumpFactor": (1.0, "p_double"),
b"DisplacementColor": ((0.0, 0.0, 0.0), "p_color_rgb"),
Bastien Montagne
committed
b"DisplacementFactor": (0.0, "p_double"),
if mat_type == b"Phong":
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_color", b"SpecularColor", mat.specular_color)
elem_props_template_set(tmpl, props, "p_number", b"SpecularFactor", mat.specular_intensity / 2.0)
# See Material template about those two!
elem_props_template_set(tmpl, props, "p_number", b"Shininess", (mat.specular_hardness - 1.0) / 5.10)
elem_props_template_set(tmpl, props, "p_number", b"ShininessExponent", (mat.specular_hardness - 1.0) / 5.10)
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_color", b"ReflectionColor", mat.mirror_color)
elem_props_template_set(tmpl, props, "p_number", b"ReflectionFactor",
mat.raytrace_mirror.reflect_factor if mat.raytrace_mirror.use else 0.0)
# Custom properties.
if scene_data.settings.use_custom_properties:
fbx_data_element_custom_properties(props, mat)
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
def _gen_vid_path(img, scene_data):
msetts = scene_data.settings.media_settings
fname_rel = bpy_extras.io_utils.path_reference(img.filepath, msetts.base_src, msetts.base_dst, msetts.path_mode,
msetts.subdir, msetts.copy_set, img.library)
fname_abs = os.path.normpath(os.path.abspath(os.path.join(msetts.base_dst, fname_rel)))
return fname_abs, fname_rel
def fbx_data_texture_file_elements(root, tex, scene_data):
"""
Write the (file) Texture data block.
"""
# XXX All this is very fuzzy to me currently...
# Textures do not seem to use properties as much as they could.
# For now assuming most logical and simple stuff.
tex_key, _mats = scene_data.data_textures[tex]
img = tex.texture.image
fname_abs, fname_rel = _gen_vid_path(img, scene_data)
fbx_tex = elem_data_single_int64(root, b"Texture", get_fbxuid_from_key(tex_key))
fbx_tex.add_string(fbx_name_class(tex.name.encode(), b"Texture"))
fbx_tex.add_string(b"")
elem_data_single_string(fbx_tex, b"Type", b"TextureVideoClip")
elem_data_single_int32(fbx_tex, b"Version", FBX_TEXTURE_VERSION)
elem_data_single_string(fbx_tex, b"TextureName", fbx_name_class(tex.name.encode(), b"Texture"))
elem_data_single_string(fbx_tex, b"Media", fbx_name_class(img.name.encode(), b"Video"))
elem_data_single_string_unicode(fbx_tex, b"FileName", fname_abs)
elem_data_single_string_unicode(fbx_tex, b"RelativeFilename", fname_rel)
alpha_source = 0 # None
if img.use_alpha:
if tex.texture.use_calculate_alpha:
alpha_source = 1 # RGBIntensity as alpha.
else:
alpha_source = 2 # Black, i.e. alpha channel.
# BlendMode not useful for now, only affects layered textures afaics.
mapping = 0 # None.
if tex.texture_coords in {'ORCO'}: # XXX Others?
if tex.mapping in {'FLAT'}:
mapping = 1 # Planar
elif tex.mapping in {'CUBE'}:
mapping = 4 # Box
elif tex.mapping in {'TUBE'}:
mapping = 3 # Cylindrical
elif tex.mapping in {'SPHERE'}:
mapping = 2 # Spherical
elif tex.texture_coords in {'UV'}:
# XXX *HOW* do we link to correct UVLayer???
mapping = 6 # UV
wrap_mode = 1 # Clamp
if tex.texture.extension in {'REPEAT'}:
wrap_mode = 0 # Repeat
tmpl = scene_data.templates[b"TextureFile"]
props = elem_properties(fbx_tex)
elem_props_template_set(tmpl, props, "p_enum", b"AlphaSource", alpha_source)
elem_props_template_set(tmpl, props, "p_bool", b"PremultiplyAlpha",
img.alpha_mode in {'STRAIGHT'}) # Or is it PREMUL?
elem_props_template_set(tmpl, props, "p_enum", b"CurrentMappingType", mapping)
elem_props_template_set(tmpl, props, "p_enum", b"WrapModeU", wrap_mode)
elem_props_template_set(tmpl, props, "p_enum", b"WrapModeV", wrap_mode)
elem_props_template_set(tmpl, props, "p_vector_3d", b"Translation", tex.offset)
elem_props_template_set(tmpl, props, "p_vector_3d", b"Scaling", tex.scale)
elem_props_template_set(tmpl, props, "p_bool", b"UseMipMap", tex.texture.use_mipmap)
# Custom properties.
if scene_data.settings.use_custom_properties:
fbx_data_element_custom_properties(props, tex.texture)
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
def fbx_data_video_elements(root, vid, scene_data):
"""
Write the actual image data block.
"""
vid_key, _texs = scene_data.data_videos[vid]
fname_abs, fname_rel = _gen_vid_path(vid, scene_data)
fbx_vid = elem_data_single_int64(root, b"Video", get_fbxuid_from_key(vid_key))
fbx_vid.add_string(fbx_name_class(vid.name.encode(), b"Video"))
fbx_vid.add_string(b"Clip")
elem_data_single_string(fbx_vid, b"Type", b"Clip")
# XXX No Version???
elem_data_single_string_unicode(fbx_vid, b"FileName", fname_abs)
elem_data_single_string_unicode(fbx_vid, b"RelativeFilename", fname_rel)
if scene_data.settings.media_settings.embed_textures:
try:
with open(vid.filepath, 'br') as f:
elem_data_single_byte_array(fbx_vid, b"Content", f.read())
except Exception as e:
print("WARNING: embeding file {} failed ({})".format(vid.filepath, e))
elem_data_single_byte_array(fbx_vid, b"Content", b"")
else:
elem_data_single_byte_array(fbx_vid, b"Content", b"")
def fbx_data_armature_elements(root, armature, scene_data):
"""
Write:
* Bones "data" (NodeAttribute::LimbNode, contains pretty much nothing!).
* Deformers (i.e. Skin), bind between an armature and a mesh.
** SubDeformers (i.e. Cluster), one per bone/vgroup pair.
* BindPose.
Note armature itself has no data, it is a mere "Null" Model...
"""
# Bones "data".
tmpl = scene_data.templates[b"Bone"]
for bo in armature.data.bones:
_bo_key, bo_data_key, _arm = scene_data.data_bones[bo]
fbx_bo = elem_data_single_int64(root, b"NodeAttribute", get_fbxuid_from_key(bo_data_key))
fbx_bo.add_string(fbx_name_class(bo.name.encode(), b"NodeAttribute"))
fbx_bo.add_string(b"LimbNode")
elem_data_single_string(fbx_bo, b"TypeFlags", b"Skeleton")
props = elem_properties(fbx_bo)
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_double", b"Size", (bo.tail_local - bo.head_local).length)
# Custom properties.
if scene_data.settings.use_custom_properties:
fbx_data_element_custom_properties(props, bo)
# Deformers and BindPoses.
# Note: we might also use Deformers for our "parent to vertex" stuff???
deformer = scene_data.data_deformers.get(armature, None)
if deformer is not None:
for me, (skin_key, obj, clusters) in deformer.items():
# BindPose.
# We assume bind pose for our bones are their "Editmode" pose...
# All matrices are expected in global (world) space.
bindpose_key = get_blender_armature_bindpose_key(armature, me)
fbx_pose = elem_data_single_int64(root, b"Pose", get_fbxuid_from_key(bindpose_key))
fbx_pose.add_string(fbx_name_class(me.name.encode(), b"Pose"))
fbx_pose.add_string(b"BindPose")
elem_data_single_string(fbx_pose, b"Type", b"BindPose")
elem_data_single_int32(fbx_pose, b"Version", FBX_POSE_BIND_VERSION)
elem_data_single_int32(fbx_pose, b"NbPoseNodes", 1 + len(armature.data.bones))
# First node is mesh/object.
mat_world_obj = fbx_object_matrix(scene_data, obj, global_space=True)
fbx_posenode = elem_empty(fbx_pose, b"PoseNode")
elem_data_single_int64(fbx_posenode, b"Node", get_fbxuid_from_key(scene_data.objects[obj]))
elem_data_single_float64_array(fbx_posenode, b"Matrix", matrix_to_array(mat_world_obj))
# And all bones of armature!
mat_world_bones = {}
for bo in armature.data.bones:
bomat = fbx_object_matrix(scene_data, bo, armature, global_space=True)
mat_world_bones[bo] = bomat
fbx_posenode = elem_empty(fbx_pose, b"PoseNode")
elem_data_single_int64(fbx_posenode, b"Node", get_fbxuid_from_key(scene_data.objects[bo]))
elem_data_single_float64_array(fbx_posenode, b"Matrix", matrix_to_array(bomat))
# Deformer.
fbx_skin = elem_data_single_int64(root, b"Deformer", get_fbxuid_from_key(skin_key))
fbx_skin.add_string(fbx_name_class(armature.name.encode(), b"Deformer"))
fbx_skin.add_string(b"Skin")
elem_data_single_int32(fbx_skin, b"Version", FBX_DEFORMER_SKIN_VERSION)
elem_data_single_float64(fbx_skin, b"Link_DeformAcuracy", 50.0) # Only vague idea what it is...
for bo, clstr_key in clusters.items():
# Find which vertices are affected by this bone/vgroup pair, and matching weights.
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
vg_idx = obj.vertex_groups[bo.name].index
for idx, v in enumerate(me.vertices):
vert_vg = [vg for vg in v.groups if vg.group == vg_idx]
if not vert_vg:
continue
indices.append(idx)
weights.append(vert_vg[0].weight)
# Create the cluster.
fbx_clstr = elem_data_single_int64(root, b"Deformer", get_fbxuid_from_key(clstr_key))
fbx_clstr.add_string(fbx_name_class(bo.name.encode(), b"SubDeformer"))
fbx_clstr.add_string(b"Cluster")
elem_data_single_int32(fbx_clstr, b"Version", FBX_DEFORMER_CLUSTER_VERSION)
# No idea what that user data might be...
fbx_userdata = elem_data_single_string(fbx_clstr, b"UserData", b"")
fbx_userdata.add_string(b"")
if indices:
elem_data_single_int32_array(fbx_clstr, b"Indexes", indices)
elem_data_single_float64_array(fbx_clstr, b"Weights", weights)
# Transform and TransformLink matrices...
# They seem to be mostly the same as BindPose ones???
# WARNING! Even though official FBX API presents Transform in global space,
# **it is stored in bone space in FBX data!** See:
# http://area.autodesk.com/forum/autodesk-fbx/fbx-sdk/why-the-values-return-
# by-fbxcluster-gettransformmatrix-x-not-same-with-the-value-in-ascii-fbx-file/
elem_data_single_float64_array(fbx_clstr, b"Transform",
matrix_to_array(mat_world_bones[bo].inverted() * mat_world_obj))
elem_data_single_float64_array(fbx_clstr, b"TransformLink", matrix_to_array(mat_world_bones[bo]))
def fbx_data_object_elements(root, obj, scene_data):
"""
Write the Object (Model) data blocks.
Note we handle "Model" part of bones as well here!
"""
obj_type = b"Null" # default, sort of empty...
if isinstance(obj, Bone):
obj_type = b"LimbNode"
elif (obj.type == 'MESH'):
obj_type = b"Mesh"
elif (obj.type == 'LAMP'):
obj_type = b"Light"
elif (obj.type == 'CAMERA'):
obj_type = b"Camera"
obj_key = scene_data.objects[obj]
model = elem_data_single_int64(root, b"Model", get_fbxuid_from_key(obj_key))
model.add_string(fbx_name_class(obj.name.encode(), b"Model"))
model.add_string(obj_type)
elem_data_single_int32(model, b"Version", FBX_MODELS_VERSION)
# Object transform info.
loc, rot, scale, matrix, matrix_rot = fbx_object_tx(scene_data, obj)
rot = tuple(units_convert_iter(rot, "radian", "degree"))
tmpl = scene_data.templates[b"Model"]
# For now add only loc/rot/scale...
props = elem_properties(model)
elem_props_template_set(tmpl, props, "p_lcl_translation", b"Lcl Translation", loc)
elem_props_template_set(tmpl, props, "p_lcl_rotation", b"Lcl Rotation", rot)
elem_props_template_set(tmpl, props, "p_lcl_scaling", b"Lcl Scaling", scale)
# TODO: "constraints" (limit loc/rot/scale, and target-to-object).
# Custom properties.
if scene_data.settings.use_custom_properties:
fbx_data_element_custom_properties(props, obj)
# Those settings would obviously need to be edited in a complete version of the exporter, may depends on
# object type, etc.
elem_data_single_int32(model, b"MultiLayer", 0)
elem_data_single_int32(model, b"MultiTake", 0)
elem_data_single_bool(model, b"Shading", True)
elem_data_single_string(model, b"Culling", b"CullingOff")
if isinstance(obj, Object) and obj.type == 'CAMERA':
# Why, oh why are FBX cameras such a mess???
# And WHY add camera data HERE??? Not even sure this is needed...
render = scene_data.scene.render
width = render.resolution_x * 1.0
height = render.resolution_y * 1.0
elem_props_template_set(tmpl, props, "p_enum", b"ResolutionMode", 0) # Don't know what it means
Bastien Montagne
committed
elem_props_template_set(tmpl, props, "p_double", b"AspectW", width)
elem_props_template_set(tmpl, props, "p_double", b"AspectH", height)
elem_props_template_set(tmpl, props, "p_bool", b"ViewFrustum", True)
elem_props_template_set(tmpl, props, "p_enum", b"BackgroundMode", 0) # Don't know what it means
elem_props_template_set(tmpl, props, "p_bool", b"ForegroundTransparent", True)
def fbx_data_animation_elements(root, scene_data):
"""
Write animation data.
"""
animations = scene_data.animations
if not animations:
return
scene = scene_data.scene
fps = scene.render.fps / scene.render.fps_base
def keys_to_ktimes(keys):
return (int(v) for v in units_convert_iter((f / fps for f, _v in keys), "second", "ktime"))
astack_key, alayers = animations
Bastien Montagne
committed
astack_tmpl = scene_data.templates[b"AnimationStack"]
acn_tmpl = scene_data.templates[b"AnimationCurveNode"]
# Animation stack.
astack = elem_data_single_int64(root, b"AnimationStack", get_fbxuid_from_key(astack_key))
astack.add_string(fbx_name_class(scene.name.encode(), b"AnimStack"))
astack.add_string(b"")
Bastien Montagne
committed
astack_props = elem_properties(astack)
r = scene_data.scene.render
fps = r.fps / r.fps_base
f_start = int(units_convert(scene_data.scene.frame_start / fps, "second", "ktime"))
f_end = int(units_convert(scene_data.scene.frame_end / fps, "second", "ktime"))
elem_props_set(astack_props, "p_timestamp", b"LocalStart", f_start)
elem_props_set(astack_props, "p_timestamp", b"LocalStop", f_end)
elem_props_set(astack_props, "p_timestamp", b"ReferenceStart", f_start)
elem_props_set(astack_props, "p_timestamp", b"ReferenceStop", f_end)
for obj, (alayer_key, acurvenodes) in alayers.items():
# Animation layer.
alayer = elem_data_single_int64(root, b"AnimationLayer", get_fbxuid_from_key(alayer_key))
alayer.add_string(fbx_name_class(obj.name.encode(), b"AnimLayer"))
alayer.add_string(b"")
Bastien Montagne
committed
for fbx_prop, (acurvenode_key, acurves, acurvenode_name) in acurvenodes.items():
# Animation curve node.
acurvenode = elem_data_single_int64(root, b"AnimationCurveNode", get_fbxuid_from_key(acurvenode_key))
Bastien Montagne
committed
acurvenode.add_string(fbx_name_class(acurvenode_name.encode(), b"AnimCurveNode"))
acurvenode.add_string(b"")
acn_props = elem_properties(acurvenode)
Bastien Montagne
committed
for fbx_item, (acurve_key, def_value, keys, _acurve_valid) in acurves.items():
elem_props_template_set(acn_tmpl, acn_props, "p_number", fbx_item.encode(), def_value, animatable=True)
# Only create Animation curve if needed!
if keys:
acurve = elem_data_single_int64(root, b"AnimationCurve", get_fbxuid_from_key(acurve_key))
acurve.add_string(fbx_name_class(b"", b"AnimCurve"))
acurve.add_string(b"")
# key attributes...
nbr_keys = len(keys)
# flags...
keyattr_flags = (1 << 3 | # interpolation mode, 1 = constant, 2 = linear, 3 = cubic.
1 << 8 | # tangent mode, 8 = auto, 9 = TCB, 10 = user, 11 = generic break,
1 << 13 | # tangent mode, 12 = generic clamp, 13 = generic time independent,
1 << 14 | # tangent mode, 13 + 14 = generic clamp progressive.
0,
)
# Maybe values controlling TCB & co???
keyattr_datafloat = (0.0, 0.0, 9.419963346924634e-30, 0.0)
# And now, the *real* data!
elem_data_single_float64(acurve, b"Default", def_value)
elem_data_single_int32(acurve, b"KeyVer", FBX_ANIM_KEY_VERSION)
elem_data_single_int64_array(acurve, b"KeyTime", keys_to_ktimes(keys))
elem_data_single_float32_array(acurve, b"KeyValueFloat", (v for _f, v in keys))
elem_data_single_int32_array(acurve, b"KeyAttrFlags", keyattr_flags)
elem_data_single_float32_array(acurve, b"KeyAttrDataFloat", keyattr_datafloat)
elem_data_single_int32_array(acurve, b"KeyAttrRefCount", (nbr_keys,))
##### Top-level FBX data container. #####
# Helper container gathering some data we need multiple times:
# * templates.
# * objects.
# * connections.
# * takes.
FBXData = namedtuple("FBXData", (
"templates", "templates_users", "connections",
"settings", "scene", "objects", "animations",
"data_empties", "data_lamps", "data_cameras", "data_meshes", "mesh_mat_indices",
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
"data_bones", "data_deformers",
"data_world", "data_materials", "data_textures", "data_videos",
))
def fbx_mat_properties_from_texture(tex):
"""
Returns a set of FBX metarial properties that are affected by the given texture.
Quite obviously, this is a fuzzy and far-from-perfect mapping! Amounts of influence are completely lost, e.g.
Note tex is actually expected to be a texture slot.
"""
# Tex influence does not exists in FBX, so assume influence < 0.5 = no influence... :/
INFLUENCE_THRESHOLD = 0.5
# Mapping Blender -> FBX (blend_use_name, blend_fact_name, fbx_name).
blend_to_fbx = (
# Lambert & Phong...
("diffuse", "diffuse", b"DiffuseFactor"),
("color_diffuse", "diffuse_color", b"DiffuseColor"),
("alpha", "alpha", b"TransparencyFactor"),
("diffuse", "diffuse", b"TransparentColor"), # Uses diffuse color in Blender!
("emit", "emit", b"EmissiveFactor"),
("diffuse", "diffuse", b"EmissiveColor"), # Uses diffuse color in Blender!
("ambient", "ambient", b"AmbientFactor"),
#("", "", b"AmbientColor"), # World stuff in Blender, for now ignore...
Bastien Montagne
committed
("normal", "normal", b"NormalMap"),
# Note: unsure about those... :/
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
#("", "", b"Bump"),
#("", "", b"BumpFactor"),
#("", "", b"DisplacementColor"),
#("", "", b"DisplacementFactor"),
# Phong only.
("specular", "specular", b"SpecularFactor"),
("color_spec", "specular_color", b"SpecularColor"),
# See Material template about those two!
("hardness", "hardness", b"Shininess"),
("hardness", "hardness", b"ShininessExponent"),
("mirror", "mirror", b"ReflectionColor"),
("raymir", "raymir", b"ReflectionFactor"),
)
tex_fbx_props = set()
for use_map_name, name_factor, fbx_prop_name in blend_to_fbx:
if getattr(tex, "use_map_" + use_map_name) and getattr(tex, name_factor + "_factor") >= INFLUENCE_THRESHOLD:
tex_fbx_props.add(fbx_prop_name)
return tex_fbx_props
def fbx_skeleton_from_armature(scene, settings, armature, objects, data_bones, data_deformers, arm_parents):
"""
Create skeleton from armature/bones (NodeAttribute/LimbNode and Model/LimbNode), and for each deformed mesh,
create Pose/BindPose(with sub PoseNode) and Deformer/Skin(with Deformer/SubDeformer/Cluster).
Also supports "parent to bone" (simple parent to Model/LimbNode).
arm_parents is a set of tuples (armature, object) for all successful armature bindings.
"""
arm = armature.data
Bastien Montagne
committed
bones = OrderedDict()
for bo in arm.bones:
key, data_key = get_blender_bone_key(armature, bo)
objects[bo] = key
data_bones[bo] = (key, data_key, armature)
bones[bo.name] = bo
for obj in objects.keys():
if not isinstance(obj, Object):
continue
if obj.type not in {'MESH'}:
continue
if obj.parent != armature:
continue
# Always handled by an Armature modifier...
found = False
for mod in obj.modifiers:
if mod.type not in {'ARMATURE'}:
continue
# We only support vertex groups binding method, not bone envelopes one!
if mod.object == armature and mod.use_vertex_groups:
found = True
break
if not found:
continue
# Now we have a mesh using this armature. First, find out which bones are concerned!