Newer
Older
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
edge_keys = [
edgekey(edge) for edge in bm_mod.edges if edge.select and
not edge.hide and edge_count.get(edgekey(edge), 1) == 1
]
else:
# no faces, so no internal edges either
edge_keys = [
edgekey(edge) for edge in bm_mod.edges if edge.select and not edge.hide
]
CoDEmanX
committed
# add edge-keys around single vertices
verts_connected = dict(
[[vert, 1] for edge in [edge for edge in
bm_mod.edges if edge.select and not edge.hide] for vert in
edgekey(edge)]
)
single_vertices = [
vert.index for vert in bm_mod.verts if
vert.select and not vert.hide and
not verts_connected.get(vert.index, False)
]
if single_vertices and len(bm.faces) > 0:
vert_to_single = dict(
[[v.index, []] for v in bm_mod.verts if not v.hide]
)
for face in [face for face in bm_mod.faces if not face.select and not face.hide]:
for vert in face.verts:
vert = vert.index
if vert in single_vertices:
for ek in face_edgekeys(face):
edge_keys.append(ek)
if vert not in vert_to_single[ek[0]]:
vert_to_single[ek[0]].append(vert)
if vert not in vert_to_single[ek[1]]:
vert_to_single[ek[1]].append(vert)
break
CoDEmanX
committed
# sort edge-keys into loops
loops = get_connected_selections(edge_keys)
CoDEmanX
committed
# find out to which loops the single vertices belong
single_loops = dict([[i, []] for i in range(len(loops))])
if single_vertices and len(bm.faces) > 0:
for i, [loop, circular] in enumerate(loops):
for vert in loop:
if vert_to_single[vert]:
for single in vert_to_single[vert]:
if single not in single_loops[i]:
single_loops[i].append(single)
CoDEmanX
committed
return(derived, bm_mod, single_vertices, single_loops, loops)
# recalculate positions based on the influence of the circle shape
def circle_influence_locs(locs_2d, new_locs_2d, influence):
for i in range(len(locs_2d)):
oldx, oldy, j = locs_2d[i]
newx, newy, k = new_locs_2d[i]
altx = newx * (influence / 100) + oldx * ((100 - influence) / 100)
alty = newy * (influence / 100) + oldy * ((100 - influence) / 100)
locs_2d[i] = [altx, alty, j]
CoDEmanX
committed
return(locs_2d)
# project 2d locations on circle, respecting distance relations between verts
def circle_project_non_regular(locs_2d, x0, y0, r):
for i in range(len(locs_2d)):
x, y, j = locs_2d[i]
loc = mathutils.Vector([x - x0, y - y0])
loc.length = r
locs_2d[i] = [loc[0], loc[1], j]
CoDEmanX
committed
return(locs_2d)
# project 2d locations on circle, with equal distance between all vertices
def circle_project_regular(locs_2d, x0, y0, r):
# find offset angle and circling direction
x, y, i = locs_2d[0]
loc = mathutils.Vector([x - x0, y - y0])
loc.length = r
offset_angle = loc.angle(mathutils.Vector([1.0, 0.0]), 0.0)
loca = mathutils.Vector([x - x0, y - y0, 0.0])
if loc[1] < -1e-6:
offset_angle *= -1
x, y, j = locs_2d[1]
locb = mathutils.Vector([x - x0, y - y0, 0.0])
if loca.cross(locb)[2] >= 0:
ccw = 1
else:
ccw = -1
# distribute vertices along the circle
for i in range(len(locs_2d)):
t = offset_angle + ccw * (i / len(locs_2d) * 2 * math.pi)
x = math.cos(t) * r
y = math.sin(t) * r
locs_2d[i] = [x, y, locs_2d[i][2]]
CoDEmanX
committed
return(locs_2d)
# shift loop, so the first vertex is closest to the center
def circle_shift_loop(bm_mod, loop, com):
verts, circular = loop
distances = [
[(bm_mod.verts[vert].co - com).length, i] for i, vert in enumerate(verts)
]
distances.sort()
shift = distances[0][1]
loop = [verts[shift:] + verts[:shift], circular]
CoDEmanX
committed
return(loop)
# ########################################
# ##### Curve functions ##################
# ########################################
# create lists with knots and points, all correctly sorted
def curve_calculate_knots(loop, verts_selected):
knots = [v for v in loop[0] if v in verts_selected]
points = loop[0][:]
# circular loop, potential for weird splines
if loop[1]:
offset = int(len(loop[0]) / 4)
kpos = []
for k in knots:
kpos.append(loop[0].index(k))
kdif = []
for i in range(len(kpos) - 1):
kdif.append(kpos[i + 1] - kpos[i])
kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
kadd = []
for k in kdif:
if k > 2 * offset:
kadd.append([kdif.index(k), True])
# next 2 lines are optional, they insert
# an extra control point in small gaps
# kadd.append([kdif.index(k), False])
kins = []
krot = False
for k in kadd: # extra knots to be added
if k[1]: # big gap (break circular spline)
kpos = loop[0].index(knots[k[0]]) + offset
if kpos > len(loop[0]) - 1:
kpos -= len(loop[0])
kins.append([knots[k[0]], loop[0][kpos]])
kpos2 = k[0] + 1
kpos2 -= len(knots)
kpos2 = loop[0].index(knots[kpos2]) - offset
if kpos2 < 0:
kpos2 += len(loop[0])
kins.append([loop[0][kpos], loop[0][kpos2]])
krot = loop[0][kpos2]
else: # small gap (keep circular spline)
k1 = loop[0].index(knots[k[0]])
k2 = k[0] + 1
k2 -= len(knots)
k2 = loop[0].index(knots[k2])
if k2 < k1:
dif = len(loop[0]) - 1 - k1 + k2
else:
dif = k2 - k1
if kn > len(loop[0]) - 1:
kn -= len(loop[0])
kins.append([loop[0][k1], loop[0][kn]])
knots.insert(knots.index(j[0]) + 1, j[1])
knots.append(knots[0])
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[0]) + 1]
else: # non-circular loop (broken by script)
krot = knots.index(krot)
knots = knots[krot:] + knots[0:krot]
if loop[0].index(knots[0]) > loop[0].index(knots[-1]):
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[-1]) + 1]
points = loop[0][loop[0].index(knots[0]):loop[0].index(knots[-1]) + 1]
# non-circular loop, add first and last point as knots
else:
if loop[0][0] not in knots:
knots.insert(0, loop[0][0])
if loop[0][-1] not in knots:
knots.append(loop[0][-1])
CoDEmanX
committed
return(knots, points)
# calculate relative positions compared to first knot
def curve_calculate_t(bm_mod, knots, points, pknots, regular, circular):
tpoints = []
loc_prev = False
len_total = 0
CoDEmanX
committed
for p in points:
if p in knots:
loc = pknots[knots.index(p)] # use projected knot location
else:
loc = mathutils.Vector(bm_mod.verts[p].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc - loc_prev).length
tpoints.append(len_total)
loc_prev = loc
tknots = []
for p in points:
if p in knots:
tknots.append(tpoints[points.index(p)])
if circular:
tknots[-1] = tpoints[-1]
CoDEmanX
committed
# regular option
if regular:
tpoints_average = tpoints[-1] / (len(tpoints) - 1)
for i in range(1, len(tpoints) - 1):
tpoints[i] = i * tpoints_average
for i in range(len(knots)):
tknots[i] = tpoints[points.index(knots[i])]
if circular:
tknots[-1] = tpoints[-1]
CoDEmanX
committed
return(tknots, tpoints)
# change the location of non-selected points to their place on the spline
def curve_calculate_vertices(bm_mod, knots, tknots, points, tpoints, splines,
interpolation, restriction):
newlocs = {}
move = []
CoDEmanX
committed
for p in points:
if p in knots:
continue
m = tpoints[points.index(p)]
if m in tknots:
n = tknots.index(m)
else:
t = tknots[:]
t.append(m)
t.sort()
n = t.index(m) - 1
if n > len(splines) - 1:
n = len(splines) - 1
elif n < 0:
n = 0
CoDEmanX
committed
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
x = ax + bx * (m - tx) + cx * (m - tx) ** 2 + dx * (m - tx) ** 3
ay, by, cy, dy, ty = splines[n][1]
y = ay + by * (m - ty) + cy * (m - ty) ** 2 + dy * (m - ty) ** 3
az, bz, cz, dz, tz = splines[n][2]
z = az + bz * (m - tz) + cz * (m - tz) ** 2 + dz * (m - tz) ** 3
newloc = mathutils.Vector([x, y, z])
else: # interpolation == 'linear'
a, d, t, u = splines[n]
if restriction != 'none': # vertex movement is restricted
newlocs[p] = newloc
else: # set the vertex to its new location
move.append([p, newloc])
CoDEmanX
committed
if restriction != 'none': # vertex movement is restricted
for p in points:
if p in newlocs:
newloc = newlocs[p]
else:
move.append([p, bm_mod.verts[p].co])
continue
oldloc = bm_mod.verts[p].co
normal = bm_mod.verts[p].normal
dloc = newloc - oldloc
if dloc.length < 1e-6:
move.append([p, newloc])
elif restriction == 'extrude': # only extrusions
if dloc.angle(normal, 0) < 0.5 * math.pi + 1e-6:
move.append([p, newloc])
else: # restriction == 'indent' only indentations
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
if dloc.angle(normal) > 0.5 * math.pi - 1e-6:
move.append([p, newloc])
return(move)
# trim loops to part between first and last selected vertices (including)
def curve_cut_boundaries(bm_mod, loops):
cut_loops = []
for loop, circular in loops:
if circular:
# don't cut
cut_loops.append([loop, circular])
continue
selected = [bm_mod.verts[v].select for v in loop]
first = selected.index(True)
selected.reverse()
last = -selected.index(True)
if last == 0:
cut_loops.append([loop[first:], circular])
else:
cut_loops.append([loop[first:last], circular])
CoDEmanX
committed
return(cut_loops)
# calculate input loops
def curve_get_input(object, bm, boundaries):
# get mesh with modifiers applied
derived, bm_mod = get_derived_bmesh(object, bm)
CoDEmanX
committed
# vertices that still need a loop to run through it
verts_unsorted = [
v.index for v in bm_mod.verts if v.select and not v.hide
]
# necessary dictionaries
vert_edges = dict_vert_edges(bm_mod)
edge_faces = dict_edge_faces(bm_mod)
correct_loops = []
# find loops through each selected vertex
while len(verts_unsorted) > 0:
loops = curve_vertex_loops(bm_mod, verts_unsorted[0], vert_edges,
edge_faces)
verts_unsorted.pop(0)
CoDEmanX
committed
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
# check if loop is fully selected
search_perpendicular = False
i = -1
for loop, circular in loops:
i += 1
selected = [v for v in loop if bm_mod.verts[v].select]
if len(selected) < 2:
# only one selected vertex on loop, don't use
loops.pop(i)
continue
elif len(selected) == len(loop):
search_perpendicular = loop
break
# entire loop is selected, find perpendicular loops
if search_perpendicular:
for vert in loop:
if vert in verts_unsorted:
verts_unsorted.remove(vert)
perp_loops = curve_perpendicular_loops(bm_mod, loop,
vert_edges, edge_faces)
for perp_loop in perp_loops:
correct_loops.append(perp_loop)
# normal input
else:
for loop, circular in loops:
correct_loops.append([loop, circular])
CoDEmanX
committed
# boundaries option
if boundaries:
correct_loops = curve_cut_boundaries(bm_mod, correct_loops)
CoDEmanX
committed
return(derived, bm_mod, correct_loops)
# return all loops that are perpendicular to the given one
def curve_perpendicular_loops(bm_mod, start_loop, vert_edges, edge_faces):
# find perpendicular loops
perp_loops = []
for start_vert in start_loop:
loops = curve_vertex_loops(bm_mod, start_vert, vert_edges,
edge_faces)
for loop, circular in loops:
selected = [v for v in loop if bm_mod.verts[v].select]
if len(selected) == len(loop):
continue
else:
perp_loops.append([loop, circular, loop.index(start_vert)])
CoDEmanX
committed
# trim loops to same lengths
shortest = [
[len(loop[0]), i] for i, loop in enumerate(perp_loops) if not loop[1]
]
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
if not shortest:
# all loops are circular, not trimming
return([[loop[0], loop[1]] for loop in perp_loops])
else:
shortest = min(shortest)
shortest_start = perp_loops[shortest[1]][2]
before_start = shortest_start
after_start = shortest[0] - shortest_start - 1
bigger_before = before_start > after_start
trimmed_loops = []
for loop in perp_loops:
# have the loop face the same direction as the shortest one
if bigger_before:
if loop[2] < len(loop[0]) / 2:
loop[0].reverse()
loop[2] = len(loop[0]) - loop[2] - 1
else:
if loop[2] > len(loop[0]) / 2:
loop[0].reverse()
loop[2] = len(loop[0]) - loop[2] - 1
# circular loops can shift, to prevent wrong trimming
if loop[1]:
shift = shortest_start - loop[2]
if loop[2] + shift > 0 and loop[2] + shift < len(loop[0]):
loop[0] = loop[0][-shift:] + loop[0][:-shift]
loop[2] += shift
if loop[2] < 0:
loop[2] += len(loop[0])
loop[2] -= len(loop[0])
# trim
start = max(0, loop[2] - before_start)
end = min(len(loop[0]), loop[2] + after_start + 1)
trimmed_loops.append([loop[0][start:end], False])
CoDEmanX
committed
return(trimmed_loops)
# project knots on non-selected geometry
def curve_project_knots(bm_mod, verts_selected, knots, points, circular):
# function to project vertex on edge
def project(v1, v2, v3):
# v1 and v2 are part of a line
# v3 is projected onto it
v2 -= v1
v3 -= v1
p = v3.project(v2)
return(p + v1)
CoDEmanX
committed
start = 0
end = len(knots)
pknots = []
else: # first and last knot shouldn't be projected
start = 1
end = -1
pknots = [mathutils.Vector(bm_mod.verts[knots[0]].co[:])]
for knot in knots[start:end]:
if knot in verts_selected:
knot_left = knot_right = False
for i in range(points.index(knot) - 1, -1 * len(points), -1):
if points[i] not in knots:
knot_left = points[i]
break
for i in range(points.index(knot) + 1, 2 * len(points)):
if i > len(points) - 1:
i -= len(points)
if points[i] not in knots:
knot_right = points[i]
break
if knot_left and knot_right and knot_left != knot_right:
knot_left = mathutils.Vector(bm_mod.verts[knot_left].co[:])
knot_right = mathutils.Vector(bm_mod.verts[knot_right].co[:])
knot = mathutils.Vector(bm_mod.verts[knot].co[:])
pknots.append(project(knot_left, knot_right, knot))
else:
pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
else: # knot isn't selected, so shouldn't be changed
pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
if not circular:
pknots.append(mathutils.Vector(bm_mod.verts[knots[-1]].co[:]))
CoDEmanX
committed
return(pknots)
# find all loops through a given vertex
def curve_vertex_loops(bm_mod, start_vert, vert_edges, edge_faces):
edges_used = []
loops = []
CoDEmanX
committed
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
for edge in vert_edges[start_vert]:
if edge in edges_used:
continue
loop = []
circular = False
for vert in edge:
active_faces = edge_faces[edge]
new_vert = vert
growing = True
while growing:
growing = False
new_edges = vert_edges[new_vert]
loop.append(new_vert)
if len(loop) > 1:
edges_used.append(tuple(sorted([loop[-1], loop[-2]])))
if len(new_edges) < 3 or len(new_edges) > 4:
# pole
break
else:
# find next edge
for new_edge in new_edges:
if new_edge in edges_used:
continue
eliminate = False
for new_face in edge_faces[new_edge]:
if new_face in active_faces:
eliminate = True
break
if eliminate:
continue
# found correct new edge
active_faces = edge_faces[new_edge]
v1, v2 = new_edge
if v1 != new_vert:
new_vert = v1
else:
new_vert = v2
if new_vert == loop[0]:
circular = True
else:
growing = True
break
if circular:
break
loop.reverse()
loops.append([loop, circular])
CoDEmanX
committed
return(loops)
# ########################################
# ##### Flatten functions ################
# ########################################
# sort input into loops
def flatten_get_input(bm):
vert_verts = dict_vert_verts(
[edgekey(edge) for edge in bm.edges if edge.select and not edge.hide]
)
verts = [v.index for v in bm.verts if v.select and not v.hide]
CoDEmanX
committed
# no connected verts, consider all selected verts as a single input
if not vert_verts:
return([[verts, False]])
CoDEmanX
committed
loops = []
while len(verts) > 0:
# start of loop
loop = [verts[0]]
verts.pop(0)
if loop[-1] in vert_verts:
to_grow = vert_verts[loop[-1]]
else:
to_grow = []
# grow loop
while len(to_grow) > 0:
new_vert = to_grow[0]
to_grow.pop(0)
if new_vert in loop:
continue
loop.append(new_vert)
verts.remove(new_vert)
to_grow += vert_verts[new_vert]
# add loop to loops
loops.append([loop, False])
CoDEmanX
committed
return(loops)
# calculate position of vertex projections on plane
def flatten_project(bm, loop, com, normal):
verts = [bm.verts[v] for v in loop[0]]
verts_projected = [
[v.index, mathutils.Vector(v.co[:]) -
(mathutils.Vector(v.co[:]) - com).dot(normal) * normal] for v in verts
]
CoDEmanX
committed
return(verts_projected)
# ########################################
# ##### Gstretch functions ###############
# ########################################
# fake stroke class, used to create custom strokes if no GP data is found
class gstretch_fake_stroke():
def __init__(self, points):
self.points = [gstretch_fake_stroke_point(p) for p in points]
# fake stroke point class, used in fake strokes
class gstretch_fake_stroke_point():
def __init__(self, loc):
self.co = loc
# flips loops, if necessary, to obtain maximum alignment to stroke
CoDEmanX
committed
def gstretch_align_pairs(ls_pairs, object, bm_mod, method):
# returns total distance between all verts in loop and corresponding stroke
def distance_loop_stroke(loop, stroke, object, bm_mod, method):
stroke_lengths_cache = False
loop_length = len(loop[0])
total_distance = 0
CoDEmanX
committed
if method != 'regular':
relative_lengths = gstretch_relative_lengths(loop, bm_mod)
CoDEmanX
committed
for i, v_index in enumerate(loop[0]):
if method == 'regular':
relative_distance = i / (loop_length - 1)
else:
relative_distance = relative_lengths[i]
CoDEmanX
committed
loc1 = object.matrix_world @ bm_mod.verts[v_index].co
loc2, stroke_lengths_cache = gstretch_eval_stroke(stroke,
relative_distance, stroke_lengths_cache)
total_distance += (loc2 - loc1).length
CoDEmanX
committed
CoDEmanX
committed
if ls_pairs:
for (loop, stroke) in ls_pairs:
total_dist = distance_loop_stroke(loop, stroke, object, bm_mod,
method)
loop[0].reverse()
total_dist_rev = distance_loop_stroke(loop, stroke, object, bm_mod,
method)
if total_dist_rev > total_dist:
loop[0].reverse()
CoDEmanX
committed
return(ls_pairs)
# calculate vertex positions on stroke
def gstretch_calculate_verts(loop, stroke, object, bm_mod, method):
move = []
stroke_lengths_cache = False
loop_length = len(loop[0])
matrix_inverse = object.matrix_world.inverted()
CoDEmanX
committed
# return intersection of line with stroke, or None
def intersect_line_stroke(vec1, vec2, stroke):
for i, p in enumerate(stroke.points[1:]):
intersections = mathutils.geometry.intersect_line_line(vec1, vec2,
p.co, stroke.points[i].co)
if intersections and \
(intersections[0] - intersections[1]).length < 1e-2:
x, dist = mathutils.geometry.intersect_point_line(
intersections[0], p.co, stroke.points[i].co)
if -1 < dist < 1:
return(intersections[0])
return(None)
CoDEmanX
committed
if method == 'project':
vert_edges = dict_vert_edges(bm_mod)
CoDEmanX
committed
for ek in vert_edges[v_index]:
v1, v2 = ek
v1 = bm_mod.verts[v1]
v2 = bm_mod.verts[v2]
if v1.select + v2.select == 1 and not v1.hide and not v2.hide:
vec1 = object.matrix_world @ v1.co
vec2 = object.matrix_world @ v2.co
intersection = intersect_line_stroke(vec1, vec2, stroke)
if intersection:
break
if not intersection:
v = bm_mod.verts[v_index]
intersection = intersect_line_stroke(v.co, v.co + v.normal,
stroke)
if intersection:
move.append([v_index, matrix_inverse @ intersection])
CoDEmanX
committed
else:
if method == 'irregular':
relative_lengths = gstretch_relative_lengths(loop, bm_mod)
CoDEmanX
committed
for i, v_index in enumerate(loop[0]):
if method == 'regular':
relative_distance = i / (loop_length - 1)
relative_distance = relative_lengths[i]
loc, stroke_lengths_cache = gstretch_eval_stroke(stroke,
relative_distance, stroke_lengths_cache)
CoDEmanX
committed
# create new vertices, based on GP strokes
def gstretch_create_verts(object, bm_mod, strokes, method, conversion,
conversion_distance, conversion_max, conversion_min, conversion_vertices):
move = []
stroke_verts = []
mat_world = object.matrix_world.inverted()
singles = gstretch_match_single_verts(bm_mod, strokes, mat_world)
CoDEmanX
committed
for stroke in strokes:
stroke_verts.append([stroke, []])
min_end_point = 0
if conversion == 'vertices':
min_end_point = conversion_vertices
end_point = conversion_vertices
elif conversion == 'limit_vertices':
min_end_point = conversion_min
end_point = conversion_max
else:
end_point = len(stroke.points)
# creation of new vertices at fixed user-defined distances
if conversion == 'distance':
method = 'project'
prev_point = stroke.points[0]
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world @ prev_point.co))
distance = 0
limit = conversion_distance
for point in stroke.points:
new_distance = distance + (point.co - prev_point.co).length
iteration = 0
while new_distance > limit:
to_cover = limit - distance + (limit * iteration)
new_loc = prev_point.co + to_cover * \
(point.co - prev_point.co).normalized()
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * new_loc))
new_distance -= limit
iteration += 1
distance = new_distance
prev_point = point
# creation of new vertices for other methods
else:
# add vertices at stroke points
for point in stroke.points[:end_point]:
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world @ point.co))
# add more vertices, beyond the points that are available
if min_end_point > min(len(stroke.points), end_point):
for i in range(min_end_point -
(min(len(stroke.points), end_point))):
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world @ point.co))
# force even spreading of points, so they are placed on stroke
method = 'regular'
bm_mod.verts.index_update()
for stroke, verts_seq in stroke_verts:
if len(verts_seq) < 2:
continue
# spread vertices evenly over the stroke
if method == 'regular':
loop = [[vert.index for vert in verts_seq], False]
move += gstretch_calculate_verts(loop, stroke, object, bm_mod,
method)
# create edges
for i, vert in enumerate(verts_seq):
if i > 0:
bm_mod.edges.new((verts_seq[i - 1], verts_seq[i]))
vert.select = True
# connect single vertices to the closest stroke
if singles:
for vert, m_stroke, point in singles:
if m_stroke != stroke:
continue
bm_mod.edges.new((vert, verts_seq[point]))
bmesh.update_edit_mesh(object.data)
return(move)
# erases the grease pencil stroke
def gstretch_erase_stroke(stroke, context):
# change 3d coordinate into a stroke-point
def sp(loc, context):
lib = {'name': "",
'pen_flip': False,
'is_start': False,
'location': (0, 0, 0),
'mouse': (
view3d_utils.location_3d_to_region_2d(
context.region, context.space_data.region_3d, loc)
),
if type(stroke) != bpy.types.GPencilStroke:
# fake stroke, there is nothing to delete
return
erase_stroke = [sp(p.co, context) for p in stroke.points]
if erase_stroke:
erase_stroke[0]['is_start'] = True
#bpy.ops.gpencil.draw(mode='ERASER', stroke=erase_stroke)
bpy.ops.gpencil.data_unlink()
# get point on stroke, given by relative distance (0.0 - 1.0)
def gstretch_eval_stroke(stroke, distance, stroke_lengths_cache=False):
# use cache if available
if not stroke_lengths_cache:
lengths = [0]
for i, p in enumerate(stroke.points[1:]):
lengths.append((p.co - stroke.points[i].co).length + lengths[-1])
total_length = max(lengths[-1], 1e-7)
stroke_lengths_cache = [length / total_length for length in
lengths]
stroke_lengths = stroke_lengths_cache[:]
CoDEmanX
committed
if distance in stroke_lengths:
loc = stroke.points[stroke_lengths.index(distance)].co
elif distance > stroke_lengths[-1]:
# should be impossible, but better safe than sorry
loc = stroke.points[-1].co
else:
stroke_lengths.append(distance)
stroke_lengths.sort()
stroke_index = stroke_lengths.index(distance)
interval_length = stroke_lengths[
stroke_index + 1] - stroke_lengths[stroke_index - 1
]
distance_relative = (distance - stroke_lengths[stroke_index - 1]) / interval_length
interval_vector = stroke.points[stroke_index].co - stroke.points[stroke_index - 1].co
loc = stroke.points[stroke_index - 1].co + distance_relative * interval_vector
CoDEmanX
committed
# create fake grease pencil strokes for the active object
def gstretch_get_fake_strokes(object, bm_mod, loops):
strokes = []
for loop in loops:
p1 = object.matrix_world @ bm_mod.verts[loop[0][0]].co
p2 = object.matrix_world @ bm_mod.verts[loop[0][-1]].co
strokes.append(gstretch_fake_stroke([p1, p2]))
return(strokes)
# get annotation strokes
def gstretch_get_strokes(self, context):
gp = get_annotation(self, context)
layer = bpy.data.grease_pencils[0].layers.active
frame = layer.active_frame
CoDEmanX
committed
return(strokes)
# returns a list with loop-stroke pairs
def gstretch_match_loops_strokes(loops, strokes, object, bm_mod):
if not loops or not strokes:
return(None)
CoDEmanX
committed
bm_mod.verts.ensure_lookup_table()
for loop in loops:
center = mathutils.Vector()
for v_index in loop[0]:
center += bm_mod.verts[v_index].co
center /= len(loop[0])
CoDEmanX
committed
# calculate stroke centers
stroke_centers = []
for stroke in strokes:
center = mathutils.Vector()
for p in stroke.points:
center += p.co
center /= len(stroke.points)
stroke_centers.append([center, stroke, 0])
CoDEmanX
committed
# match, first by stroke use count, then by distance
ls_pairs = []
for lc in loop_centers:
distances = []
for i, sc in enumerate(stroke_centers):
distances.append([sc[2], (lc[0] - sc[0]).length, i])
distances.sort()
best_stroke = distances[0][2]
ls_pairs.append([lc[1], stroke_centers[best_stroke][1]])
stroke_centers[best_stroke][2] += 1 # increase stroke use count
CoDEmanX
committed
# match single selected vertices to the closest stroke endpoint
# returns a list of tuples, constructed as: (vertex, stroke, stroke point index)
def gstretch_match_single_verts(bm_mod, strokes, mat_world):
# calculate stroke endpoints in object space
endpoints = []
for stroke in strokes:
endpoints.append((mat_world @ stroke.points[0].co, stroke, 0))
endpoints.append((mat_world @ stroke.points[-1].co, stroke, -1))
CoDEmanX
committed
distances = []
# find single vertices (not connected to other selected verts)
for vert in bm_mod.verts:
if not vert.select:
continue
single = True
for edge in vert.link_edges:
if edge.other_vert(vert).select:
single = False
break
if not single:
continue
# calculate distances from vertex to endpoints
distance = [((vert.co - loc).length, vert, stroke, stroke_point,
CoDEmanX
committed
endpoint_index) for endpoint_index, (loc, stroke, stroke_point) in
enumerate(endpoints)]
distance.sort()
distances.append(distance[0])
CoDEmanX
committed
# create matches, based on shortest distance first
singles = []
while distances:
distances.sort()
singles.append((distances[0][1], distances[0][2], distances[0][3]))
endpoints.pop(distances[0][4])
distances.pop(0)
distances_new = []
for (i, vert, j, k, l) in distances:
distance_new = [((vert.co - loc).length, vert, stroke, stroke_point,
endpoint_index) for endpoint_index, (loc, stroke,
stroke_point) in enumerate(endpoints)]
distance_new.sort()
distances_new.append(distance_new[0])
distances = distances_new
CoDEmanX
committed
return(singles)
# returns list with a relative distance (0.0 - 1.0) of each vertex on the loop
def gstretch_relative_lengths(loop, bm_mod):
lengths = [0]
for i, v_index in enumerate(loop[0][1:]):
lengths.append(
(bm_mod.verts[v_index].co -
bm_mod.verts[loop[0][i]].co).length + lengths[-1]
)
total_length = max(lengths[-1], 1e-7)
relative_lengths = [length / total_length for length in
lengths]
CoDEmanX
committed
# convert cache-stored strokes into usable (fake) GP strokes
def gstretch_safe_to_true_strokes(safe_strokes):
strokes = []
for safe_stroke in safe_strokes:
strokes.append(gstretch_fake_stroke(safe_stroke))
CoDEmanX
committed
return(strokes)
# convert a GP stroke into a list of points which can be stored in cache
def gstretch_true_to_safe_strokes(strokes):
safe_strokes = []
for stroke in strokes:
safe_strokes.append([p.co.copy() for p in stroke.points])
CoDEmanX
committed
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
return(safe_strokes)
# force consistency in GUI, max value can never be lower than min value
def gstretch_update_max(self, context):
# called from operator settings (after execution)
if 'conversion_min' in self.keys():
if self.conversion_min > self.conversion_max:
self.conversion_max = self.conversion_min
# called from toolbar
else:
lt = context.window_manager.looptools
if lt.gstretch_conversion_min > lt.gstretch_conversion_max:
lt.gstretch_conversion_max = lt.gstretch_conversion_min
# force consistency in GUI, min value can never be higher than max value
def gstretch_update_min(self, context):
# called from operator settings (after execution)
if 'conversion_max' in self.keys():
if self.conversion_max < self.conversion_min:
self.conversion_min = self.conversion_max
# called from toolbar
else:
lt = context.window_manager.looptools
if lt.gstretch_conversion_max < lt.gstretch_conversion_min:
lt.gstretch_conversion_min = lt.gstretch_conversion_max