Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
Campbell Barton
committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import bpy
def line_point_side_v2(l1, l2, pt):
return (((l1[0] - pt[0]) * (l2[1] - pt[1])) -
((l2[0] - pt[0]) * (l1[1] - pt[1])))
def shell_angle_to_dist(angle):
from math import cos
return 1.0 if (angle < 0.0001) else abs(1.0 / cos(angle))
def vis_curve_object():
scene = bpy.data.scenes[0] # weak!
cu = bpy.data.curves.new(name="Line", type='CURVE')
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
return ob
def vis_curve_spline(p1, h1, p2, h2):
ob = vis_curve_object()
spline = ob.data.splines.new(type='BEZIER')
spline.bezier_points.add(1)
spline.bezier_points[0].co = p1.to_3d()
spline.bezier_points[1].co = p2.to_3d()
spline.bezier_points[0].handle_right = h1.to_3d()
spline.bezier_points[1].handle_left = h2.to_3d()
def vis_circle_object(co, rad=1.0):
import math
scene = bpy.data.scenes[0] # weak!
ob = bpy.data.objects.new(name="Circle", object_data=None)
ob.rotation_euler.x = math.pi / 2
ob.location = co.to_3d()
ob.empty_draw_size = rad
ob.layers = [True] * 20
base = scene.objects.link(ob)
return ob
def visualize_line(p1, p2, p3=None, rad=None):
pair = p1.to_3d(), p2.to_3d()
ob = vis_curve_object()
spline = ob.data.splines.new(type='POLY')
spline.points.add(1)
for co, v in zip((pair), spline.points):
v.co.xyz = co
if p3:
spline = ob.data.splines.new(type='POLY')
spline.points[0].co.xyz = p3.to_3d()
print(rad)
if rad is not None:
vis_circle_object(p3, rad)
def treat_points(points,
double_limit=0.0001,
):
# first remove doubles
tot_len = 0.0
if double_limit != 0.0:
i = len(points) - 1
while i > 0:
length = (points[i] - points[i - 1]).length
if length < double_limit:
del points[i]
if i >= len(points):
i -= 1
else:
tot_len += length
i -= 1
return tot_len
def solve_curvature_2d(p1, p2, n1, n2, fac, fallback):
""" Add a nice circular curvature on
"""
from mathutils import Vector
from mathutils.geometry import (barycentric_transform,
intersect_line_line,
intersect_point_line,
)
p1_a = p1 + n1
p2_a = p2 - n2
isect = intersect_line_line(p1.to_3d(),
p1_a.to_3d(),
p2.to_3d(),
p2_a.to_3d(),
)
if isect:
corner = isect[0]
else:
corner = None
if corner:
corner = corner.xy
p1_first_order = p1.lerp(corner, fac)
p2_first_order = corner.lerp(p2, fac)
co = p1_first_order.lerp(p2_first_order, fac)
return co.xy
else:
# cant interpolate. just return interpolated value
return fallback.copy() # p1.lerp(p2, fac)
def points_to_bezier(points_orig,
double_limit=0.0001,
kink_tolerance=0.25,
bezier_tolerance=0.1, # error distance, scale dependant
subdiv=8,
angle_span=0.95, # 1.0 tries to evaluate splines of 180d
):
import math
from mathutils import Vector
class Point(object):
__slots__ = ("co",
"angle",
"no",
"is_joint",
"next",
"prev",
)
def __init__(self, co):
self.co = co
self.is_joint = False
def calc_angle(self):
if self.prev is None or self.next is None:
self.angle = 0.0
else:
va = self.co - self.prev.co
vb = self.next.co - self.co
self.angle = va.angle(vb, 0.0)
# XXX 2D
if line_point_side_v2(self.prev.co,
self.co,
self.next.co,
) < 0.0:
self.angle = -self.angle
def angle_diff(self):
""" use for detecting joints, detect difference in angle from
surrounding points.
"""
if self.prev is None or self.next is None:
return 0.0
else:
if (self.angle > self.prev.angle and
self.angle > self.next.angle):
return abs(self.angle - self.prev.angle) / math.pi
else:
return 0.0
def angle_filter(self):
tot = 1
a = self.angle
if self.prev:
tot += 1
a += self.prev.angle
if self.next:
tot += 1
a += self.next.angle
a = a / tot
return 0.0 if abs(a) < 0.01 else a
def calc_normal(self):
v1 = v2 = None
if self.prev and not self.prev.is_joint:
v1 = (self.co - self.prev.co).normalized()
if self.next and not self.next.is_joint:
v2 = (self.next.co - self.co).normalized()
if v1 and v2:
self.no = (v1 + v2).normalized()
elif v1:
self.no = v1
elif v2:
self.no = v2
else:
print("Warning, assigning dummy normal")
self.no = Vector(0, 1)
class Spline(object):
__slots__ = ("points",
"handle_left",
"handle_right",
"next",
"prev",
)
def __init__(self, points):
self.points = points
def link_points(self):
if hasattr(self.points[0], "prev"):
raise Exception("already linked")
p_prev = None
for p in self.points:
p.prev = p_prev
p_prev = p
p_prev = None
for p in reversed(self.points):
p.next = p_prev
p_prev = p
def split(self, i, is_joint=False):
prev = self.prev
next = self.next
if is_joint:
self.points[i].is_joint = True
# share a point
spline_a = Spline(self.points[:i + 1])
spline_b = Spline(self.points[i:])
# invalidate self, dont reuse!
self.points = None
spline_a.next = spline_b
spline_b.prev = spline_a
spline_a.prev = prev
spline_b.next = next
if prev:
prev.next = spline_a
if next:
next.prev = spline_b
return spline_a, spline_b
def calc_angle(self):
for p in self.points:
p.calc_angle()
def calc_normal(self):
for p in self.points:
p.calc_normal()
def calc_all(self):
self.link_points()
self.calc_angle()
self.calc_normal()
def total_angle(self):
return abs(sum((p.angle for p in self.points)))
def redistribute(self, segment_length, smooth=False):
if len(self.points) == 1:
return
from mathutils.geometry import intersect_line_sphere_2d
p_line = p = self.points[0]
points = [(p.co.copy(), p.co.copy())]
p = p.next
def point_add(co, p=None):
co = co.copy()
co_smooth = co.copy()
if smooth:
if p is None:
pass # works ok but no smoothing
elif (p.prev.no - p.no).length < 0.001:
pass # normals are too similar, paralelle
elif (p.angle > 0.0) != (p.prev.angle > 0.0):
pass
else:
# visualize_line(p.co, p.co + p.no)
# this assumes co is on the line
fac = ((p.prev.co - co).length /
(p.prev.co - p.co).length)
assert(fac >= 0.0 and fac <= 1.0)
co_smooth = solve_curvature_2d(p.prev.co,
p.co,
p.prev.no,
p.no,
fac,
co,
)
points.append((co, co_smooth))
def point_step(p):
if p.is_joint or p.next is None:
point_add(p.co)
return None
else:
return p.next
print("START")
while p:
# we want the first pont past the segment size
#if p.is_joint:
# vis_circle_object(p.co)
length = (points[-1][0] - p.co).length
if abs(length - segment_length) < 0.00001:
# close enough to be considered on the circle bounds
point_add(p.co)
p_line = p
p = point_step(p)
elif length < segment_length:
p = point_step(p)
else:
# the point is further then the segment width
p_start = points[-1][0] if p.prev is p_line else p.prev.co
if (p_start - points[-1][0]).length > segment_length:
raise Exception("eek2")
if (p.co - points[-1][0]).length < segment_length:
raise Exception("eek3")
# print(p_start, p.co, points[-1][0], segment_length)
i1, i2 = intersect_line_sphere_2d(p_start,
p.co,
points[-1][0],
segment_length,
)
# print()
# print(i1, i2)
# assert(i1 is not None)
if i1 is not None:
point_add(i1, p)
p_line = p.prev
elif i2:
raise Exception("err")
elif i1 is None and i2 is None:
visualize_line(p_start,
p.co,
points[-1][0],
segment_length,
)
# XXX FIXME
# raise Exception("BAD!s")
point_add(p.co)
p_line = p
p = point_step(p)
joint = self.points[0].is_joint, self.points[-1].is_joint
self.points = [Point(p[1]) for p in points]
self.points[0].is_joint, self.points[-1].is_joint = joint
self.calc_all()
# raise Exception("END")
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
def intersect_line(self, l1, l2, reverse=False):
from mathutils.geometry import (intersect_point_line,
)
if reverse:
p_first = self.points[-1]
point_iter = reversed(self.points[:-1])
else:
p_first = self.points[0]
point_iter = self.points[1:]
side = (line_point_side_v2(l1, l2, p_first.co) < 0.0)
ok = False
for p_apex in point_iter:
if (line_point_side_v2(l1,
l2,
p_apex.co,
) < 0.0) != side:
if reverse:
p_apex_other = p_apex.next
else:
p_apex_other = p_apex.prev
# find the exact point on the line between the apex and
# the middle
p_test_1 = intersect_point_line(p_apex.co,
l1,
l2)[0].xy
p_test_2 = intersect_point_line(p_apex_other.co,
l1,
l2)[0].xy
w1 = (p_test_1 - p_apex.co).length
w2 = (p_test_2 - p_apex_other.co).length
fac = w1 / (w1 + w2)
p_apex_co = p_apex.co.lerp(p_apex_other.co, fac)
p_apex_no = p_apex.no.lerp(p_apex_other.no, fac)
p_apex_no.normalize()
# visualize_line(p_mid.to_3d(), corner.to_3d())
# visualize_line(p_apex.co.to_3d(), p_apex_co.to_3d())
ok = True
break
return p_apex_co, p_apex_no
Campbell Barton
committed
def bezier_solve(self):
""" Calculate bezier handles,
assume the splines have been broken up.
"""
from mathutils.geometry import (intersect_point_line,
intersect_line_line,
)
# get a line
p1 = self.points[0]
p2 = self.points[-1]
Campbell Barton
committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# since we have even spacing we can just pick the middle point
# p_mid = self.points[len(self.points) // 2]
# vec, fac = mathutils.geometry.intersect_point_line(m_mid, p1, p2)
# TODO, ensure < 180d curves
p1_a, p1_b = p1.co, p1.co + p1.no
p2_a, p2_b = p2.co, p2.co - p2.no
isect = intersect_line_line(p1_a.to_3d(),
p1_b.to_3d(),
p2_a.to_3d(),
p2_b.to_3d(),
)
if isect is None:
# if isect is None, the line is paralelle
# just add simple handles
self.bezier_h1 = p1.co.lerp(p2.co, 1.0 / 3.0)
self.bezier_h2 = p2.co.lerp(p1.co, 1.0 / 3.0)
return
corner = isect[0].xy
p_mid = p1.co.lerp(p2.co, 0.5)
dist_best = 10000000.0
p_best = None
side = (line_point_side_v2(p_mid, corner, p1.co) < 0.0)
ok = False
p_apex_co, p_apex_no = self.intersect_line(p_mid, corner)
Campbell Barton
committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
v1 = (p2.co - p1.co).normalized()
v2 = p_apex_no.copy()
# find the point on the line which aligns with the apex point.
# first place handles, must be distance to apex * 1.333...
if 1:
p_mid_apex_align = intersect_point_line(p_apex_co,
p1.co,
p2.co)[0]
else:
p_mid_apex_align = p_mid
# visualize_line(p_mid_apex_align.to_3d(), p_apex_co.to_3d())
# The point is always 75% of the handle distance
# here we extend the distance from the line to the curve apex
# by 33.33..% to compensate for this.
h_sca = 1 # (p_apex_co - p_mid_apex_align.xy).length / 0.75
from math import pi
# -1.0 - 1.0
bias = v1.angle(v2) / (pi / 2)
print(bias)
if abs(bias) < 0.001:
h_sca_1 = h_sca
h_sca_2 = h_sca
elif line_point_side_v2(Vector((0.0, 0.0)), v2, v1) < 0:
h_sca_1 = h_sca / (1.0 + bias)
h_sca_2 = h_sca * (1.0 + bias)
else:
h_sca_1 = h_sca * (1.0 + bias)
h_sca_2 = h_sca / (1.0 + bias)
# find the factor
fac = intersect_point_line(p_apex_co, p_mid, corner)[1]
# assert(fac >= 0.0)
h_sca_1 = 1
h_sca_2 = 1
h1 = p1.co.lerp(corner, (fac / 0.75) * h_sca_1)
h2 = p2.co.lerp(corner, (fac / 0.75) * h_sca_2)
# rare cases this can mess up, because of almost straight lines
# good for debugging single splines
# vis_curve_spline(p1.co, h1, p2.co, h2)
self.handle_left = h1
self.handle_right = h2
def bezier_error(self):
from mathutils.geometry import interpolate_bezier
test_points = interpolate_bezier(self.points[0].co.to_3d(),
self.handle_left,
self.handle_right,
self.points[-1].co.to_3d(),
8,
)
from mathutils.geometry import intersect_point_line
error = 0.0
# this is a rough method measuring the error but should be good enough
# TODO. dont test against every single point.
for co in test_points:
co = co.xy
# initial values
co_best = self.points[0].co
length_best = (co - co_best).length
for p in self.points[1:]:
# dist to point
length = (co - p.co).length
if length < length_best:
length_best = length
co_best = p.co
p_ix, fac = intersect_point_line(co, p.co, p.prev.co)
p_ix = p_ix.xy
if fac >= 0.0 and fac <= 1.0:
length = (co - p_ix).length
if length < length_best:
length_best = length
co_best = p_ix
error += length_best
return error
class Curve(object):
__slots__ = ("splines",
)
def __init__(self, splines):
self.splines = splines
def link_splines(self):
s_prev = None
for s in self.splines:
s.prev = s_prev
s_perv = s
s_prev = None
for s in reversed(self.splines):
s.next = s_prev
s_perv = s
def calc_data(self):
for s in self.splines:
s.calc_all()
self.link_splines()
def split_func_map_point(self, func, is_joint=False):
""" func takes a point and returns true on split
return True if any splits are made.
"""
s_index = 0
s = self.splines[s_index]
while s:
assert(self.splines[s_index] == s)
for i, p in enumerate(s.points):
if i == 0 or i >= len(s.points) - 1:
continue
if func(p):
split_pair = s.split(i, is_joint=is_joint)
# keep list in sync
self.splines[s_index:s_index + 1] = split_pair
# advance on main while loop
s = split_pair[0]
assert(self.splines[s_index] == s)
break
s = s.next
s_index += 1
def split_func_spline(self, func, is_joint=False, recursive=False):
""" func takes a spline and returns the point index on split or -1
return True if any splits are made.
"""
s_index = 0
s = self.splines[s_index]
while s:
assert(self.splines[s_index] == s)
i = func(s)
if i != -1:
split_pair = s.split(i, is_joint=is_joint)
# keep list in sync
self.splines[s_index:s_index + 1] = split_pair
# advance on main while loop
s = split_pair[0]
assert(self.splines[s_index] == s)
if recursive:
continue
s = s.next
s_index += 1
def validate(self):
s_prev = None
iii = 0
for s in self.splines:
print(iii)
assert(s.prev == s_prev)
if s_prev:
print()
assert(s_prev.next == s)
s_prev = s
iii += 1
def redistribute(self, segment_length, smooth=False):
for s in self.splines:
s.redistribute(segment_length, smooth)
def to_blend_data(self):
""" Points to blender data, debugging only
"""
scene = bpy.data.scenes[0] # weak!
for base in scene.object_bases:
base.select = False
cu = bpy.data.curves.new(name="Test", type='CURVE')
for s in self.splines:
spline = cu.splines.new(type='POLY')
spline.points.add(len(s.points) - 1)
for p, v in zip(s.points, spline.points):
v.co.xy = p.co
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
scene.objects.active = ob
base.select = True
# base.layers = [True] * 20
print(ob, "Done")
def to_blend_curve(self, cu=None, cu_matrix=None):
""" return new bezier spline datablock or add to an existing
"""
if not cu:
cu = bpy.data.curves.new(name="Curve", type='CURVE')
spline = cu.splines.new(type='BEZIER')
spline.bezier_points.add(len(self.splines))
s_prev = None
for i, bp in enumerate(spline.bezier_points):
if i < len(self.splines):
s = self.splines[i]
else:
s = None
if s_prev and s:
pt = s.points[0]
hl = s_prev.handle_right
hr = s.handle_left
elif s:
pt = s.points[0]
hr = s.handle_left
hl = (pt.co.xy + (pt.co.xy - hr.xy))
elif s_prev:
pt = s_prev.points[-1]
hl = s_prev.handle_right
hr = (pt.co.xy + (pt.co.xy - hl.xy))
else:
assert(0)
bp.co.xy = pt.co
bp.handle_left.xy = hl
bp.handle_right.xy = hr
handle_type = 'FREE'
if pt.is_joint == False or (s_prev and s) == False:
# XXX, this should not happen, but since it can
# at least dont allow allignment to break the curve output
if (pt.co - hl).angle(hr - pt.co, 0.0) < 0.1:
handle_type = 'ALIGNED'
bp.handle_left_type = bp.handle_right_type = handle_type
s_prev = s
scene = bpy.data.scenes[0] # weak!
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
scene.objects.active = ob
base.select = True
return cu
points = list(points_orig)
# remove doubles
tot_length = treat_points(points)
# calculate segment spacing
segment_length = (tot_length / len(points)) / subdiv
curve = Curve([Spline([Point(p) for p in points])])
curve.calc_data()
if kink_tolerance != 0.0:
pass
curve.split_func_map_point(lambda p: p.angle_diff() > kink_tolerance,
is_joint=True,
)
# return
# curve.validate()
curve.redistribute(segment_length / 4.0, smooth=True)
curve.redistribute(segment_length, smooth=False)
def swap_side(p):
angle = p.angle_filter()
if p.prev.prev is None:
swap_side.last = angle
else:
if (swap_side.last > 0.0) != (angle > 0.0):
if abs(p.angle) > 0.025:
swap_side.last = p.angle
return True
return False
#curve.split_func_map_point(lambda p: (p.angle_filter() >= 0) != \
# (p.prev.angle_filter() >= 0))
curve.split_func_map_point(swap_side)
# now split based on total spline angle.
import math
angle_span_rad = angle_span * math.pi
curve.split_func_spline(lambda s:
len(s.points) // 2
if (s.total_angle() > angle_span_rad and
len(s.points) > 2)
else -1,
recursive=True,
)
curve.split_func_spline(lambda s:
len(s.points) // 2
if ((s.bezier_solve(), s.bezier_error())[1] >
bezier_tolerance) and (len(s.points) > 2)
else -1,
recursive=True,
)
'''
for s in curve.splines:
s.bezier_solve()
print(s.bezier_error())
'''
# VISUALIZE
# curve.to_blend_data()
curve.to_blend_curve()
if __name__ == "__main__":
print("A")
bpy.ops.wm.open_mainfile(filepath="/root/curve_test.blend")
ob = bpy.data.objects["Curve"]
points = [p.co.xy for s in ob.data.splines for p in s.points]
print("points_to_bezier 1")
points_to_bezier(points)
print("points_to_bezier 2")
bpy.ops.wm.save_as_mainfile(filepath="/root/curve_test_edit.blend",
copy=True)
print("done!")