Newer
Older
# SPDX-License-Identifier: GPL-2.0-or-later
Campbell Barton
committed
from mathutils import (
Matrix,
Vector,
from random import triangular
from bpy_extras.object_utils import AddObjectHelper, object_data_add
Spivak Vladimir (cwolf3d)
committed
GLOBAL_SCALE = 1 # 1 blender unit = X mm
# next two utility functions are stolen from import_obj.py
def unpack_list(list_of_tuples):
l = []
for t in list_of_tuples:
l.extend(t)
return l
def unpack_face_list(list_of_tuples):
l = []
for t in list_of_tuples:
face = [i for i in t]
if len(face) != 3 and len(face) != 4:
raise RuntimeError("{0} vertices in face".format(len(face)))
Campbell Barton
committed
# rotate indices if the 4th is 0
if len(face) == 4 and face[3] == 0:
face = [face[3], face[0], face[1], face[2]]
if len(face) == 3:
face.append(0)
Campbell Barton
committed
Remove Doubles takes a list on Verts and a list of Faces and
removes the doubles, much like Blender does in edit mode.
It doesn't have the range function but it will round the coordinates
and remove verts that are very close together. The function
is useful because you can perform a "Remove Doubles" with out
having to enter Edit Mode. Having to enter edit mode has the
disadvantage of not being able to interactively change the properties.
def RemoveDoubles(verts, faces, Decimal_Places=4):
Campbell Barton
committed
new_verts = []
new_faces = []
dict_verts = {}
Rounded_Verts = []
Campbell Barton
committed
Campbell Barton
committed
for v in verts:
Rounded_Verts.append([round(v[0], Decimal_Places),
round(v[1], Decimal_Places),
round(v[2], Decimal_Places)])
Campbell Barton
committed
for face in faces:
new_face = []
for vert_index in face:
Real_co = tuple(verts[vert_index])
Rounded_co = tuple(Rounded_Verts[vert_index])
if Rounded_co not in dict_verts:
dict_verts[Rounded_co] = len(dict_verts)
new_verts.append(Real_co)
Campbell Barton
committed
if dict_verts[Rounded_co] not in new_face:
Campbell Barton
committed
new_face.append(dict_verts[Rounded_co])
if len(new_face) == 3 or len(new_face) == 4:
new_faces.append(new_face)
def Scale_Mesh_Verts(verts, scale_factor):
Ret_verts.append([v[0] * scale_factor, v[1] * scale_factor, v[2] * scale_factor])
# Create a matrix representing a rotation.
#
# * angle (float) - The angle of rotation desired.
# * matSize (int) - The size of the rotation matrix to construct. Can be 2d, 3d, or 4d.
# * axisFlag (string (optional)) - Possible values:
# o "x - x-axis rotation"
# o "y - y-axis rotation"
# o "z - z-axis rotation"
# o "r - arbitrary rotation around vector"
# * axis (Vector object. (optional)) - The arbitrary axis of rotation used with "R"
#
Campbell Barton
committed
# A new rotation matrix.
def Simple_RotationMatrix(angle, matSize, axisFlag):
if matSize != 4:
print("Simple_RotationMatrix can only do 4x4")
Campbell Barton
committed
q = radians(angle) # make the rotation go clockwise
Campbell Barton
committed
matrix = Matrix.Rotation(q, 4, 'X')
elif axisFlag == 'y':
matrix = Matrix.Rotation(q, 4, 'Y')
matrix = Matrix.Rotation(q, 4, 'Z')
print("Simple_RotationMatrix can only do x y z axis")
# ####################################################################
# Converter Functions For Bolt Factory
# ####################################################################
h = (float(FLAT) / 2) / cos(radians(30))
Flat_Width_half = (Bit_Dia * (0.5 / 1.82)) / 2.0
Bit_Rad = Bit_Dia / 2.0
x = Bit_Rad - Flat_Width_half
Campbell Barton
committed
return float(y)
# ####################################################################
# Miscellaneous Utilities
# ####################################################################
# Returns a list of verts rotated by the given matrix. Used by SpinDup
def Rot_Mesh(verts, matrix):
Campbell Barton
committed
from mathutils import Vector
Campbell Barton
committed
# Returns a list of faces that has there index incremented by offset
return [[(i + offset) for i in f] for f in faces]
# Much like Blenders built in SpinDup
def SpinDup(VERTS, FACES, DEGREE, DIVISIONS, AXIS):
verts = []
faces = []
Campbell Barton
committed
Campbell Barton
committed
DIVISIONS = 1
step = DEGREE / DIVISIONS # set step so pieces * step = degrees in arc
Campbell Barton
committed
rotmat = Simple_RotationMatrix(step * i, 4, AXIS) # 4x4 rotation matrix, 30d about the x axis.
Rot = Rot_Mesh(VERTS, rotmat)
faces.extend(Copy_Faces(FACES, len(verts)))
# Returns a list of verts that have been moved up the z axis by DISTANCE
def Move_Verts_Up_Z(VERTS, DISTANCE):
ret.append([v[0], v[1], v[2] + DISTANCE])
Campbell Barton
committed
# Returns a list of verts and faces that has been mirrored in the AXIS
def Mirror_Verts_Faces(VERTS, FACES, AXIS, FLIP_POINT=0):
Campbell Barton
committed
offset = len(VERTS)
if AXIS == 'y':
for v in VERTS:
Delta = v[0] - FLIP_POINT
ret_vert.append([FLIP_POINT - Delta, v[1], v[2]])
if AXIS == 'x':
for v in VERTS:
Delta = v[1] - FLIP_POINT
Loading
Loading full blame...