Newer
Older
#====================== BEGIN GPL LICENSE BLOCK ============================
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# All rights reserved.
#
#======================= END GPL LICENSE BLOCK =============================
Brendon Murphy
committed
"name": "Export Unreal Engine Format(.psk/.psa)",
"author": "Darknet/Optimus_P-Fat/Active_Trash/Sinsoft/VendorX/Spoof",
"version": (2, 5),
"blender": (2, 6, 3),
"api": 36079,
"location": "File > Export > Skeletal Mesh/Animation Data (.psk/.psa)",
"description": "Export Skeleletal Mesh/Animation Data",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"\
"Scripts/Import-Export/Unreal_psk_psa",
"tracker_url": "https://projects.blender.org/tracker/index.php?"\
Brendon Murphy
committed
Brendon Murphy
committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
-- Unreal Skeletal Mesh and Animation Export (.psk and .psa) export script v0.0.1 --<br>
- NOTES:
- This script Exports To Unreal's PSK and PSA file formats for Skeletal Meshes and Animations. <br>
- This script DOES NOT support vertex animation! These require completely different file formats. <br>
- v0.0.1
- Initial version
- v0.0.2
- This version adds support for more than one material index!
[ - Edit by: Darknet
- v0.0.3 - v0.0.12
- This will work on UT3 and it is a stable version that work with vehicle for testing.
- Main Bone fix no dummy needed to be there.
- Just bone issues position, rotation, and offset for psk.
- The armature bone position, rotation, and the offset of the bone is fix. It was to deal with skeleton mesh export for psk.
- Animation is fix for position, offset, rotation bone support one rotation direction when armature build.
- It will convert your mesh into triangular when exporting to psk file.
- Did not work with psa export yet.
- v0.0.13
- The animatoin will support different bone rotations when export the animation.
- v0.0.14
- Fixed Action set keys frames when there is no pose keys and it will ignore it.
- v0.0.15
- Fixed multiple objects when exporting to psk. Select one mesh to export to psk.
- ]
- v0.1.1
- Blender 2.50 svn (Support)
Credit to:
- export_cal3d.py (Position of the Bones Format)
- blender2md5.py (Animation Translation Format)
- export_obj.py (Blender 2.5/Pyhton 3.x Format)
- freenode #blendercoder -> user -> ideasman42
- Give Credit to those who work on this script.
- http://sinsoft.com
Brendon Murphy
committed
"""
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#===========================================================================
"""
NOTES for Jan 2012 refactor (Spoof)
* THIS IS A WORK IN PROGRESS. These modifications were originally
intended for internal use and are incomplete. Use at your own risk! *
TODO
- (Blender 2.62) changes to Matrix math
- (Blender 2.62) check for long names
- option to manually set the root bone for export
CHANGES
- new bone parsing to allow advanced rigging
- identification of armature and mesh
- removed the need to apply an action to the armature
- fixed anim rate to work correctly in UDK (no more FPS fudging)
- progress reporting while processing smooth groups
- more informative logging
- code refactor for clarity and modularity
- naming conventions unified to use lowercase_with_underscore
- C++ datatypes and PSK/PSA classes remain CamelCaseStyle for clarity
- names such as 'ut' and 'unreal' unified to 'udk'
- simplification of code structure
- removed legacy code paths
USAGE
This version of the exporter is more selective over which bones are considered
part of the UDK skeletal mesh, and allows greater flexibility for adding
control bones to aid in animation.
Taking advantage of this script requires the following methodology:
* Place all exportable bones into a bone hierarchy extending from a single
root. This root bone must have use_deform enabled. All other root bones
in the armature must disable use_deform. *
The script searches for a root bone with use_deform set true and considers all
bones parented to it as part of the UDK skeletal mesh. Thus only these bones
are exported and all other bones are ignored.
This removes many restrictions on the rigger/animator, who can add control
bone hierarchies to the rig, and keyframe any element into actions. With this
approach you can build complex animation rigs in a similar vein to the Rigify
add-on, by Nathan Vegdahl. However...
* Rigify is incompatible with this script *
Rigify interlaces deformer bones within a single hierarchy making it difficult
to deconstruct for export. It also splits some meta-rig bones into multiple
deformer bones (bad for optimising a game character). I had partial success
writing a parser for the structure, but it was taking too much time and,
considering the other issues with Rigify, it was abandoned.
"""
#===========================================================================
Brendon Murphy
committed
import os
import time
import bpy
import mathutils
Brendon Murphy
committed
import operator
import sys
Brendon Murphy
committed
Brendon Murphy
committed
Brendon Murphy
committed
# REFERENCE MATERIAL JUST IN CASE:
#
# U = x / sqrt(x^2 + y^2 + z^2)
# V = y / sqrt(x^2 + y^2 + z^2)
#
# Triangles specifed counter clockwise for front face
#
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# defines for sizeofs
SIZE_FQUAT = 16
SIZE_FVECTOR = 12
SIZE_VJOINTPOS = 44
SIZE_ANIMINFOBINARY = 168
SIZE_VCHUNKHEADER = 32
SIZE_VMATERIAL = 88
SIZE_VBONE = 120
SIZE_FNAMEDBONEBINARY = 120
SIZE_VRAWBONEINFLUENCE = 12
SIZE_VQUATANIMKEY = 32
SIZE_VVERTEX = 16
SIZE_VPOINT = 12
SIZE_VTRIANGLE = 12
MaterialName = []
#===========================================================================
# Custom exception class
#===========================================================================
class Error( Exception ):
def __init__(self, message):
self.message = message
#===========================================================================
# Verbose logging with loop truncation
#===========================================================================
def verbose( msg, iteration=-1, max_iterations=4, msg_truncated="..." ):
if bpy.context.scene.udk_option_verbose == True:
# limit the number of times a loop can output messages
if iteration > max_iterations:
return
elif iteration == max_iterations:
print(msg_truncated)
return
print(msg)
#===========================================================================
# Log header/separator
#===========================================================================
def header( msg, justify='LEFT', spacer='_', cols=78 ):
if justify == 'LEFT':
s = '{:{spacer}<{cols}}'.format(msg+" ", spacer=spacer, cols=cols)
elif justify == 'RIGHT':
s = '{:{spacer}>{cols}}'.format(" "+msg, spacer=spacer, cols=cols)
else:
s = '{:{spacer}^{cols}}'.format(" "+msg+" ", spacer=spacer, cols=cols)
return "\n" + s + "\n"
#===========================================================================
Brendon Murphy
committed
# Generic Object->Integer mapping
# the object must be usable as a dictionary key
#===========================================================================
Brendon Murphy
committed
class ObjMap:
def __init__(self):
self.dict = {}
self.next = 0
def get(self, obj):
if obj in self.dict:
return self.dict[obj]
else:
id = self.next
self.next = self.next + 1
self.dict[obj] = id
return id
def items(self):
getval = operator.itemgetter(0)
getkey = operator.itemgetter(1)
return map(getval, sorted(self.dict.items(), key=getkey))
Brendon Murphy
committed
#===========================================================================
Brendon Murphy
committed
# RG - UNREAL DATA STRUCTS - CONVERTED FROM C STRUCTS GIVEN ON UDN SITE
# provided here: http://udn.epicgames.com/Two/BinaryFormatSpecifications.html
# updated UDK (Unreal Engine 3): http://udn.epicgames.com/Three/BinaryFormatSpecifications.html
#===========================================================================
Brendon Murphy
committed
class FQuat:
def __init__(self):
self.X = 0.0
self.Y = 0.0
self.Z = 0.0
self.W = 1.0
def dump(self):
return pack('ffff', self.X, self.Y, self.Z, self.W)
def __cmp__(self, other):
return cmp(self.X, other.X) \
or cmp(self.Y, other.Y) \
or cmp(self.Z, other.Z) \
or cmp(self.W, other.W)
def __hash__(self):
return hash(self.X) ^ hash(self.Y) ^ hash(self.Z) ^ hash(self.W)
def __str__(self):
return "[%f,%f,%f,%f](FQuat)" % (self.X, self.Y, self.Z, self.W)
Brendon Murphy
committed
class FVector(object):
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
def __init__(self, X=0.0, Y=0.0, Z=0.0):
self.X = X
self.Y = Y
self.Z = Z
def dump(self):
return pack('fff', self.X, self.Y, self.Z)
def __cmp__(self, other):
return cmp(self.X, other.X) \
or cmp(self.Y, other.Y) \
or cmp(self.Z, other.Z)
def _key(self):
return (type(self).__name__, self.X, self.Y, self.Z)
def __hash__(self):
return hash(self._key())
def __eq__(self, other):
if not hasattr(other, '_key'):
return False
return self._key() == other._key()
def dot(self, other):
return self.X * other.X + self.Y * other.Y + self.Z * other.Z
def cross(self, other):
return FVector(self.Y * other.Z - self.Z * other.Y,
self.Z * other.X - self.X * other.Z,
self.X * other.Y - self.Y * other.X)
def sub(self, other):
return FVector(self.X - other.X,
self.Y - other.Y,
self.Z - other.Z)
Brendon Murphy
committed
class VJointPos:
def __init__(self):
self.Orientation = FQuat()
self.Position = FVector()
self.Length = 0.0
self.XSize = 0.0
self.YSize = 0.0
self.ZSize = 0.0
def dump(self):
return self.Orientation.dump() + self.Position.dump() + pack('4f', self.Length, self.XSize, self.YSize, self.ZSize)
Brendon Murphy
committed
class AnimInfoBinary:
def __init__(self):
self.Name = "" # length=64
self.Group = "" # length=64
self.TotalBones = 0
self.RootInclude = 0
self.KeyCompressionStyle = 0
self.KeyQuotum = 0
self.KeyPrediction = 0.0
self.TrackTime = 0.0
self.AnimRate = 0.0
self.StartBone = 0
self.FirstRawFrame = 0
self.NumRawFrames = 0
def dump(self):
return pack('64s64siiiifffiii', str.encode(self.Name), str.encode(self.Group), self.TotalBones, self.RootInclude, self.KeyCompressionStyle, self.KeyQuotum, self.KeyPrediction, self.TrackTime, self.AnimRate, self.StartBone, self.FirstRawFrame, self.NumRawFrames)
Brendon Murphy
committed
class VChunkHeader:
def __init__(self, name, type_size):
self.ChunkID = str.encode(name) # length=20
self.TypeFlag = 1999801 # special value
self.DataSize = type_size
self.DataCount = 0
def dump(self):
return pack('20siii', self.ChunkID, self.TypeFlag, self.DataSize, self.DataCount)
Brendon Murphy
committed
class VMaterial:
def __init__(self):
self.MaterialName = "" # length=64
self.TextureIndex = 0
self.PolyFlags = 0 # DWORD
self.AuxMaterial = 0
self.AuxFlags = 0 # DWORD
self.LodBias = 0
self.LodStyle = 0
def dump(self):
#print("DATA MATERIAL:",self.MaterialName)
return pack('64siLiLii', str.encode(self.MaterialName), self.TextureIndex, self.PolyFlags, self.AuxMaterial, self.AuxFlags, self.LodBias, self.LodStyle)
Brendon Murphy
committed
class VBone:
def __init__(self):
self.Name = "" # length = 64
self.Flags = 0 # DWORD
self.NumChildren = 0
self.ParentIndex = 0
self.BonePos = VJointPos()
def dump(self):
return pack('64sLii', str.encode(self.Name), self.Flags, self.NumChildren, self.ParentIndex) + self.BonePos.dump()
#same as above - whatever - this is how Epic does it...
Brendon Murphy
committed
class FNamedBoneBinary:
def __init__(self):
self.Name = "" # length = 64
self.Flags = 0 # DWORD
self.NumChildren = 0
self.ParentIndex = 0
self.BonePos = VJointPos()
self.IsRealBone = 0 # this is set to 1 when the bone is actually a bone in the mesh and not a dummy
def dump(self):
return pack('64sLii', str.encode(self.Name), self.Flags, self.NumChildren, self.ParentIndex) + self.BonePos.dump()
Brendon Murphy
committed
class VRawBoneInfluence:
def __init__(self):
self.Weight = 0.0
self.PointIndex = 0
self.BoneIndex = 0
def dump(self):
return pack('fii', self.Weight, self.PointIndex, self.BoneIndex)
Brendon Murphy
committed
class VQuatAnimKey:
def __init__(self):
self.Position = FVector()
self.Orientation = FQuat()
self.Time = 0.0
def dump(self):
return self.Position.dump() + self.Orientation.dump() + pack('f', self.Time)
Brendon Murphy
committed
class VVertex(object):
Brendon Murphy
committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
def __init__(self):
self.PointIndex = 0 # WORD
self.U = 0.0
self.V = 0.0
self.MatIndex = 0 # BYTE
self.Reserved = 0 # BYTE
self.SmoothGroup = 0
def dump(self):
return pack('HHffBBH', self.PointIndex, 0, self.U, self.V, self.MatIndex, self.Reserved, 0)
def __cmp__(self, other):
return cmp(self.PointIndex, other.PointIndex) \
or cmp(self.U, other.U) \
or cmp(self.V, other.V) \
or cmp(self.MatIndex, other.MatIndex) \
or cmp(self.Reserved, other.Reserved) \
or cmp(self.SmoothGroup, other.SmoothGroup )
def _key(self):
return (type(self).__name__, self.PointIndex, self.U, self.V, self.MatIndex, self.Reserved)
def __hash__(self):
return hash(self._key())
def __eq__(self, other):
if not hasattr(other, '_key'):
return False
return self._key() == other._key()
class VPointSimple:
John Phan
committed
def __init__(self):
self.Point = FVector()
def __cmp__(self, other):
return cmp(self.Point, other.Point)
def __hash__(self):
return hash(self._key())
def _key(self):
return (type(self).__name__, self.Point)
def __eq__(self, other):
if not hasattr(other, '_key'):
return False
return self._key() == other._key()
Brendon Murphy
committed
class VPoint(object):
Brendon Murphy
committed
def __init__(self):
self.Point = FVector()
self.SmoothGroup = 0
def dump(self):
return self.Point.dump()
def __cmp__(self, other):
return cmp(self.Point, other.Point) \
or cmp(self.SmoothGroup, other.SmoothGroup)
def _key(self):
return (type(self).__name__, self.Point, self.SmoothGroup)
def __hash__(self):
return hash(self._key()) \
^ hash(self.SmoothGroup)
def __eq__(self, other):
if not hasattr(other, '_key'):
return False
return self._key() == other._key()
class VTriangle:
def __init__(self):
self.WedgeIndex0 = 0 # WORD
self.WedgeIndex1 = 0 # WORD
self.WedgeIndex2 = 0 # WORD
self.MatIndex = 0 # BYTE
self.AuxMatIndex = 0 # BYTE
self.SmoothingGroups = 0 # DWORD
def dump(self):
return pack('HHHBBL', self.WedgeIndex0, self.WedgeIndex1, self.WedgeIndex2, self.MatIndex, self.AuxMatIndex, self.SmoothingGroups)
# END UNREAL DATA STRUCTS
#===========================================================================
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
#===========================================================================
# RG - helper class to handle the normal way the UT files are stored
# as sections consisting of a header and then a list of data structures
#===========================================================================
class FileSection:
def __init__(self, name, type_size):
self.Header = VChunkHeader(name, type_size)
self.Data = [] # list of datatypes
def dump(self):
data = self.Header.dump()
for i in range(len(self.Data)):
data = data + self.Data[i].dump()
return data
def UpdateHeader(self):
self.Header.DataCount = len(self.Data)
#===========================================================================
# PSK
#===========================================================================
class PSKFile:
def __init__(self):
self.GeneralHeader = VChunkHeader("ACTRHEAD", 0)
self.Points = FileSection("PNTS0000", SIZE_VPOINT) # VPoint
self.Wedges = FileSection("VTXW0000", SIZE_VVERTEX) # VVertex
self.Faces = FileSection("FACE0000", SIZE_VTRIANGLE) # VTriangle
self.Materials = FileSection("MATT0000", SIZE_VMATERIAL) # VMaterial
self.Bones = FileSection("REFSKELT", SIZE_VBONE) # VBone
self.Influences = FileSection("RAWWEIGHTS", SIZE_VRAWBONEINFLUENCE) # VRawBoneInfluence
#RG - this mapping is not dumped, but is used internally to store the new point indices
# for vertex groups calculated during the mesh dump, so they can be used again
# to dump bone influences during the armature dump
#
# the key in this dictionary is the VertexGroup/Bone Name, and the value
# is a list of tuples containing the new point index and the weight, in that order
#
# Layout:
# { groupname : [ (index, weight), ... ], ... }
#
# example:
# { 'MyVertexGroup' : [ (0, 1.0), (5, 1.0), (3, 0.5) ] , 'OtherGroup' : [(2, 1.0)] }
self.VertexGroups = {}
def AddPoint(self, p):
self.Points.Data.append(p)
def AddWedge(self, w):
self.Wedges.Data.append(w)
def AddFace(self, f):
self.Faces.Data.append(f)
def AddMaterial(self, m):
self.Materials.Data.append(m)
def AddBone(self, b):
self.Bones.Data.append(b)
def AddInfluence(self, i):
self.Influences.Data.append(i)
def UpdateHeaders(self):
self.Points.UpdateHeader()
self.Wedges.UpdateHeader()
self.Faces.UpdateHeader()
self.Materials.UpdateHeader()
self.Bones.UpdateHeader()
self.Influences.UpdateHeader()
def dump(self):
self.UpdateHeaders()
data = self.GeneralHeader.dump() + self.Points.dump() + self.Wedges.dump() + self.Faces.dump() + self.Materials.dump() + self.Bones.dump() + self.Influences.dump()
return data
def GetMatByIndex(self, mat_index):
if mat_index >= 0 and len(self.Materials.Data) > mat_index:
return self.Materials.Data[mat_index]
else:
m = VMaterial()
# modified by VendorX
m.MaterialName = MaterialName[mat_index]
self.AddMaterial(m)
return m
def PrintOut(self):
print( "{:>16} {:}".format( "Points", len(self.Points.Data) ) )
print( "{:>16} {:}".format( "Wedges", len(self.Wedges.Data) ) )
print( "{:>16} {:}".format( "Faces", len(self.Faces.Data) ) )
print( "{:>16} {:}".format( "Materials", len(self.Materials.Data) ) )
print( "{:>16} {:}".format( "Bones", len(self.Bones.Data) ) )
print( "{:>16} {:}".format( "Influences", len(self.Influences.Data) ) )
#===========================================================================
# PSA
#
# Notes from UDN:
# The raw key array holds all the keys for all the bones in all the specified sequences,
# organized as follows:
# For each AnimInfoBinary's sequence there are [Number of bones] times [Number of frames keys]
# in the VQuatAnimKeys, laid out as tracks of [numframes] keys for each bone in the order of
# the bones as defined in the array of FnamedBoneBinary in the PSA.
#
# Once the data from the PSK (now digested into native skeletal mesh) and PSA (digested into
# a native animation object containing one or more sequences) are associated together at runtime,
# bones are linked up by name. Any bone in a skeleton (from the PSK) that finds no partner in
# the animation sequence (from the PSA) will assume its reference pose stance ( as defined in
# the offsets & rotations that are in the VBones making up the reference skeleton from the PSK)
#===========================================================================
class PSAFile:
def __init__(self):
self.GeneralHeader = VChunkHeader("ANIMHEAD", 0)
self.Bones = FileSection("BONENAMES", SIZE_FNAMEDBONEBINARY) #FNamedBoneBinary
self.Animations = FileSection("ANIMINFO", SIZE_ANIMINFOBINARY) #AnimInfoBinary
self.RawKeys = FileSection("ANIMKEYS", SIZE_VQUATANIMKEY) #VQuatAnimKey
# this will take the format of key=Bone Name, value = (BoneIndex, Bone Object)
# THIS IS NOT DUMPED
self.BoneLookup = {}
def AddBone(self, b):
self.Bones.Data.append(b)
def AddAnimation(self, a):
self.Animations.Data.append(a)
def AddRawKey(self, k):
self.RawKeys.Data.append(k)
def UpdateHeaders(self):
self.Bones.UpdateHeader()
self.Animations.UpdateHeader()
self.RawKeys.UpdateHeader()
def GetBoneByIndex(self, bone_index):
if bone_index >= 0 and len(self.Bones.Data) > bone_index:
return self.Bones.Data[bone_index]
def IsEmpty(self):
return (len(self.Bones.Data) == 0 or len(self.Animations.Data) == 0)
def StoreBone(self, b):
self.BoneLookup[b.Name] = [-1, b]
def UseBone(self, bone_name):
if bone_name in self.BoneLookup:
bone_data = self.BoneLookup[bone_name]
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
if bone_data[0] == -1:
bone_data[0] = len(self.Bones.Data)
self.AddBone(bone_data[1])
#self.Bones.Data.append(bone_data[1])
return bone_data[0]
def GetBoneByName(self, bone_name):
if bone_name in self.BoneLookup:
bone_data = self.BoneLookup[bone_name]
return bone_data[1]
def GetBoneIndex(self, bone_name):
if bone_name in self.BoneLookup:
bone_data = self.BoneLookup[bone_name]
return bone_data[0]
def dump(self):
self.UpdateHeaders()
return self.GeneralHeader.dump() + self.Bones.dump() + self.Animations.dump() + self.RawKeys.dump()
def PrintOut(self):
print( "{:>16} {:}".format( "Bones", len(self.Bones.Data) ) )
print( "{:>16} {:}".format( "Animations", len(self.Animations.Data) ) )
print( "{:>16} {:}".format( "Raw keys", len(self.RawKeys.Data) ) )
#===========================================================================
# Helpers to create bone structs
#===========================================================================
def make_vbone( name, parent_index, child_count, orientation_quat, position_vect ):
bone = VBone()
bone.Name = name
bone.ParentIndex = parent_index
bone.NumChildren = child_count
bone.BonePos.Orientation = orientation_quat
bone.BonePos.Position.X = position_vect.x
bone.BonePos.Position.Y = position_vect.y
bone.BonePos.Position.Z = position_vect.z
#these values seem to be ignored?
#bone.BonePos.Length = tail.length
#bone.BonePos.XSize = tail.x
#bone.BonePos.YSize = tail.y
#bone.BonePos.ZSize = tail.z
return bone
def make_namedbonebinary( name, parent_index, child_count, orientation_quat, position_vect, is_real ):
bone = FNamedBoneBinary()
bone.Name = name
bone.ParentIndex = parent_index
bone.NumChildren = child_count
bone.BonePos.Orientation = orientation_quat
bone.BonePos.Position.X = position_vect.x
bone.BonePos.Position.Y = position_vect.y
bone.BonePos.Position.Z = position_vect.z
bone.IsRealBone = is_real
return bone
def make_fquat( bquat ):
quat = FQuat()
#flip handedness for UT = set x,y,z to negative (rotate in other direction)
quat.X = -bquat.x
quat.Y = -bquat.y
quat.Z = -bquat.z
quat.W = bquat.w
return quat
def make_fquat_default( bquat ):
quat = FQuat()
#print(dir(bquat))
quat.X = bquat.x
quat.Y = bquat.y
quat.Z = bquat.z
quat.W = bquat.w
return quat
#===========================================================================
#RG - check to make sure face isnt a line
#===========================================================================
def is_1d_face( face, mesh ):
#ID Vertex of id point
v0 = face.vertices[0]
v1 = face.vertices[1]
v2 = face.vertices[2]
return (mesh.vertices[v0].co == mesh.vertices[v1].co \
or mesh.vertices[v1].co == mesh.vertices[v2].co \
or mesh.vertices[v2].co == mesh.vertices[v0].co)
return False
#===========================================================================
# Smoothing group
# (renamed to seperate it from VVertex.SmoothGroup)
#===========================================================================
class SmoothingGroup:
static_id = 1
def __init__(self):
self.faces = []
self.neighboring_faces = []
self.neighboring_groups = []
self.id = -1
self.local_id = SmoothingGroup.static_id
SmoothingGroup.static_id += 1
def __cmp__(self, other):
if isinstance(other, SmoothingGroup):
return cmp( self.local_id, other.local_id )
return -1
def __hash__(self):
return hash(self.local_id)
# searches neighboring faces to determine which smoothing group ID can be used
def get_valid_smoothgroup_id(self):
temp_id = 1
for group in self.neighboring_groups:
if group != None and group.id == temp_id:
if temp_id < 0x80000000:
temp_id = temp_id << 1
else:
raise Error("Smoothing Group ID Overflowed, Smoothing Group evidently has more than 31 neighboring groups")
self.id = temp_id
return self.id
def make_neighbor(self, new_neighbor):
if new_neighbor not in self.neighboring_groups:
self.neighboring_groups.append( new_neighbor )
def contains_face(self, face):
return (face in self.faces)
def add_neighbor_face(self, face):
if not face in self.neighboring_faces:
self.neighboring_faces.append( face )
def add_face(self, face):
if not face in self.faces:
self.faces.append( face )
def determine_edge_sharing( mesh ):
edge_sharing_list = dict()
for edge in mesh.edges:
edge_sharing_list[edge.key] = []
for face in mesh.tessfaces:
for key in face.edge_keys:
if not face in edge_sharing_list[key]:
edge_sharing_list[key].append(face) # mark this face as sharing this edge
return edge_sharing_list
def find_edges( mesh, key ):
""" Temp replacement for mesh.findEdges().
This is painfully slow.
"""
for edge in mesh.edges:
v = edge.vertices
if key[0] == v[0] and key[1] == v[1]:
return edge.index
def add_face_to_smoothgroup( mesh, face, edge_sharing_list, smoothgroup ):
if face in smoothgroup.faces:
return
smoothgroup.add_face(face)
for key in face.edge_keys:
edge_id = find_edges(mesh, key)
if edge_id != None:
# not sharp
if not( mesh.edges[edge_id].use_edge_sharp):
for shared_face in edge_sharing_list[key]:
if shared_face != face:
# recursive
add_face_to_smoothgroup( mesh, shared_face, edge_sharing_list, smoothgroup )
# sharp
else:
for shared_face in edge_sharing_list[key]:
if shared_face != face:
smoothgroup.add_neighbor_face( shared_face )
def determine_smoothgroup_for_face( mesh, face, edge_sharing_list, smoothgroup_list ):
for group in smoothgroup_list:
if (face in group.faces):
return
smoothgroup = SmoothingGroup();
add_face_to_smoothgroup( mesh, face, edge_sharing_list, smoothgroup )
if not smoothgroup in smoothgroup_list:
smoothgroup_list.append( smoothgroup )
def build_neighbors_tree( smoothgroup_list ):
for group in smoothgroup_list:
for face in group.neighboring_faces:
for neighbor_group in smoothgroup_list:
if neighbor_group.contains_face( face ) and neighbor_group not in group.neighboring_groups:
group.make_neighbor( neighbor_group )
neighbor_group.make_neighbor( group )
#===========================================================================
# parse_smooth_groups
#===========================================================================
def parse_smooth_groups( mesh ):
print("Parsing smooth groups...")
t = time.clock()
smoothgroup_list = []
edge_sharing_list = determine_edge_sharing(mesh)
#print("faces:",len(mesh.tessfaces))
interval = math.floor(len(mesh.tessfaces) / 100)
if interval == 0: #if the faces are few do this
interval = math.floor(len(mesh.tessfaces) / 10)
#print("FACES:",len(mesh.tessfaces),"//100 =" "interval:",interval)
for face in mesh.tessfaces:
#print(dir(face))
determine_smoothgroup_for_face(mesh, face, edge_sharing_list, smoothgroup_list)
# progress indicator, writes to console without scrolling
if face.index > 0 and (face.index % interval) == 0:
print("Processing... {}%\r".format( int(face.index / len(mesh.tessfaces) * 100) ), end='')
sys.stdout.flush()
print("Completed" , ' '*20)
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
verbose("len(smoothgroup_list)={}".format(len(smoothgroup_list)))
build_neighbors_tree(smoothgroup_list)
for group in smoothgroup_list:
group.get_valid_smoothgroup_id()
print("Smooth group parsing completed in {:.2f}s".format(time.clock() - t))
return smoothgroup_list
#===========================================================================
# http://en.wikibooks.org/wiki/Blender_3D:_Blending_Into_Python/Cookbook#Triangulate_NMesh
# blender 2.50 format using the Operators/command convert the mesh to tri mesh
#===========================================================================
def triangulate_mesh( object ):
verbose(header("triangulateNMesh"))
#print(type(object))
scene = bpy.context.scene
me_ob = object.copy()
me_ob.data = object.to_mesh(bpy.context.scene, True, 'PREVIEW') #write data object
bpy.context.scene.objects.link(me_ob)
bpy.context.scene.update()
bpy.ops.object.mode_set(mode='OBJECT')
for i in scene.objects:
i.select = False # deselect all objects
me_ob.select = True
scene.objects.active = me_ob
print("Copy and Convert mesh just incase any way...")
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.mesh.select_all(action='SELECT')# select all the face/vertex/edge
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.mesh.quads_convert_to_tris()
bpy.context.scene.update()
bpy.ops.object.mode_set(mode='OBJECT')
bpy.context.scene.udk_option_triangulate = True
verbose("Triangulated mesh")
me_ob.data = me_ob.to_mesh(bpy.context.scene, True, 'PREVIEW') #write data object
bpy.context.scene.update()
return me_ob
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
#copy mesh data and then merge them into one object
def meshmerge(selectedobjects):
bpy.ops.object.mode_set(mode='OBJECT')
cloneobjects = []
if len(selectedobjects) > 1:
print("selectedobjects:",len(selectedobjects))
count = 0 #reset count
for count in range(len( selectedobjects)):
#print("Index:",count)
if selectedobjects[count] != None:
me_da = selectedobjects[count].data.copy() #copy data
me_ob = selectedobjects[count].copy() #copy object
#note two copy two types else it will use the current data or mesh
me_ob.data = me_da
bpy.context.scene.objects.link(me_ob)#link the object to the scene #current object location
print("Index:",count,"clone object",me_ob.name)
cloneobjects.append(me_ob)
#bpy.ops.object.mode_set(mode='OBJECT')
for i in bpy.data.objects: i.select = False #deselect all objects
count = 0 #reset count
#bpy.ops.object.mode_set(mode='OBJECT')
for count in range(len( cloneobjects)):
if count == 0:
bpy.context.scene.objects.active = cloneobjects[count]
print("Set Active Object:",cloneobjects[count].name)
cloneobjects[count].select = True
bpy.ops.object.join()
if len(cloneobjects) > 1:
bpy.types.Scene.udk_copy_merge = True
return cloneobjects[0]
#sort the mesh center top list and not center at the last array. Base on order while select to merge mesh to make them center.
def sortmesh(selectmesh):
print("MESH SORTING...")
centermesh = []
notcentermesh = []
for countm in range(len(selectmesh)):
if selectmesh[countm].location.x == 0 and selectmesh[countm].location.y == 0 and selectmesh[countm].location.z == 0:
centermesh.append(selectmesh[countm])
else:
notcentermesh.append(selectmesh[countm])
selectmesh = []
for countm in range(len(centermesh)):
selectmesh.append(centermesh[countm])
for countm in range(len(notcentermesh)):
selectmesh.append(notcentermesh[countm])
if len(selectmesh) == 1:
return selectmesh[0]
else:
return meshmerge(selectmesh)
#===========================================================================
# parse_mesh
#===========================================================================
def parse_mesh( mesh, psk ):
#bpy.ops.object.mode_set(mode='OBJECT')
#error ? on commands for select object?
print(header("MESH", 'RIGHT'))
print("Mesh object:", mesh.name)
scene = bpy.context.scene
for i in scene.objects: i.select = False # deselect all objects
scene.objects.active = mesh
mesh = triangulate_mesh(mesh)
if bpy.types.Scene.udk_copy_merge == True:
bpy.context.scene.objects.unlink(setmesh)
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
#print("FACES----:",len(mesh.data.tessfaces))
verbose("Working mesh object: {}".format(mesh.name))
#collect a list of the material names
print("Materials...")
mat_slot_index = 0
for slot in mesh.material_slots:
print(" Material {} '{}'".format(mat_slot_index, slot.name))
MaterialName.append(slot.name)
#if slot.material.texture_slots[0] != None:
#if slot.material.texture_slots[0].texture.image.filepath != None:
#print(" Texture path {}".format(slot.material.texture_slots[0].texture.image.filepath))
#create the current material
v_material = psk.GetMatByIndex(mat_slot_index)
v_material.MaterialName = slot.name
v_material.TextureIndex = mat_slot_index
v_material.AuxMaterial = mat_slot_index
mat_slot_index += 1
verbose(" PSK index {}".format(v_material.TextureIndex))
#END slot in mesh.material_slots
# object_mat = mesh.materials[0]
#object_material_index = mesh.active_material_index
#FIXME ^ this is redundant due to "= face.material_index" in face loop
wedges = ObjMap()
points = ObjMap()
points_linked = {}
discarded_face_count = 0
smoothgroup_list = parse_smooth_groups(mesh.data)
print("{} faces".format(len(mesh.data.tessfaces)))
print("Smooth groups active:", bpy.context.scene.udk_option_smoothing_groups)
for face in mesh.data.tessfaces:
smoothgroup_id = 0x80000000
for smooth_group in smoothgroup_list:
if smooth_group.contains_face(face):
smoothgroup_id = smooth_group.id
break
#print ' -- Dumping UVs -- '
#print current_face.uv_textures
# modified by VendorX
object_material_index = face.material_index
if len(face.vertices) != 3:
raise Error("Non-triangular face (%i)" % len(face.vertices))
#RG - apparently blender sometimes has problems when you do quad to triangle
# conversion, and ends up creating faces that have only TWO points -
# one of the points is simply in the vertex list for the face twice.
# This is bad, since we can't get a real face normal for a LINE, we need
# a plane for this. So, before we add the face to the list of real faces,
# ensure that the face is actually a plane, and not a line. If it is not
# planar, just discard it and notify the user in the console after we're
# done dumping the rest of the faces
if not is_1d_face(face, mesh.data):
wedge_list = []
vect_list = []
#get or create the current material
psk.GetMatByIndex(object_material_index)
face_index = face.index
has_uv = False
face_uv = None
if len(mesh.data.uv_textures) > 0:
has_uv = True
uv_layer = mesh.data.tessface_uv_textures.active
face_uv = uv_layer.data[face_index]
#size(data) is number of texture faces. Each face has UVs
#print("DATA face uv: ",len(faceUV.uv), " >> ",(faceUV.uv[0][0]))
for i in range(3):
vert_index = face.vertices[i]
vert = mesh.data.vertices[vert_index]
uv = []
#assumes 3 UVs Per face (for now)
if (has_uv):
if len(face_uv.uv) != 3:
print("WARNING: face has more or less than 3 UV coordinates - writing 0,0...")
uv = [0.0, 0.0]
else:
uv = [face_uv.uv[i][0],face_uv.uv[i][1]] #OR bottom works better # 24 for cube
else:
#print ("No UVs?")
uv = [0.0, 0.0]
#flip V coordinate because UEd requires it and DOESN'T flip it on its own like it
#does with the mesh Y coordinates. this is otherwise known as MAGIC-2
uv[1] = 1.0 - uv[1]
# clamp UV coords if udk_option_clamp_uv is True
if bpy.context.scene.udk_option_clamp_uv:
if (uv[0] > 1):
uv[0] = 1
if (uv[0] < 0):
uv[0] = 0
if (uv[1] > 1):
uv[1] = 1
if (uv[1] < 0):
uv[1] = 0
# RE - Append untransformed vector (for normal calc below)
# TODO: convert to Blender.Mathutils
vect_list.append( FVector(vert.co.x, vert.co.y, vert.co.z) )
# Transform position for export
#vpos = vert.co * object_material_index
vpos = mesh.matrix_local * vert.co
# Create the point
p = VPoint()
p.Point.X = vpos.x
p.Point.Y = vpos.y
p.Point.Z = vpos.z
if bpy.context.scene.udk_option_smoothing_groups:#is this necessary?
p.SmoothGroup = smoothgroup_id
lPoint = VPointSimple()
lPoint.Point.X = vpos.x
lPoint.Point.Y = vpos.y
lPoint.Point.Z = vpos.z
if lPoint in points_linked:
if not(p in points_linked[lPoint]):
points_linked[lPoint].append(p)
else:
points_linked[lPoint] = [p]
# Create the wedge
w = VVertex()
w.MatIndex = object_material_index
w.PointIndex = points.get(p) # store keys
w.U = uv[0]
w.V = uv[1]
if bpy.context.scene.udk_option_smoothing_groups:#is this necessary?
w.SmoothGroup = smoothgroup_id
index_wedge = wedges.get(w)
wedge_list.append(index_wedge)
#print results
#print("result PointIndex={}, U={:.6f}, V={:.6f}, wedge_index={}".format(
# w.PointIndex,
# w.U,
# w.V,
# index_wedge))
#END for i in range(3)
# Determine face vertex order
# TODO: convert to Blender.Mathutils
# get normal from blender
no = face.normal
# convert to FVector
norm = FVector(no[0], no[1], no[2])
# Calculate the normal of the face in blender order
tnorm = vect_list[1].sub(vect_list[0]).cross(vect_list[2].sub(vect_list[1]))
# RE - dot the normal from blender order against the blender normal
# this gives the product of the two vectors' lengths along the blender normal axis
# all that matters is the sign
dot = norm.dot(tnorm)
tri = VTriangle()
# RE - magic: if the dot product above > 0, order the vertices 2, 1, 0
# if the dot product above < 0, order the vertices 0, 1, 2
# if the dot product is 0, then blender's normal is coplanar with the face
# and we cannot deduce which side of the face is the outside of the mesh
if dot > 0:
(tri.WedgeIndex2, tri.WedgeIndex1, tri.WedgeIndex0) = wedge_list
elif dot < 0:
(tri.WedgeIndex0, tri.WedgeIndex1, tri.WedgeIndex2) = wedge_list
else:
dindex0 = face.vertices[0];
dindex1 = face.vertices[1];
dindex2 = face.vertices[2];
mesh.data.vertices[dindex0].select = True
mesh.data.vertices[dindex1].select = True
mesh.data.vertices[dindex2].select = True
raise Error("Normal coplanar with face! points:", mesh.data.vertices[dindex0].co, mesh.data.vertices[dindex1].co, mesh.data.vertices[dindex2].co)
face.select = True
#print("smooth:",(current_face.use_smooth))
#not sure if this right
#tri.SmoothingGroups
if face.use_smooth == True:
tri.SmoothingGroups = 1
else:
tri.SmoothingGroups = 0
#tri.SmoothingGroups = 1
tri.MatIndex = object_material_index
if bpy.context.scene.udk_option_smoothing_groups:
tri.SmoothingGroups = smoothgroup_id
psk.AddFace(tri)
#END if not is_1d_face(current_face, mesh.data)
else:
discarded_face_count += 1
#END face in mesh.data.faces
print("{} points".format(len(points.dict)))
for point in points.items():
psk.AddPoint(point)
if len(points.dict) > 32767:
raise Error("Mesh vertex limit exceeded! {} > 32767".format(len(points.dict)))
print("{} wedges".format(len(wedges.dict)))
for wedge in wedges.items():
psk.AddWedge(wedge)
# alert the user to degenerate face issues
if discarded_face_count > 0:
print("WARNING: Mesh contained degenerate faces (non-planar)")
print(" Discarded {} faces".format(discarded_face_count))
#RG - walk through the vertex groups and find the indexes into the PSK points array
#for them, then store that index and the weight as a tuple in a new list of
#verts for the group that we can look up later by bone name, since Blender matches
#verts to bones for influences by having the VertexGroup named the same thing as
#the bone
#[print(x, len(points_linked[x])) for x in points_linked]
#print("pointsindex length ",len(points_linked))
#vertex group
# all vertex groups of the mesh (obj)...
for obj_vertex_group in mesh.vertex_groups:
#print(" bone group build:",obj_vertex_group.name)#print bone name
#print(dir(obj_vertex_group))
verbose("obj_vertex_group.name={}".format(obj_vertex_group.name))
vertex_list = []
# all vertices in the mesh...
for vertex in mesh.data.vertices:
#print(dir(vertex))
# all groups this vertex is a member of...
for vgroup in vertex.groups:
if vgroup.group == obj_vertex_group.index:
vertex_weight = vgroup.weight
p = VPointSimple()
vpos = mesh.matrix_local * vertex.co
p.Point.X = vpos.x
p.Point.Y = vpos.y
p.Point.Z = vpos.z
for point in points_linked[p]:
point_index = points.get(point) #point index
v_item = (point_index, vertex_weight)
vertex_list.append(v_item)
#bone name, [point id and wieght]
#print("Add Vertex Group:",obj_vertex_group.name, " No. Points:",len(vertex_list))
psk.VertexGroups[obj_vertex_group.name] = vertex_list
# remove the temporary triangulated mesh
if bpy.context.scene.udk_option_triangulate == True:
verbose("Removing temporary triangle mesh: {}".format(mesh.name))
bpy.ops.object.mode_set(mode='OBJECT') # OBJECT mode
mesh.parent = None # unparent to avoid phantom links
bpy.context.scene.objects.unlink(mesh) # unlink
#===========================================================================
# Collate bones that belong to the UDK skeletal mesh
#===========================================================================
def parse_armature( armature, psk, psa ):
print(header("ARMATURE", 'RIGHT'))
verbose("Armature object: {} Armature data: {}".format(armature.name, armature.data.name))
# generate a list of root bone candidates
root_candidates = [b for b in armature.data.bones if b.parent == None and b.use_deform == True]
# should be a single, unambiguous result
if len(root_candidates) == 0:
raise Error("Cannot find root for UDK bones. The root bone must use deform.")
if len(root_candidates) > 1:
raise Error("Ambiguous root for UDK. More than one root bone is using deform.")
# prep for bone collection
udk_root_bone = root_candidates[0]
udk_bones = []
BoneUtil.static_bone_id = 0 # replaces global
# traverse bone chain
print("{: <3} {: <48} {: <20}".format("ID", "Bone", "Status"))
print()
recurse_bone(udk_root_bone, udk_bones, psk, psa, 0, armature.matrix_local)
# final validation
if len(udk_bones) < 3:
raise Error("Less than three bones may crash UDK (legacy issue?)")
# return a list of bones making up the entire udk skel
# this is passed to parse_animation instead of working from keyed bones in the action
return udk_bones
#===========================================================================
# bone current bone
# bones bone list
# psk the PSK file object
# psa the PSA file object
# parent_id
# parent_matrix
# indent text indent for recursive log
#===========================================================================
def recurse_bone( bone, bones, psk, psa, parent_id, parent_matrix, indent="" ):
status = "Ok"
bones.append(bone);
if not bone.use_deform:
status = "No effect"
# calc parented bone transform
if bone.parent != None:
quat = make_fquat(bone.matrix.to_quaternion())
quat_parent = bone.parent.matrix.to_quaternion().inverted()
parent_head = quat_parent * bone.parent.head
parent_tail = quat_parent * bone.parent.tail
translation = (parent_tail - parent_head) + bone.head
# calc root bone transform
else:
translation = parent_matrix * bone.head # ARMATURE OBJECT Location
rot_matrix = bone.matrix * parent_matrix.to_3x3() # ARMATURE OBJECT Rotation
quat = make_fquat_default(rot_matrix.to_quaternion())
bone_id = BoneUtil.static_bone_id # ALT VERS
BoneUtil.static_bone_id += 1 # ALT VERS
child_count = len(bone.children)
psk.AddBone( make_vbone(bone.name, parent_id, child_count, quat, translation) )
psa.StoreBone( make_namedbonebinary(bone.name, parent_id, child_count, quat, translation, 1) )
#RG - dump influences for this bone - use the data we collected in the mesh dump phase to map our bones to vertex groups
if bone.name in psk.VertexGroups:
vertex_list = psk.VertexGroups[bone.name]
#print("vertex list:", len(vertex_list), " of >" ,bone.name )
for vertex_data in vertex_list:
point_index = vertex_data[0]
vertex_weight = vertex_data[1]
influence = VRawBoneInfluence()
influence.Weight = vertex_weight
influence.BoneIndex = bone_id
influence.PointIndex = point_index
#print (" AddInfluence to vertex {}, weight={},".format(point_index, vertex_weight))
psk.AddInfluence(influence)
else:
status = "No vertex group"
#FIXME overwriting previous status error?
print("{:<3} {:<48} {:<20}".format(bone_id, indent+bone.name, status))
#bone.matrix_local
#recursively dump child bones
for child_bone in bone.children:
recurse_bone(child_bone, bones, psk, psa, bone_id, parent_matrix, " "+indent)
# FIXME rename? remove?
class BoneUtil:
static_bone_id = 0 # static property to replace global
#===========================================================================
# armature the armature
# udk_bones list of bones to be exported
# actions_to_export list of actions to process for export
# psa the PSA file object
#===========================================================================
def parse_animation( armature, udk_bones, actions_to_export, psa ):
print(header("ANIMATION", 'RIGHT'))
context = bpy.context
anim_rate = context.scene.render.fps
verbose("Armature object: {}".format(armature.name))
print("Scene: {} FPS: {} Frames: {} to {}".format(context.scene.name, anim_rate, context.scene.frame_start, context.scene.frame_end))
print("Processing {} action(s)".format(len(actions_to_export)))
print()
if armature.animation_data == None:
print("None Actions Set! skipping...")
return
restoreAction = armature.animation_data.action # Q: is animation_data always valid?
restoreFrame = context.scene.frame_current # we already do this in export_proxy, but we'll do it here too for now
raw_frame_index = 0 # used to set FirstRawFrame, seperating actions in the raw keyframe array
# action loop...
for action in actions_to_export:
# removed: check for armature with no animation; all it did was force you to add one
if not len(action.fcurves):
print("{} has no keys, skipping".format(action.name))
continue
# apply action to armature and update scene
armature.animation_data.action = action
context.scene.update()
# min/max frames define range
framemin, framemax = action.frame_range
start_frame = int(framemin)
end_frame = int(framemax)
scene_range = range(start_frame, end_frame + 1)
frame_count = len(scene_range)
# create the AnimInfoBinary
anim = AnimInfoBinary()
anim.Name = action.name
anim.Group = "" # unused?
anim.NumRawFrames = frame_count
anim.AnimRate = anim_rate
anim.FirstRawFrame = raw_frame_index
print("{}, frames {} to {} ({} frames)".format(action.name, start_frame, end_frame, frame_count))
# removed: bone lookup table
# build a list of pose bones relevant to the collated udk_bones
# fixme: could be done once, prior to loop?
udk_pose_bones = []
for b in udk_bones:
for pb in armature.pose.bones:
if b.name == pb.name:
udk_pose_bones.append(pb)
break;
# sort in the order the bones appear in the PSA file
ordered_bones = {}
ordered_bones = sorted([(psa.UseBone(b.name), b) for b in udk_pose_bones], key=operator.itemgetter(0))
# NOTE: posebone.bone references the obj/edit bone
# REMOVED: unique_bone_indexes is redundant?
# frame loop...
for i in range(frame_count):
frame = scene_range[i]
#verbose("FRAME {}".format(i), i) # test loop sampling
# advance to frame (automatically updates the pose)
context.scene.frame_set(frame)
# compute the key for each bone
for bone_data in ordered_bones:
bone_index = bone_data[0]
pose_bone = bone_data[1]
pose_bone_matrix = mathutils.Matrix(pose_bone.matrix)
if pose_bone.parent != None:
pose_bone_parent_matrix = mathutils.Matrix(pose_bone.parent.matrix)
pose_bone_matrix = pose_bone_parent_matrix.inverted() * pose_bone_matrix
head = pose_bone_matrix.to_translation()
quat = pose_bone_matrix.to_quaternion().normalized()
if pose_bone.parent != None:
quat = make_fquat(quat)
else:
quat = make_fquat_default(quat)
vkey = VQuatAnimKey()
vkey.Position.X = head.x
vkey.Position.Y = head.y
vkey.Position.Z = head.z
vkey.Orientation = quat
# frame delta = 1.0 / fps
vkey.Time = 1.0 / float(anim_rate) # according to C++ header this is "disregarded"
psa.AddRawKey(vkey)
# END for bone_data in ordered_bones
raw_frame_index += 1
# END for i in range(frame_count)
anim.TotalBones = len(ordered_bones) # REMOVED len(unique_bone_indexes)
anim.TrackTime = float(frame_count) # frame_count/anim.AnimRate makes more sense, but this is what actually works in UDK
verbose("anim.TotalBones={}, anim.TrackTime={}".format(anim.TotalBones, anim.TrackTime))
psa.AddAnimation(anim)
# END for action in actions
# restore
armature.animation_data.action = restoreAction
context.scene.frame_set(restoreFrame)
#===========================================================================
# Collate actions to be exported
# Modify this to filter for one, some or all actions. For now use all.
# RETURNS list of actions
#===========================================================================
def collate_actions():
verbose(header("collate_actions"))
actions_to_export = []
for action in bpy.data.actions:
verbose(" + {}".format(action.name))
actions_to_export.append(action)
return actions_to_export
#===========================================================================
# Locate the target armature and mesh for export
# RETURNS armature, mesh
#===========================================================================
def find_armature_and_mesh():
verbose(header("find_armature_and_mesh", 'LEFT', '<', 60))
context = bpy.context
active_object = context.active_object
armature = None
mesh = None
# TODO:
# this could be more intuitive
bpy.ops.object.mode_set(mode='OBJECT')
# try the active object
if active_object and active_object.type == 'ARMATURE':
armature = active_object
# otherwise, try for a single armature in the scene
else:
all_armatures = [obj for obj in context.scene.objects if obj.type == 'ARMATURE']
if len(all_armatures) == 1:
armature = all_armatures[0]
elif len(all_armatures) > 1:
raise Error("Please select an armature in the scene")
else:
raise Error("No armatures in scene")
verbose("Found armature: {}".format(armature.name))
meshselected = []
parented_meshes = [obj for obj in armature.children if obj.type == 'MESH']
for obj in armature.children:
#print(dir(obj))
if obj.type == 'MESH' and obj.select == True:
meshselected.append(obj)
# try the active object
if active_object and active_object.type == 'MESH' and len(meshselected) == 0:
if active_object.parent == armature:
mesh = active_object
else:
raise Error("The selected mesh is not parented to the armature")
# otherwise, expect a single mesh parented to the armature (other object types are ignored)
else:
print("Number of meshes:",len(parented_meshes))
print("Number of meshes (selected):",len(meshselected))
if len(parented_meshes) == 1:
mesh = parented_meshes[0]
elif len(parented_meshes) > 1:
if len(meshselected) >= 1:
mesh = sortmesh(meshselected)
else:
raise Error("More than one mesh(s) parented to armature. Select object(s)!")
else:
raise Error("No mesh parented to armature")
verbose("Found mesh: {}".format(mesh.name))
if len(armature.pose.bones) == len(mesh.vertex_groups):
print("Armature and Mesh Vertex Groups matches Ok!")
else:
raise Error("Armature bones:" + str(len(armature.pose.bones)) + " Mesh Vertex Groups:" + str(len(mesh.vertex_groups)) +" doesn't match!")
return armature, mesh
#===========================================================================
# Returns a list of vertex groups in the mesh. Can be modified to filter
# groups as necessary.
# UNUSED
#===========================================================================
def collate_vertex_groups( mesh ):
verbose("collate_vertex_groups")
groups = []
for group in mesh.vertex_groups:
groups.append(group)
verbose(" " + group.name)
return groups
#===========================================================================
# Main
#===========================================================================
def export(filepath):
print(header("Export", 'RIGHT'))
bpy.types.Scene.udk_copy_merge = False #in case fail to export set this to default
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
t = time.clock()
context = bpy.context
print("Blender Version {}.{}.{}".format(bpy.app.version[0], bpy.app.version[1], bpy.app.version[2]))
print("Filepath: {}".format(filepath))
verbose("PSK={}, PSA={}".format(context.scene.udk_option_export_psk, context.scene.udk_option_export_psa))
# find armature and mesh
# [change this to implement alternative methods; raise Error() if not found]
udk_armature, udk_mesh = find_armature_and_mesh()
# check misc conditions
if not (udk_armature.scale.x == udk_armature.scale.y == udk_armature.scale.z == 1):
raise Error("bad armature scale: armature object should have uniform scale of 1 (ALT-S)")
if not (udk_mesh.scale.x == udk_mesh.scale.y == udk_mesh.scale.z == 1):
raise Error("bad mesh scale: mesh object should have uniform scale of 1 (ALT-S)")
if not (udk_armature.location.x == udk_armature.location.y == udk_armature.location.z == 0):
raise Error("bad armature location: armature should be located at origin (ALT-G)")
if not (udk_mesh.location.x == udk_mesh.location.y == udk_mesh.location.z == 0):
raise Error("bad mesh location: mesh should be located at origin (ALT-G)")
# prep
psk = PSKFile()
psa = PSAFile()
# step 1
parse_mesh(udk_mesh, psk)
# step 2
udk_bones = parse_armature(udk_armature, psk, psa)
# step 3
if context.scene.udk_option_export_psa == True:
actions = collate_actions()
parse_animation(udk_armature, udk_bones, actions, psa)
# write files
print(header("Exporting", 'CENTER'))
psk_filename = filepath + '.psk'
psa_filename = filepath + '.psa'
if context.scene.udk_option_export_psk == True:
print("Skeletal mesh data...")
psk.PrintOut()
file = open(psk_filename, "wb")
file.write(psk.dump())
file.close()
print("Exported: " + psk_filename)
print()
if context.scene.udk_option_export_psa == True:
print("Animation data...")
if not psa.IsEmpty():
psa.PrintOut()
file = open(psa_filename, "wb")
file.write(psa.dump())
file.close()
print("Exported: " + psa_filename)
else:
print("No Animation (.psa file) to export")
print()
print("Export completed in {:.2f} seconds".format((time.clock() - t)))
from bpy.props import *
#===========================================================================
# Operator
#===========================================================================
class Operator_UDKExport( bpy.types.Operator ):
bl_idname = "object.udk_export"
bl_label = "Export now"
__doc__ = "Export to UDK"
def execute(self, context):
print( "\n"*8 )
scene = bpy.context.scene
scene.udk_option_export_psk = (scene.udk_option_export == '0' or scene.udk_option_export == '2')
scene.udk_option_export_psa = (scene.udk_option_export == '1' or scene.udk_option_export == '2')
filepath = get_dst_path()
# cache settings
restore_frame = scene.frame_current
message = "Finish Export!"
try:
export(filepath)
except Error as err:
print(err.message)
message = err.message
# restore settings
scene.frame_set(restore_frame)
self.report({'ERROR'}, message)
# restore settings
scene.frame_set(restore_frame)
return {'FINISHED'}
#===========================================================================
# Operator
#===========================================================================
class Operator_ToggleConsole( bpy.types.Operator ):
bl_idname = "object.toggle_console"
bl_label = "Toggle console"
__doc__ = "Show or hide the console"
#def invoke(self, context, event):
# bpy.ops.wm.console_toggle()
# return{'FINISHED'}
def execute(self, context):
bpy.ops.wm.console_toggle()
return {'FINISHED'}
#===========================================================================
# Get filepath for export
#===========================================================================
def get_dst_path():
if bpy.context.scene.udk_option_filename_src == '0':
if bpy.context.active_object:
path = os.path.split(bpy.data.filepath)[0] + "\\" + bpy.context.active_object.name# + ".psk"
else:
path = os.path.split(bpy.data.filepath)[0] + "\\" + "Unknown";
else:
path = os.path.splitext(bpy.data.filepath)[0]# + ".psk"
return path
# fixme
from bpy.props import *
#Added by [MGVS]
bpy.types.Scene.udk_option_filename_src = EnumProperty(
name = "Filename",
description = "Sets the name for the files",
items = [ ('0', "From object", "Name will be taken from object name"),
('1', "From Blend", "Name will be taken from .blend file name") ],
default = '0')
bpy.types.Scene.udk_option_export_psk = BoolProperty(
name = "bool export psa",
description = "bool for exporting this psk format",
default = True)
bpy.types.Scene.udk_option_export_psa = BoolProperty(
name = "bool export psa",
description = "bool for exporting this psa format",
default = True)
bpy.types.Scene.udk_option_clamp_uv = BoolProperty(
name = "Clamp UV",
description = "Clamp UV co-ordinates to [0-1]",
default = False)
bpy.types.Scene.udk_copy_merge = BoolProperty(
name = "merge mesh",
description = "Deal with unlinking the mesh to be remove while exporting the object.",
default = False)
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
bpy.types.Scene.udk_option_export = EnumProperty(
name = "Export",
description = "What to export",
items = [ ('0', "Mesh only", "Exports the PSK file for the skeletal mesh"),
('1', "Animation only", "Export the PSA file for animations"),
('2', "Mesh & Animation", "Export both PSK and PSA files") ],
default = '2')
bpy.types.Scene.udk_option_verbose = BoolProperty(
name = "Verbose",
description = "Verbose console output",
default = False)
bpy.types.Scene.udk_option_smoothing_groups = BoolProperty(
name = "Smooth Groups",
description = "Activate hard edges as smooth groups",
default = True)
bpy.types.Scene.udk_option_triangulate = BoolProperty(
name = "Triangulate Mesh",
description = "Convert Quads to Triangles",
default = False)
#===========================================================================
# User interface
#===========================================================================
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
class OBJECT_OT_UTSelectedFaceSmooth(bpy.types.Operator):
bl_idname = "object.utselectfacesmooth" # XXX, name???
bl_label = "Select Smooth faces"
__doc__ = """It will only select smooth faces that is select mesh"""
def invoke(self, context, event):
print("----------------------------------------")
print("Init Select Face(s):")
bselected = False
for obj in bpy.data.objects:
if obj.type == 'MESH' and obj.select == True:
smoothcount = 0
flatcount = 0
bpy.ops.object.mode_set(mode='OBJECT')#it need to go into object mode to able to select the faces
for i in bpy.context.scene.objects: i.select = False #deselect all objects
obj.select = True #set current object select
bpy.context.scene.objects.active = obj #set active object
mesh = bmesh.new();
mesh.from_mesh(obj.data)
for face in mesh.faces:
face.select = False
for face in mesh.faces:
if face.smooth == True:
face.select = True
smoothcount += 1
else:
flatcount += 1
face.select = False
mesh.to_mesh(obj.data)
bpy.context.scene.update()
bpy.ops.object.mode_set(mode='EDIT')
print("Select Smooth Count(s):",smoothcount," Flat Count(s):",flatcount)
bselected = True
break
if bselected:
print("Selected Face(s) Exectue!")
self.report({'INFO'}, "Selected Face(s) Exectue!")
else:
print("Didn't select Mesh Object!")
self.report({'INFO'}, "Didn't Select Mesh Object!")
print("----------------------------------------")
return{'FINISHED'}
class OBJECT_OT_MeshClearWeights(bpy.types.Operator):
bl_idname = "object.meshclearweights" # XXX, name???
bl_label = "Remove Mesh vertex weights"
__doc__ = """Remove all mesh vertex groups weights for the bones."""
def invoke(self, context, event):
for obj in bpy.data.objects:
if obj.type == 'MESH' and obj.select == True:
for vg in obj.vertex_groups:
obj.vertex_groups.remove(vg)
self.report({'INFO'}, "Mesh Vertex Groups Remove!")
break
return{'FINISHED'}
def unpack_list(list_of_tuples):
l = []
for t in list_of_tuples:
l.extend(t)
return l
class OBJECT_OT_UTRebuildMesh(bpy.types.Operator):
bl_idname = "object.utrebuildmesh" # XXX, name???
bl_label = "Rebuild Mesh"
__doc__ = """It rebuild the mesh from scrape from the selected mesh object. Note the scale will be 1:1 for object mode. To keep from deforming"""
def invoke(self, context, event):
print("----------------------------------------")
print("Init Mesh Bebuild...")
bselected = False
for obj in bpy.data.objects:
if obj.type == 'MESH' and obj.select == True:
for i in bpy.context.scene.objects: i.select = False #deselect all objects
obj.select = True
bpy.context.scene.objects.active = obj
bpy.ops.object.mode_set(mode='OBJECT')
me_ob = bpy.data.meshes.new(("Re_"+obj.name))
mesh = obj.data
faces = []
verts = []
smoothings = []
uvfaces = []
print("creating array build mesh...")
mmesh = obj.to_mesh(bpy.context.scene,True,'PREVIEW')
uv_layer = mmesh.tessface_uv_textures.active
for face in mmesh.tessfaces:
smoothings.append(face.use_smooth)#smooth or flat in boolean
if uv_layer != None:#check if there texture data exist
faceUV = uv_layer.data[face.index]
uvs = []
for uv in faceUV.uv:
uvs.append((uv[0],uv[1]))
uvfaces.append(uvs)
print((face.vertices[:]))
if len(face.vertices) == 3:
faces.extend([(face.vertices[0],face.vertices[1],face.vertices[2],0)])
else:
faces.extend([(face.vertices[0],face.vertices[1],face.vertices[2],face.vertices[3])])
#vertex positions
for vertex in mesh.vertices:
verts.append(vertex.co.to_tuple())
#vertices weight groups into array
vertGroups = {} #array in strings
for vgroup in obj.vertex_groups:
vlist = []
for v in mesh.vertices:
for vg in v.groups:
if vg.group == vgroup.index:
vlist.append((v.index,vg.weight))
#print((v.index,vg.weight))
vertGroups[vgroup.name] = vlist
print("creating mesh object...")
#me_ob.from_pydata(verts, [], faces)
me_ob.vertices.add(len(verts))
me_ob.tessfaces.add(len(faces))
me_ob.vertices.foreach_set("co", unpack_list(verts))
me_ob.tessfaces.foreach_set("vertices_raw",unpack_list( faces))
me_ob.tessfaces.foreach_set("use_smooth", smoothings)#smooth array from face
#check if there is uv faces
if len(uvfaces) > 0:
uvtex = me_ob.tessface_uv_textures.new(name="retex")
for i, face in enumerate(me_ob.tessfaces):
blender_tface = uvtex.data[i] #face
mfaceuv = uvfaces[i]
if len(mfaceuv) == 3:
blender_tface.uv1 = mfaceuv[0];
blender_tface.uv2 = mfaceuv[1];
blender_tface.uv3 = mfaceuv[2];
if len(mfaceuv) == 4:
blender_tface.uv1 = mfaceuv[0];
blender_tface.uv2 = mfaceuv[1];
blender_tface.uv3 = mfaceuv[2];
blender_tface.uv4 = mfaceuv[3];
me_ob.update()#need to update the information to able to see into the secne
obmesh = bpy.data.objects.new(("Re_"+obj.name),me_ob)
bpy.context.scene.update()
#Build tmp materials
materialname = "ReMaterial"
for matcount in mesh.materials:
matdata = bpy.data.materials.new(materialname)
me_ob.materials.append(matdata)
#assign face to material id
for face in mesh.tessfaces:
me_ob.faces[face.index].material_index = face.material_index
#vertices weight groups
for vgroup in vertGroups:
group = obmesh.vertex_groups.new(vgroup)
for v in vertGroups[vgroup]:
group.add([v[0]], v[1], 'ADD')# group.add(array[vertex id],weight,add)
bpy.context.scene.objects.link(obmesh)
print("Mesh Material Count:",len(me_ob.materials))
matcount = 0
print("MATERIAL ID OREDER:")
for mat in me_ob.materials:
print("-Material:",mat.name,"INDEX:",matcount)
matcount += 1
print("Object Name:",obmesh.name)
bpy.context.scene.update()
bselected = True
break
if bselected:
self.report({'INFO'}, "Rebuild Mesh Finish!")
print("Finish Mesh Build...")
else:
self.report({'INFO'}, "Didn't Select Mesh Object!")
print("Didn't Select Mesh Object!")
print("----------------------------------------")
return{'FINISHED'}
class OBJECT_OT_UTRebuildArmature(bpy.types.Operator):
bl_idname = "object.utrebuildarmature" # XXX, name???
bl_label = "Rebuild Armature"
__doc__ = """If mesh is deform when importing to unreal engine try this. It rebuild the bones one at the time by select one armature object scrape to raw setup build. Note the scale will be 1:1 for object mode. To keep from deforming"""
def invoke(self, context, event):
print("----------------------------------------")
print("Init Rebuild Armature...")
bselected = False
for obj in bpy.data.objects:
if obj.type == 'ARMATURE' and obj.select == True:
currentbone = [] #select armature for roll copy
print("Armature Name:",obj.name)
objectname = "ArmatureDataPSK"
meshname ="ArmatureObjectPSK"
armdata = bpy.data.armatures.new(objectname)
ob_new = bpy.data.objects.new(meshname, armdata)
bpy.context.scene.objects.link(ob_new)
bpy.ops.object.mode_set(mode='OBJECT')
for i in bpy.context.scene.objects: i.select = False #deselect all objects
ob_new.select = True
bpy.context.scene.objects.active = obj
bpy.ops.object.mode_set(mode='EDIT')
for bone in obj.data.edit_bones:
if bone.parent != None:
currentbone.append([bone.name,bone.roll])
else:
currentbone.append([bone.name,bone.roll])
bpy.ops.object.mode_set(mode='OBJECT')
for i in bpy.context.scene.objects: i.select = False #deselect all objects
bpy.context.scene.objects.active = ob_new
bpy.ops.object.mode_set(mode='EDIT')
for bone in obj.data.bones:
bpy.ops.object.mode_set(mode='EDIT')
newbone = ob_new.data.edit_bones.new(bone.name)
newbone.head = bone.head_local
newbone.tail = bone.tail_local
for bonelist in currentbone:
if bone.name == bonelist[0]:
newbone.roll = bonelist[1]
break
if bone.parent != None:
parentbone = ob_new.data.edit_bones[bone.parent.name]
newbone.parent = parentbone
print("Bone Count:",len(obj.data.bones))
print("Hold Bone Count",len(currentbone))
print("New Bone Count",len(ob_new.data.edit_bones))
print("Rebuild Armture Finish:",ob_new.name)
bpy.context.scene.update()
bselected = True
break
if bselected:
self.report({'INFO'}, "Rebuild Armature Finish!")
else:
self.report({'INFO'}, "Didn't Select Armature Object!")
print("End of Rebuild Armature.")
print("----------------------------------------")
return{'FINISHED'}
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
class Panel_UDKExport( bpy.types.Panel ):
bl_label = "UDK Export"
bl_idname = "OBJECT_PT_udk_tools"
#bl_space_type = "PROPERTIES"
#bl_region_type = "WINDOW"
#bl_context = "object"
bl_space_type = "VIEW_3D"
bl_region_type = "TOOLS"
#def draw_header(self, context):
# layout = self.layout
#obj = context.object
#layout.prop(obj, "select", text="")
#@classmethod
#def poll(cls, context):
# return context.active_object
def draw(self, context):
layout = self.layout
path = get_dst_path()
object_name = ""
#if context.object:
# object_name = context.object.name
if context.active_object:
object_name = context.active_object.name
layout.prop(context.scene, "udk_option_smoothing_groups")
layout.prop(context.scene, "udk_option_clamp_uv")
layout.prop(context.scene, "udk_option_verbose")
row = layout.row()
row.label(text="Active object: " + object_name)
layout.prop(context.scene, "udk_option_filename_src")
row = layout.row()
row.label(text=path)
layout.prop(context.scene, "udk_option_export")
layout.operator("object.udk_export")
layout.operator("object.toggle_console")
layout.operator(OBJECT_OT_UTRebuildArmature.bl_idname)
layout.operator(OBJECT_OT_MeshClearWeights.bl_idname)
layout.operator(OBJECT_OT_UTSelectedFaceSmooth.bl_idname)
layout.operator(OBJECT_OT_UTRebuildMesh.bl_idname)
class ExportUDKAnimData(bpy.types.Operator):
"""Export Skeleton Mesh / Animation Data file(s)"""
bl_idname = "export_anim.udk" # this is important since its how bpy.ops.export.udk_anim_data is constructed
bl_label = "Export PSK/PSA"
__doc__ = """One mesh and one armature else select one mesh or armature to be exported"""
# List of operator properties, the attributes will be assigned
# to the class instance from the operator settings before calling.
filepath = StringProperty(
subtype='FILE_PATH',
)
filter_glob = StringProperty(
default="*.psk;*.psa",
options={'HIDDEN'},
)
udk_option_smoothing_groups = bpy.types.Scene.udk_option_smoothing_groups
udk_option_clamp_uv = bpy.types.Scene.udk_option_clamp_uv
udk_option_verbose = bpy.types.Scene.udk_option_verbose
udk_option_filename_src = bpy.types.Scene.udk_option_filename_src
udk_option_export = bpy.types.Scene.udk_option_export
John Phan
committed
@classmethod
def poll(cls, context):
return context.active_object != None
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
def execute(self, context):
scene = bpy.context.scene
scene.udk_option_export_psk = (scene.udk_option_export == '0' or scene.udk_option_export == '2')
scene.udk_option_export_psa = (scene.udk_option_export == '1' or scene.udk_option_export == '2')
filepath = get_dst_path()
# cache settings
restore_frame = scene.frame_current
message = "Finish Export!"
try:
export(filepath)
except Error as err:
print(err.message)
message = err.message
# restore settings
scene.frame_set(restore_frame)
self.report({'WARNING', 'INFO'}, message)
return {'FINISHED'}
def invoke(self, context, event):
wm = context.window_manager
wm.fileselect_add(self)
return {'RUNNING_MODAL'}
def menu_func(self, context):
default_path = os.path.splitext(bpy.data.filepath)[0] + ".psk"
self.layout.operator(ExportUDKAnimData.bl_idname, text="Skeleton Mesh / Animation Data (.psk/.psa)").filepath = default_path
#===========================================================================
# Entry
#===========================================================================
Brendon Murphy
committed
def register():
#print("REGISTER")
bpy.utils.register_module(__name__)
bpy.types.INFO_MT_file_export.append(menu_func)
Brendon Murphy
committed
def unregister():
#print("UNREGISTER")
bpy.utils.unregister_module(__name__)
bpy.types.INFO_MT_file_export.remove(menu_func)
Brendon Murphy
committed
if __name__ == "__main__":
#print("\n"*4)
print(header("UDK Export PSK/PSA Alpha 0.1", 'CENTER'))
register()
#loader
#filename = "D:/Projects/BlenderScripts/io_export_udk_psa_psk_alpha.py"
#exec(compile(open(filename).read(), filename, 'exec'))