Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; version 2
# of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
"version": (1,5),
"blender": (2, 6, 3),
"api": 45996,
"description": "Modeling and retopology tool.",
"wiki_url": "http://www.bsurfaces.info",
"tracker_url": "http://projects.blender.org/tracker/index.php?"\
"func=detail&aid=26642",
import mathutils
import operator
class VIEW3D_PT_tools_SURFSK_mesh(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_context = "mesh_edit"
def draw(self, context):
layout = self.layout
scn = context.scene
col = layout.column(align=True)
row = layout.row()
row.separator()
col.operator("gpencil.surfsk_add_surface", text="Add Surface")
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
col.operator("gpencil.surfsk_edit_strokes", text="Edit Strokes")
col.prop(scn, "SURFSK_cyclic_cross")
col.prop(scn, "SURFSK_cyclic_follow")
col.prop(scn, "SURFSK_loops_on_strokes")
col.prop(scn, "SURFSK_automatic_join")
col.prop(scn, "SURFSK_keep_strokes")
class VIEW3D_PT_tools_SURFSK_curve(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_context = "curve_edit"
bl_label = "Bsurfaces"
@classmethod
def poll(cls, context):
return context.active_object
def draw(self, context):
layout = self.layout
scn = context.scene
ob = context.object
col = layout.column(align=True)
row = layout.row()
row.separator()
col.operator("curve.surfsk_first_points", text="Set First Points")
col.operator("curve.switch_direction", text="Switch Direction")
col.operator("curve.surfsk_reorder_splines", text="Reorder Splines")
#### Returns the type of strokes used.
def get_strokes_type(main_object):
strokes_type = ""
strokes_num = 0
# Check if they are grease pencil
try:
#### Get the active grease pencil layer.
strokes_num = len(main_object.grease_pencil.layers.active.active_frame.strokes)
if strokes_num > 0:
strokes_type = "GP_STROKES"
except:
pass
# Check if they are curves, if there aren't grease pencil strokes.
if strokes_type == "":
if len(bpy.context.selected_objects) == 2:
for ob in bpy.context.selected_objects:
if ob != bpy.context.scene.objects.active and ob.type == "CURVE":
strokes_type = "EXTERNAL_CURVE"
strokes_num = len(ob.data.splines)
# Check if there is any non-bezier spline.
for i in range(len(ob.data.splines)):
if ob.data.splines[i].type != "BEZIER":
strokes_type = "CURVE_WITH_NON_BEZIER_SPLINES"
break
elif ob != bpy.context.scene.objects.active and ob.type != "CURVE":
strokes_type = "EXTERNAL_NO_CURVE"
elif len(bpy.context.selected_objects) > 2:
strokes_type = "MORE_THAN_ONE_EXTERNAL"
# Check if there is a single stroke without any selection in the object.
if strokes_num == 1 and main_object.data.total_vert_sel == 0:
if strokes_type == "EXTERNAL_CURVE":
strokes_type = "SINGLE_CURVE_STROKE_NO_SELECTION"
elif strokes_type == "GP_STROKES":
strokes_type = "SINGLE_GP_STROKE_NO_SELECTION"
if strokes_num == 0 and main_object.data.total_vert_sel > 0:
strokes_type = "SELECTION_ALONE"
if strokes_type == "":
strokes_type = "NO_STROKES"
return strokes_type
# Surface generator operator.
class GPENCIL_OT_SURFSK_add_surface(bpy.types.Operator):
bl_idname = "gpencil.surfsk_add_surface"
bl_description = "Generates surfaces from grease pencil strokes, bezier curves or loose edges."
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
edges_U = bpy.props.IntProperty(name = "Cross",
description = "Number of face-loops crossing the strokes.",
default = 1,
min = 1,
max = 200)
edges_V = bpy.props.IntProperty(name = "Follow",
description = "Number of face-loops following the strokes.",
default = 1,
min = 1,
max = 200)
cyclic_cross = bpy.props.BoolProperty(name = "Cyclic Cross",
description = "Make cyclic the face-loops crossing the strokes.",
default = False)
cyclic_follow = bpy.props.BoolProperty(name = "Cyclic Follow",
description = "Make cyclic the face-loops following the strokes.",
default = False)
loops_on_strokes = bpy.props.BoolProperty(name = "Loops on strokes",
description = "Make the loops match the paths of the strokes.",
default = False)
automatic_join = bpy.props.BoolProperty(name = "Automatic join",
description = "Join automatically vertices of either surfaces generated by crosshatching, or from the borders of closed shapes.",
default = False)
join_stretch_factor = bpy.props.FloatProperty(name = "Stretch",
description = "Amount of stretching or shrinking allowed for edges when joining vertices automatically.",
default = 1,
min = 0,
max = 3,
subtype = 'FACTOR')
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def draw(self, context):
layout = self.layout
scn = context.scene
ob = context.object
col = layout.column(align=True)
row = layout.row()
if not self.is_fill_faces:
row.separator()
if not self.is_crosshatch:
if not self.selection_U_exists:
col.prop(self, "edges_U")
row.separator()
if not self.selection_V_exists:
col.prop(self, "edges_V")
row.separator()
row.separator()
if not self.selection_U_exists:
if not ((self.selection_V_exists and not self.selection_V_is_closed) or (self.selection_V2_exists and not self.selection_V2_is_closed)):
col.prop(self, "cyclic_cross")
if not self.selection_V_exists:
if not ((self.selection_U_exists and not self.selection_U_is_closed) or (self.selection_U2_exists and not self.selection_U2_is_closed)):
col.prop(self, "cyclic_follow")
col.prop(self, "loops_on_strokes")
col.prop(self, "automatic_join")
if self.automatic_join:
row.separator()
col.separator()
row.separator()
col.prop(self, "join_stretch_factor")
#### Get an ordered list of a chain of vertices.
def get_ordered_verts(self, ob, all_selected_edges_idx, all_selected_verts_idx, first_vert_idx, middle_vertex_idx, closing_vert_idx):
# Order selected vertices.
if closing_vert_idx != None:
verts_ordered.append(ob.data.vertices[closing_vert_idx])
verts_ordered.append(ob.data.vertices[first_vert_idx])
prev_v = first_vert_idx
prev_ed = None
finish_while = False
while True:
edges_non_matched = 0
for i in all_selected_edges_idx:
if ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[0] == prev_v and ob.data.edges[i].vertices[1] in all_selected_verts_idx:
verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[1]])
prev_v = ob.data.edges[i].vertices[1]
elif ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[1] == prev_v and ob.data.edges[i].vertices[0] in all_selected_verts_idx:
verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[0]])
prev_v = ob.data.edges[i].vertices[0]
prev_ed = ob.data.edges[i]
else:
edges_non_matched += 1
if edges_non_matched == len(all_selected_edges_idx):
finish_while = True
if finish_while:
break
if closing_vert_idx != None:
verts_ordered.append(ob.data.vertices[closing_vert_idx])
verts_ordered.append(ob.data.vertices[middle_vertex_idx])
#### Calculates length of a chain of points.
edges_lengths = []
edges_lengths_sum = 0
for i in range(0, len(verts_ordered)):
if i == 0:
prev_v_co = matrix * verts_ordered[i].co
v_co = matrix * verts_ordered[i].co
v_difs = [prev_v_co[0] - v_co[0], prev_v_co[1] - v_co[1], prev_v_co[2] - v_co[2]]
edge_length = abs(sqrt(v_difs[0] * v_difs[0] + v_difs[1] * v_difs[1] + v_difs[2] * v_difs[2]))
edges_lengths.append(edge_length)
edges_lengths_sum += edge_length
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
return edges_lengths, edges_lengths_sum
#### Calculates the proportion of the edges of a chain of edges, relative to the full chain length.
def get_edges_proportions(self, edges_lengths, edges_lengths_sum, use_boundaries, fixed_edges_num):
edges_proportions = []
if use_boundaries:
verts_count = 1
for l in edges_lengths:
edges_proportions.append(l / edges_lengths_sum)
verts_count += 1
else:
verts_count = 1
for n in range(0, fixed_edges_num):
edges_proportions.append(1 / fixed_edges_num)
verts_count += 1
return edges_proportions
#### Calculates the angle between two pairs of points in space.
def orientation_difference(self, points_A_co, points_B_co): # each parameter should be a list with two elements, and each element should be a x,y,z coordinate.
vec_A = points_A_co[0] - points_A_co[1]
vec_B = points_B_co[0] - points_B_co[1]
angle = vec_A.angle(vec_B)
if angle > 0.5 * math.pi:
angle = abs(angle - math.pi)
return angle
#### Calculate the which vert of verts_idx list is the nearest one to the point_co coordinates, and the distance.
def shortest_distance(self, object, point_co, verts_idx):
matrix = object.matrix_world
for i in range(0, len(verts_idx)):
dist = (point_co - matrix * object.data.vertices[verts_idx[i]].co).length
if i == 0:
prev_dist = dist
nearest_vert_idx = verts_idx[i]
shortest_dist = dist
if dist < prev_dist:
prev_dist = dist
nearest_vert_idx = verts_idx[i]
shortest_dist = dist
return nearest_vert_idx, shortest_dist
#### Returns the index of the opposite vert tip in a chain, given a vert tip index as parameter, and a multidimentional list with all pairs of tips.
def opposite_tip(self, vert_tip_idx, all_chains_tips_idx):
opposite_vert_tip_idx = None
for i in range(0, len(all_chains_tips_idx)):
if vert_tip_idx == all_chains_tips_idx[i][0]:
opposite_vert_tip_idx = all_chains_tips_idx[i][1]
if vert_tip_idx == all_chains_tips_idx[i][1]:
opposite_vert_tip_idx = all_chains_tips_idx[i][0]
#### Simplifies a spline and returns the new points coordinates.
def simplify_spline(self, spline_coords, segments_num):
simplified_spline = []
points_between_segments = round(len(spline_coords) / segments_num)
simplified_spline.append(spline_coords[0])
for i in range(1, segments_num):
simplified_spline.append(spline_coords[i * points_between_segments])
simplified_spline.append(spline_coords[len(spline_coords) - 1])
return simplified_spline
#### Cleans up the scene and gets it the same it was at the beginning, in case the script is interrupted in the middle of the execution.
def cleanup_on_interruption(self):
# If the original strokes curve comes from conversion from grease pencil and wasn't made by hand, delete it.
if not self.using_external_curves:
try:
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.original_curve.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.original_curve.name]
bpy.ops.object.delete()
except:
pass
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.main_object.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.original_curve.name].select = True
bpy.data.objects[self.main_object.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Returns a list with the coords of the points distributed over the splines passed to this method according to the proportions parameter.
def distribute_pts(self, surface_splines, proportions):
# Calculate the length of each final surface spline.
surface_splines_lengths = []
surface_splines_parsed = []
for sp_idx in range(0, len(surface_splines)):
# Calculate spline length
surface_splines_lengths.append(0)
for i in range(0, len(surface_splines[sp_idx].bezier_points)):
if i == 0:
prev_p = surface_splines[sp_idx].bezier_points[i]
else:
p = surface_splines[sp_idx].bezier_points[i]
edge_length = (prev_p.co - p.co).length
surface_splines_lengths[sp_idx] += edge_length
prev_p = p
# Calculate vertex positions with appropriate edge proportions, and ordered, for each spline.
for sp_idx in range(0, len(surface_splines)):
surface_splines_parsed.append([])
surface_splines_parsed[sp_idx].append(surface_splines[sp_idx].bezier_points[0].co)
prev_p_co = surface_splines[sp_idx].bezier_points[0].co
p_idx = 0
for prop_idx in range(len(proportions) - 1):
target_length = surface_splines_lengths[sp_idx] * proportions[prop_idx]
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
partial_segment_length = 0
finish_while = False
while True:
p_co = surface_splines[sp_idx].bezier_points[p_idx].co
new_dist = (prev_p_co - p_co).length
potential_segment_length = partial_segment_length + new_dist # The new distance that could have the partial segment if it is still shorter than the target length.
if potential_segment_length < target_length: # If the potential is still shorter, keep adding.
partial_segment_length = potential_segment_length
p_idx += 1
prev_p_co = p_co
elif potential_segment_length > target_length: # If the potential is longer than the target, calculate the target (a point between the last two points), and assign.
remaining_dist = target_length - partial_segment_length
vec = p_co - prev_p_co
vec.normalize()
intermediate_co = prev_p_co + (vec * remaining_dist)
surface_splines_parsed[sp_idx].append(intermediate_co)
partial_segment_length += remaining_dist
prev_p_co = intermediate_co
finish_while = True
elif potential_segment_length == target_length: # If the potential is equal to the target, assign.
surface_splines_parsed[sp_idx].append(p_co)
prev_p_co = p_co
finish_while = True
if finish_while:
break
Eclectiel L
committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# last point of the spline
surface_splines_parsed[sp_idx].append(surface_splines[sp_idx].bezier_points[len(surface_splines[sp_idx].bezier_points) - 1].co)
return surface_splines_parsed
#### Counts the number of faces that belong to each edge.
def edge_face_count(self, ob):
ed_keys_count_dict = {}
for face in ob.data.polygons:
for ed_keys in face.edge_keys:
if not ed_keys in ed_keys_count_dict:
ed_keys_count_dict[ed_keys] = 1
else:
ed_keys_count_dict[ed_keys] += 1
edge_face_count = []
for i in range(len(ob.data.edges)):
edge_face_count.append(0)
for i in range(len(ob.data.edges)):
ed = ob.data.edges[i]
v1 = ed.vertices[0]
v2 = ed.vertices[1]
Eclectiel L
committed
if (v1, v2) in ed_keys_count_dict:
edge_face_count[i] = ed_keys_count_dict[(v1, v2)]
elif (v2, v1) in ed_keys_count_dict:
edge_face_count[i] = ed_keys_count_dict[(v2, v1)]
return edge_face_count
#### Fills with faces all the selected vertices which form empty triangles or quads.
def fill_with_faces(self, object):
all_selected_verts_count = self.main_object_selected_verts_count
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
#### Calculate average length of selected edges.
all_selected_verts = []
original_sel_edges_count = 0
for ed in object.data.edges:
if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select:
coords = []
coords.append(object.data.vertices[ed.vertices[0]].co)
coords.append(object.data.vertices[ed.vertices[1]].co)
original_sel_edges_count += 1
if not ed.vertices[0] in all_selected_verts:
all_selected_verts.append(ed.vertices[0])
if not ed.vertices[1] in all_selected_verts:
all_selected_verts.append(ed.vertices[1])
#### Check if there is any edge selected. If not, interrupt the script.
if original_sel_edges_count == 0 and all_selected_verts_count > 0:
return 0
#### Get all edges connected to selected verts.
all_edges_around_sel_verts = []
edges_connected_to_sel_verts = {}
verts_connected_to_every_vert = {}
for ed_idx in range(len(object.data.edges)):
ed = object.data.edges[ed_idx]
include_edge = False
if ed.vertices[0] in all_selected_verts:
if not ed.vertices[0] in edges_connected_to_sel_verts:
edges_connected_to_sel_verts[ed.vertices[0]] = []
edges_connected_to_sel_verts[ed.vertices[0]].append(ed_idx)
include_edge = True
if ed.vertices[1] in all_selected_verts:
if not ed.vertices[1] in edges_connected_to_sel_verts:
edges_connected_to_sel_verts[ed.vertices[1]] = []
edges_connected_to_sel_verts[ed.vertices[1]].append(ed_idx)
include_edge = True
if include_edge == True:
all_edges_around_sel_verts.append(ed_idx)
# Get all connected verts to each vert.
if not ed.vertices[0] in verts_connected_to_every_vert:
verts_connected_to_every_vert[ed.vertices[0]] = []
if not ed.vertices[1] in verts_connected_to_every_vert:
verts_connected_to_every_vert[ed.vertices[1]] = []
verts_connected_to_every_vert[ed.vertices[0]].append(ed.vertices[1])
verts_connected_to_every_vert[ed.vertices[1]].append(ed.vertices[0])
#### Get all verts connected to faces.
all_verts_part_of_faces = []
all_edges_faces_count = []
all_edges_faces_count += self.edge_face_count(object)
# Get only the selected edges that have faces attached.
count_faces_of_edges_around_sel_verts = {}
selected_verts_with_faces = []
for ed_idx in all_edges_around_sel_verts:
count_faces_of_edges_around_sel_verts[ed_idx] = all_edges_faces_count[ed_idx]
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
if all_edges_faces_count[ed_idx] > 0:
ed = object.data.edges[ed_idx]
if not ed.vertices[0] in selected_verts_with_faces:
selected_verts_with_faces.append(ed.vertices[0])
if not ed.vertices[1] in selected_verts_with_faces:
selected_verts_with_faces.append(ed.vertices[1])
all_verts_part_of_faces.append(ed.vertices[0])
all_verts_part_of_faces.append(ed.vertices[1])
tuple(selected_verts_with_faces)
#### Discard unneeded verts from calculations.
participating_verts = []
movable_verts = []
for v_idx in all_selected_verts:
vert_has_edges_with_one_face = False
for ed_idx in edges_connected_to_sel_verts[v_idx]: # Check if the actual vert has at least one edge connected to only one face.
if count_faces_of_edges_around_sel_verts[ed_idx] == 1:
vert_has_edges_with_one_face = True
# If the vert has two or less edges connected and the vert is not part of any face. Or the vert is part of any face and at least one of the connected edges has only one face attached to it.
if (len(edges_connected_to_sel_verts[v_idx]) == 2 and not v_idx in all_verts_part_of_faces) or len(edges_connected_to_sel_verts[v_idx]) == 1 or (v_idx in all_verts_part_of_faces and vert_has_edges_with_one_face):
participating_verts.append(v_idx)
if not v_idx in all_verts_part_of_faces:
movable_verts.append(v_idx)
#### Remove from movable verts list those that are part of closed geometry (ie: triangles, quads)
for mv_idx in movable_verts:
freeze_vert = False
mv_connected_verts = verts_connected_to_every_vert[mv_idx]
for actual_v_idx in all_selected_verts:
count_shared_neighbors = 0
checked_verts = []
for mv_conn_v_idx in mv_connected_verts:
if mv_idx != actual_v_idx:
if mv_conn_v_idx in verts_connected_to_every_vert[actual_v_idx] and not mv_conn_v_idx in checked_verts:
count_shared_neighbors += 1
checked_verts.append(mv_conn_v_idx)
if actual_v_idx in mv_connected_verts:
freeze_vert = True
break
if count_shared_neighbors == 2:
freeze_vert = True
break
if freeze_vert:
break
if freeze_vert:
movable_verts.remove(mv_idx)
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
#### Calculate merge distance for participating verts.
shortest_edge_length = None
for ed in object.data.edges:
if ed.vertices[0] in movable_verts and ed.vertices[1] in movable_verts:
v1 = object.data.vertices[ed.vertices[0]]
v2 = object.data.vertices[ed.vertices[1]]
length = (v1.co - v2.co).length
if shortest_edge_length == None:
shortest_edge_length = length
else:
if length < shortest_edge_length:
shortest_edge_length = length
if shortest_edge_length != None:
edges_merge_distance = shortest_edge_length * 0.5
else:
edges_merge_distance = 0
#### Get together the verts near enough. They will be merged later.
remaining_verts = []
remaining_verts += participating_verts
for v1_idx in participating_verts:
if v1_idx in remaining_verts and v1_idx in movable_verts:
verts_to_merge = []
coords_verts_to_merge = {}
verts_to_merge.append(v1_idx)
v1_co = object.data.vertices[v1_idx].co
coords_verts_to_merge[v1_idx] = (v1_co[0], v1_co[1], v1_co[2])
for v2_idx in remaining_verts:
if v1_idx != v2_idx:
v2_co = object.data.vertices[v2_idx].co
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
if dist <= edges_merge_distance: # Add the verts which are near enough.
verts_to_merge.append(v2_idx)
coords_verts_to_merge[v2_idx] = (v2_co[0], v2_co[1], v2_co[2])
for vm_idx in verts_to_merge:
remaining_verts.remove(vm_idx)
if len(verts_to_merge) > 1:
# Calculate middle point of the verts to merge.
sum_x_co = 0
sum_y_co = 0
sum_z_co = 0
movable_verts_to_merge_count = 0
for i in range(len(verts_to_merge)):
if verts_to_merge[i] in movable_verts:
v_co = object.data.vertices[verts_to_merge[i]].co
sum_x_co += v_co[0]
sum_y_co += v_co[1]
sum_z_co += v_co[2]
movable_verts_to_merge_count += 1
middle_point_co = [sum_x_co / movable_verts_to_merge_count, sum_y_co / movable_verts_to_merge_count, sum_z_co / movable_verts_to_merge_count]
# Check if any vert to be merged is not movable.
shortest_dist = None
are_verts_not_movable = False
verts_not_movable = []
for v_merge_idx in verts_to_merge:
if v_merge_idx in participating_verts and not v_merge_idx in movable_verts:
are_verts_not_movable = True
verts_not_movable.append(v_merge_idx)
if are_verts_not_movable:
# Get the vert connected to faces, that is nearest to the middle point of the movable verts.
shortest_dist = None
for vcf_idx in verts_not_movable:
dist = abs((object.data.vertices[vcf_idx].co - mathutils.Vector(middle_point_co)).length)
if shortest_dist == None:
shortest_dist = dist
nearest_vert_idx = vcf_idx
else:
if dist < shortest_dist:
shortest_dist = dist
nearest_vert_idx = vcf_idx
coords = object.data.vertices[nearest_vert_idx].co
target_point_co = [coords[0], coords[1], coords[2]]
else:
target_point_co = middle_point_co
# Move verts to merge to the middle position.
for v_merge_idx in verts_to_merge:
if v_merge_idx in movable_verts: # Only move the verts that are not part of faces.
object.data.vertices[v_merge_idx].co[0] = target_point_co[0]
object.data.vertices[v_merge_idx].co[1] = target_point_co[1]
object.data.vertices[v_merge_idx].co[2] = target_point_co[2]
#### Perform "Remove Doubles" to weld all the disconnected verts
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
bpy.ops.mesh.remove_doubles(mergedist = 0.0001)
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
#### Get all the definitive selected edges, after weldding.
selected_edges = []
edges_per_vert = {} # Number of faces of each selected edge.
for ed in object.data.edges:
if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select:
selected_edges.append(ed.index)
# Save all the edges that belong to each vertex.
if not ed.vertices[0] in edges_per_vert:
edges_per_vert[ed.vertices[0]] = []
if not ed.vertices[1] in edges_per_vert:
edges_per_vert[ed.vertices[1]] = []
edges_per_vert[ed.vertices[0]].append(ed.index)
edges_per_vert[ed.vertices[1]].append(ed.index)
# Check if all the edges connected to each vert have two faces attached to them. To discard them later and make calculations faster.
a = []
a += self.edge_face_count(object)
tuple(a)
verts_surrounded_by_faces = {}
for v_idx in edges_per_vert:
edges = edges_per_vert[v_idx]
edges_with_two_faces_count = 0
for ed_idx in edges_per_vert[v_idx]:
if a[ed_idx] == 2:
edges_with_two_faces_count += 1
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
if edges_with_two_faces_count == len(edges_per_vert[v_idx]):
verts_surrounded_by_faces[v_idx] = True
else:
verts_surrounded_by_faces[v_idx] = False
#### Get all the selected vertices.
selected_verts_idx = []
for v in object.data.vertices:
if v.select:
selected_verts_idx.append(v.index)
#### Get all the faces of the object.
all_object_faces_verts_idx = []
for face in object.data.polygons:
face_verts = []
face_verts.append(face.vertices[0])
face_verts.append(face.vertices[1])
face_verts.append(face.vertices[2])
if len(face.vertices) == 4:
face_verts.append(face.vertices[3])
all_object_faces_verts_idx.append(face_verts)
#### Deselect all vertices.
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
#### Make a dictionary with the verts related to each vert.
related_key_verts = {}
for ed_idx in selected_edges:
ed = object.data.edges[ed_idx]
if not verts_surrounded_by_faces[ed.vertices[0]]:
if not ed.vertices[0] in related_key_verts:
related_key_verts[ed.vertices[0]] = []
if not ed.vertices[1] in related_key_verts[ed.vertices[0]]:
related_key_verts[ed.vertices[0]].append(ed.vertices[1])
if not verts_surrounded_by_faces[ed.vertices[1]]:
if not ed.vertices[1] in related_key_verts:
related_key_verts[ed.vertices[1]] = []
if not ed.vertices[0] in related_key_verts[ed.vertices[1]]:
related_key_verts[ed.vertices[1]].append(ed.vertices[0])
#### Get groups of verts forming each face.
faces_verts_idx = []
for v1 in related_key_verts: # verts-1 ....
for v2 in related_key_verts: # verts-2
if v1 != v2:
related_verts_in_common = []
v2_in_rel_v1 = False
v1_in_rel_v2 = False
for rel_v1 in related_key_verts[v1]:
if rel_v1 in related_key_verts[v2]: # Check if related verts of verts-1 are related verts of verts-2.
related_verts_in_common.append(rel_v1)
if v2 in related_key_verts[v1]:
v2_in_rel_v1 = True
if v1 in related_key_verts[v2]:
v1_in_rel_v2 = True
repeated_face = False
# If two verts have two related verts in common, they form a quad.
if len(related_verts_in_common) == 2:
# Check if the face is already saved.
all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx
for f_verts in all_faces_to_check_idx:
repeated_verts = 0
if len(f_verts) == 4:
if v1 in f_verts: repeated_verts += 1
if v2 in f_verts: repeated_verts += 1
if related_verts_in_common[0] in f_verts: repeated_verts += 1
if related_verts_in_common[1] in f_verts: repeated_verts += 1
if repeated_verts == len(f_verts):
repeated_face = True
break
if not repeated_face:
faces_verts_idx.append([v1, related_verts_in_common[0], v2, related_verts_in_common[1]])
elif v2_in_rel_v1 and v1_in_rel_v2 and len(related_verts_in_common) == 1: # If Two verts have one related vert in common and they are related to each other, they form a triangle.
# Check if the face is already saved.
all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx
for f_verts in all_faces_to_check_idx:
repeated_verts = 0
if len(f_verts) == 3:
if v1 in f_verts: repeated_verts += 1
if v2 in f_verts: repeated_verts += 1
if related_verts_in_common[0] in f_verts: repeated_verts += 1
if repeated_verts == len(f_verts):
repeated_face = True
break
if not repeated_face:
faces_verts_idx.append([v1, related_verts_in_common[0], v2])
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
#### Keep only the faces that don't overlap by ignoring quads that overlap with two adjacent triangles.
faces_to_not_include_idx = [] # Indices of faces_verts_idx to eliminate.
all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx
for i in range(len(faces_verts_idx)):
for t in range(len(all_faces_to_check_idx)):
if i != t:
verts_in_common = 0
if len(faces_verts_idx[i]) == 4 and len(all_faces_to_check_idx[t]) == 3:
for v_idx in all_faces_to_check_idx[t]:
if v_idx in faces_verts_idx[i]:
verts_in_common += 1
if verts_in_common == 3: # If it doesn't have all it's vertices repeated in the other face.
if not i in faces_to_not_include_idx:
faces_to_not_include_idx.append(i)
#### Build faces discarding the ones in faces_to_not_include.
me = object.data
bm = bmesh.new()
bm.from_mesh(me)
num_faces_created = 0
for i in range(len(faces_verts_idx)):
if not i in faces_to_not_include_idx:
bm.faces.new([ bm.verts[v] for v in faces_verts_idx[i] ])
num_faces_created += 1
bm.to_mesh(me)
bm.free()
for v_idx in selected_verts_idx:
self.main_object.data.vertices[v_idx].select = True
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
bpy.ops.mesh.normals_make_consistent(inside=False)
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
return num_faces_created
#### Crosshatch skinning.
def crosshatch_surface_invoke(self, ob_original_splines):
self.is_crosshatch = False
self.crosshatch_merge_distance = 0
objects_to_delete = [] # duplicated strokes to be deleted.
# If the main object uses modifiers deactivate them temporarily until the surface is joined. (without this the surface verts merging with the main object doesn't work well)
self.modifiers_prev_viewport_state = []
if len(self.main_object.modifiers) > 0:
for m_idx in range(len(self.main_object.modifiers)):
self.modifiers_prev_viewport_state.append(self.main_object.modifiers[m_idx].show_viewport)
self.main_object.modifiers[m_idx].show_viewport = False
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_original_splines.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[ob_original_splines.name]
if len(ob_original_splines.data.splines) >= 2:
bpy.ops.object.duplicate('INVOKE_REGION_WIN')
ob_splines = bpy.context.object
ob_splines.name = "SURFSKIO_NE_STR"
#### Get estimative merge distance (sum up the distances from the first point to all other points, then average them and then divide them).
first_point_dist_sum = 0
first_dist = 0
second_dist = 0
coords_first_pt = ob_splines.data.splines[0].bezier_points[0].co
for i in range(len(ob_splines.data.splines)):
sp = ob_splines.data.splines[i]
if coords_first_pt != sp.bezier_points[0].co:
first_dist = (coords_first_pt - sp.bezier_points[0].co).length
if coords_first_pt != sp.bezier_points[len(sp.bezier_points) - 1].co:
second_dist = (coords_first_pt - sp.bezier_points[len(sp.bezier_points) - 1].co).length
first_point_dist_sum += first_dist + second_dist
if i == 0:
if first_dist != 0:
shortest_dist = first_dist
elif second_dist != 0:
shortest_dist = second_dist
if shortest_dist > first_dist and first_dist != 0:
shortest_dist = first_dist
if shortest_dist > second_dist and second_dist != 0:
shortest_dist = second_dist
self.crosshatch_merge_distance = shortest_dist / 20
#### Recalculation of merge distance.
bpy.ops.object.duplicate('INVOKE_REGION_WIN')
ob_calc_merge_dist = bpy.context.object
ob_calc_merge_dist.name = "SURFSKIO_CALC_TMP"
objects_to_delete.append(ob_calc_merge_dist)
#### Smooth out strokes a little to improve crosshatch detection.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')
for i in range(4):
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Convert curves into mesh.
ob_calc_merge_dist.data.resolution_u = 12
bpy.ops.object.convert(target='MESH', keep_original=False)
# Find "intersection-nodes".
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')
bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', mergedist=self.crosshatch_merge_distance)
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
# Remove verts with less than three edges.
verts_edges_count = {}
for ed in ob_calc_merge_dist.data.edges:
v = ed.vertices
if v[0] not in verts_edges_count:
verts_edges_count[v[0]] = 0
if v[1] not in verts_edges_count:
verts_edges_count[v[1]] = 0
verts_edges_count[v[0]] += 1
verts_edges_count[v[1]] += 1
nodes_verts_coords = []
for v_idx in verts_edges_count:
v = ob_calc_merge_dist.data.vertices[v_idx]
if verts_edges_count[v_idx] < 3:
v.select = True
# Remove them.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.mesh.delete('INVOKE_REGION_WIN', type='VERT')
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')
# Remove doubles to discard very near verts from calculations of distance.
bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', mergedist=self.crosshatch_merge_distance * 4)
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
# Get all coords of the resulting nodes.
nodes_verts_coords = [(v.co[0], v.co[1], v.co[2]) for v in ob_calc_merge_dist.data.vertices]
#### Check if the strokes are a crosshatch.
if len(nodes_verts_coords) >= 3:
self.is_crosshatch = True
shortest_dist = None
for co_1 in nodes_verts_coords:
for co_2 in nodes_verts_coords:
if co_1 != co_2:
dist = (mathutils.Vector(co_1) - mathutils.Vector(co_2)).length
if shortest_dist != None:
if dist < shortest_dist:
shortest_dist = dist
else:
shortest_dist = dist
self.crosshatch_merge_distance = shortest_dist / 3
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_splines.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[ob_splines.name]
#### Deselect all points.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Smooth splines in a localized way, to eliminate "saw-teeth" like shapes when there are many points.
for sp in ob_splines.data.splines:
angle_sum = 0
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
angle_limit = 2 # Degrees
for t in range(len(sp.bezier_points)):
if t <= len(sp.bezier_points) - 3: # Because on each iteration it checks the "next two points" of the actual. This way it doesn't go out of range.
p1 = sp.bezier_points[t]
p2 = sp.bezier_points[t + 1]
p3 = sp.bezier_points[t + 2]
vec_1 = p1.co - p2.co
vec_2 = p2.co - p3.co
if p2.co != p1.co and p2.co != p3.co:
angle = vec_1.angle(vec_2)
angle_sum += degrees(angle)
if angle_sum >= angle_limit: # If sum of angles is grater than the limit.
if (p1.co - p2.co).length <= self.crosshatch_merge_distance:
p1.select_control_point = True; p1.select_left_handle = True; p1.select_right_handle = True
p2.select_control_point = True; p2.select_left_handle = True; p2.select_right_handle = True
if (p1.co - p2.co).length <= self.crosshatch_merge_distance:
p3.select_control_point = True; p3.select_left_handle = True; p3.select_right_handle = True
angle_sum = 0
sp.bezier_points[0].select_control_point = False
sp.bezier_points[0].select_left_handle = False
sp.bezier_points[0].select_right_handle = False
sp.bezier_points[len(sp.bezier_points) - 1].select_control_point = False
sp.bezier_points[len(sp.bezier_points) - 1].select_left_handle = False
sp.bezier_points[len(sp.bezier_points) - 1].select_right_handle = False
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
#### Smooth out strokes a little to improve crosshatch detection.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
for i in range(15):
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Simplify the splines.
for sp in ob_splines.data.splines:
angle_sum = 0
sp.bezier_points[0].select_control_point = True
sp.bezier_points[0].select_left_handle = True
sp.bezier_points[0].select_right_handle = True
sp.bezier_points[len(sp.bezier_points) - 1].select_control_point = True
sp.bezier_points[len(sp.bezier_points) - 1].select_left_handle = True
sp.bezier_points[len(sp.bezier_points) - 1].select_right_handle = True
angle_limit = 15 # Degrees
for t in range(len(sp.bezier_points)):
if t <= len(sp.bezier_points) - 3: # Because on each iteration it checks the "next two points" of the actual. This way it doesn't go out of range.
p1 = sp.bezier_points[t]
p2 = sp.bezier_points[t + 1]
p3 = sp.bezier_points[t + 2]
vec_1 = p1.co - p2.co
vec_2 = p2.co - p3.co
if p2.co != p1.co and p2.co != p3.co:
angle = vec_1.angle(vec_2)
angle_sum += degrees(angle)
if angle_sum >= angle_limit: # If sum of angles is grater than the limit.
p1.select_control_point = True; p1.select_left_handle = True; p1.select_right_handle = True
p2.select_control_point = True; p2.select_left_handle = True; p2.select_right_handle = True
p3.select_control_point = True; p3.select_left_handle = True; p3.select_right_handle = True
angle_sum = 0
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.select_all(action = 'INVERT')
bpy.ops.curve.delete(type='SELECTED')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
objects_to_delete.append(ob_splines)
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Check if the strokes are a crosshatch.
if self.is_crosshatch:
all_points_coords = []
for i in range(len(ob_splines.data.splines)):
all_points_coords.append([])
all_points_coords[i] = [mathutils.Vector((x, y, z)) for x, y, z in [bp.co for bp in ob_splines.data.splines[i].bezier_points]]
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
all_intersections = []
checked_splines = []
for i in range(len(all_points_coords)):
for t in range(len(all_points_coords[i]) - 1):
bp1_co = all_points_coords[i][t]
bp2_co = all_points_coords[i][t + 1]
for i2 in range(len(all_points_coords)):
if i != i2 and not i2 in checked_splines:
for t2 in range(len(all_points_coords[i2]) - 1):
bp3_co = all_points_coords[i2][t2]
bp4_co = all_points_coords[i2][t2 + 1]
intersec_coords = mathutils.geometry.intersect_line_line(bp1_co, bp2_co, bp3_co, bp4_co)
if intersec_coords != None:
dist = (intersec_coords[0] - intersec_coords[1]).length
if dist <= self.crosshatch_merge_distance * 1.5:
temp_co, percent1 = mathutils.geometry.intersect_point_line(intersec_coords[0], bp1_co, bp2_co)
if (percent1 >= -0.02 and percent1 <= 1.02):
temp_co, percent2 = mathutils.geometry.intersect_point_line(intersec_coords[1], bp3_co, bp4_co)
if (percent2 >= -0.02 and percent2 <= 1.02):
all_intersections.append((i, t, percent1, ob_splines.matrix_world * intersec_coords[0])) # Format: spline index, first point index from corresponding segment, percentage from first point of actual segment, coords of intersection point.
all_intersections.append((i2, t2, percent2, ob_splines.matrix_world * intersec_coords[1]))
checked_splines.append(i)
all_intersections.sort(key = operator.itemgetter(0,1,2)) # Sort list by spline, then by corresponding first point index of segment, and then by percentage from first point of segment: elements 0 and 1 respectively.
self.crosshatch_strokes_coords = {}
for i in range(len(all_intersections)):
if not all_intersections[i][0] in self.crosshatch_strokes_coords:
self.crosshatch_strokes_coords[all_intersections[i][0]] = []
self.crosshatch_strokes_coords[all_intersections[i][0]].append(all_intersections[i][3]) # Save intersection coords.
else:
self.is_crosshatch = False
#### Delete all duplicates.
for o in objects_to_delete:
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[o.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[o.name]
bpy.ops.object.delete()
#### If the main object has modifiers, turn their "viewport view status" to what it was before the forced deactivation above.
if len(self.main_object.modifiers) > 0:
for m_idx in range(len(self.main_object.modifiers)):
self.main_object.modifiers[m_idx].show_viewport = self.modifiers_prev_viewport_state[m_idx]
return
#### Part of the Crosshatch process that is repeated when the operator is tweaked.
def crosshatch_surface_execute(self):
# If the main object uses modifiers deactivate them temporarily until the surface is joined. (without this the surface verts merging with the main object doesn't work well)
self.modifiers_prev_viewport_state = []
if len(self.main_object.modifiers) > 0:
for m_idx in range(len(self.main_object.modifiers)):
self.modifiers_prev_viewport_state.append(self.main_object.modifiers[m_idx].show_viewport)
self.main_object.modifiers[m_idx].show_viewport = False
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
me_name = "SURFSKIO_STK_TMP"
me = bpy.data.meshes.new(me_name)
all_verts_coords = []
all_edges = []
for st_idx in self.crosshatch_strokes_coords:
for co_idx in range(len(self.crosshatch_strokes_coords[st_idx])):
coords = self.crosshatch_strokes_coords[st_idx][co_idx]
all_verts_coords.append(coords)
if co_idx > 0:
all_edges.append((len(all_verts_coords) - 2, len(all_verts_coords) - 1))
me.from_pydata(all_verts_coords, all_edges, [])
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
ob = bpy.data.objects.new(me_name, me)
ob.data = me
bpy.context.scene.objects.link(ob)
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[ob.name]
#### Get together each vert and its nearest, to the middle position.
verts = ob.data.vertices
checked_verts = []
for i in range(len(verts)):
shortest_dist = None
if not i in checked_verts:
for t in range(len(verts)):
if i != t and not t in checked_verts:
dist = (verts[i].co - verts[t].co).length
if shortest_dist != None:
if dist < shortest_dist:
shortest_dist = dist
nearest_vert = t
else:
shortest_dist = dist
nearest_vert = t
middle_location = (verts[i].co + verts[nearest_vert].co) / 2
verts[i].co = middle_location
verts[nearest_vert].co = middle_location
checked_verts.append(i)
checked_verts.append(nearest_vert)
#### Calculate average length between all the generated edges.
ob = bpy.context.object
lengths_sum = 0
for ed in ob.data.edges:
v1 = ob.data.vertices[ed.vertices[0]]
v2 = ob.data.vertices[ed.vertices[1]]
lengths_sum += (v1.co - v2.co).length
edges_count = len(ob.data.edges)
average_edge_length = lengths_sum / edges_count
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')
bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', mergedist=average_edge_length / 15)
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
final_points_ob = bpy.context.scene.objects.active
#### Make a dictionary with the verts related to each vert.
related_key_verts = {}
for ed in final_points_ob.data.edges:
if not ed.vertices[0] in related_key_verts:
related_key_verts[ed.vertices[0]] = []
if not ed.vertices[1] in related_key_verts:
related_key_verts[ed.vertices[1]] = []
if not ed.vertices[1] in related_key_verts[ed.vertices[0]]:
related_key_verts[ed.vertices[0]].append(ed.vertices[1])
if not ed.vertices[0] in related_key_verts[ed.vertices[1]]:
related_key_verts[ed.vertices[1]].append(ed.vertices[0])
#### Get groups of verts forming each face.
faces_verts_idx = []
for v1 in related_key_verts: # verts-1 ....
for v2 in related_key_verts: # verts-2
if v1 != v2:
related_verts_in_common = []
v2_in_rel_v1 = False
v1_in_rel_v2 = False
for rel_v1 in related_key_verts[v1]:
if rel_v1 in related_key_verts[v2]: # Check if related verts of verts-1 are related verts of verts-2.
related_verts_in_common.append(rel_v1)
if v2 in related_key_verts[v1]:
v2_in_rel_v1 = True
if v1 in related_key_verts[v2]:
v1_in_rel_v2 = True
repeated_face = False
# If two verts have two related verts in common, they form a quad.
if len(related_verts_in_common) == 2:
# Check if the face is already saved.
for f_verts in faces_verts_idx:
repeated_verts = 0
if len(f_verts) == 4:
if v1 in f_verts: repeated_verts += 1
if v2 in f_verts: repeated_verts += 1
if related_verts_in_common[0] in f_verts: repeated_verts += 1
if related_verts_in_common[1] in f_verts: repeated_verts += 1
if repeated_verts == len(f_verts):
repeated_face = True
break
if not repeated_face:
faces_verts_idx.append([v1, related_verts_in_common[0], v2, related_verts_in_common[1]])
elif v2_in_rel_v1 and v1_in_rel_v2 and len(related_verts_in_common) == 1: # If Two verts have one related vert in common and they are related to each other, they form a triangle.
# Check if the face is already saved.
for f_verts in faces_verts_idx:
repeated_verts = 0
if len(f_verts) == 3:
if v1 in f_verts: repeated_verts += 1
if v2 in f_verts: repeated_verts += 1
if related_verts_in_common[0] in f_verts: repeated_verts += 1
if repeated_verts == len(f_verts):
repeated_face = True
break
if not repeated_face:
faces_verts_idx.append([v1, related_verts_in_common[0], v2])
#### Keep only the faces that don't overlap by ignoring quads that overlap with two adjacent triangles.
faces_to_not_include_idx = [] # Indices of faces_verts_idx to eliminate.
for i in range(len(faces_verts_idx)):
for t in range(len(faces_verts_idx)):
if i != t:
verts_in_common = 0
if len(faces_verts_idx[i]) == 4 and len(faces_verts_idx[t]) == 3:
for v_idx in faces_verts_idx[t]:
if v_idx in faces_verts_idx[i]:
verts_in_common += 1
if verts_in_common == 3: # If it doesn't have all it's vertices repeated in the other face.
if not i in faces_to_not_include_idx:
faces_to_not_include_idx.append(i)
#### Build surface.
all_surface_verts_co = []
verts_idx_translation = {}
for i in range(len(final_points_ob.data.vertices)):
coords = final_points_ob.data.vertices[i].co
all_surface_verts_co.append([coords[0], coords[1], coords[2]])
# Verts of each face.
all_surface_faces = []
for i in range(len(faces_verts_idx)):
if not i in faces_to_not_include_idx:
face = []
for v_idx in faces_verts_idx[i]:
face.append(v_idx)
all_surface_faces.append(face)
# Build the mesh.
surf_me_name = "SURFSKIO_surface"
me_surf = bpy.data.meshes.new(surf_me_name)
me_surf.from_pydata(all_surface_verts_co, [], all_surface_faces)
me_surf.update()
ob_surface = bpy.data.objects.new(surf_me_name, me_surf)
bpy.context.scene.objects.link(ob_surface)
# Delete final points temporal object
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[final_points_ob.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[final_points_ob.name]
bpy.ops.object.delete()
# Delete isolated verts if there are any.
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_surface.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[ob_surface.name]
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.mesh.select_all(action='DESELECT')
bpy.ops.mesh.select_face_by_sides(type='NOTEQUAL')
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
bpy.ops.mesh.delete()
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Join crosshatch results with original mesh.
# Calculate a distance to merge the verts of the crosshatch surface to the main object.
edges_length_sum = 0
for ed in ob_surface.data.edges:
edges_length_sum += (ob_surface.data.vertices[ed.vertices[0]].co - ob_surface.data.vertices[ed.vertices[1]].co).length
if len(ob_surface.data.edges) > 0:
average_surface_edges_length = edges_length_sum / len(ob_surface.data.edges)
else:
average_surface_edges_length = 0.0001
# Make dictionary with all the verts connected to each vert, on the new surface object.
surface_connected_verts = {}
for ed in ob_surface.data.edges:
if not ed.vertices[0] in surface_connected_verts:
surface_connected_verts[ed.vertices[0]] = []
surface_connected_verts[ed.vertices[0]].append(ed.vertices[1])
if not ed.vertices[1] in surface_connected_verts:
surface_connected_verts[ed.vertices[1]] = []
surface_connected_verts[ed.vertices[1]].append(ed.vertices[0])
# Duplicate the new surface object, and use shrinkwrap to calculate later the nearest verts to the main object.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.object.duplicate('INVOKE_REGION_WIN')
final_ob_duplicate = bpy.context.scene.objects.active
bpy.ops.object.modifier_add('INVOKE_REGION_WIN', type='SHRINKWRAP')
final_ob_duplicate.modifiers["Shrinkwrap"].wrap_method = "NEAREST_VERTEX"
final_ob_duplicate.modifiers["Shrinkwrap"].target = self.main_object
bpy.ops.object.modifier_apply('INVOKE_REGION_WIN', apply_as='DATA', modifier='Shrinkwrap')
# Make list with verts of original mesh as index and coords as value.
main_object_verts_coords = []
for v in self.main_object.data.vertices:
coords = self.main_object.matrix_world * v.co
for c in range(len(coords)): # To avoid problems when taking "-0.00" as a different value as "0.00".
if "%.3f" % coords[c] == "-0.00":
coords[c] = 0
main_object_verts_coords.append(["%.3f" % coords[0], "%.3f" % coords[1], "%.3f" % coords[2]])
tuple(main_object_verts_coords)
# Determine which verts will be merged, snap them to the nearest verts on the original verts, and get them selected.
crosshatch_verts_to_merge = []
if self.automatic_join:
for i in range(len(ob_surface.data.vertices)):
# Calculate the distance from each of the connected verts to the actual vert, and compare it with the distance they would have if joined. If they don't change much, that vert can be joined.
merge_actual_vert = True
if len(surface_connected_verts[i]) < 4:
for c_v_idx in surface_connected_verts[i]:
points_original = []
points_original.append(ob_surface.data.vertices[c_v_idx].co)
points_original.append(ob_surface.data.vertices[i].co)
points_target = []
points_target.append(ob_surface.data.vertices[c_v_idx].co)
points_target.append(final_ob_duplicate.data.vertices[i].co)
vec_A = points_original[0] - points_original[1]
vec_B = points_target[0] - points_target[1]
dist_A = (points_original[0] - points_original[1]).length
dist_B = (points_target[0] - points_target[1]).length
if not (points_original[0] == points_original[1] or points_target[0] == points_target[1]): # If any vector's length is zero.
angle = vec_A.angle(vec_B) / math.pi
else:
angle= 0
if dist_B > dist_A * 1.7 * self.join_stretch_factor or dist_B < dist_A / 2 / self.join_stretch_factor or angle >= 0.15 * self.join_stretch_factor: # Set a range of acceptable variation in the connected edges.
merge_actual_vert = False
break
else:
merge_actual_vert = False
if merge_actual_vert:
coords = final_ob_duplicate.data.vertices[i].co
for c in range(len(coords)): # To avoid problems when taking "-0.000" as a different value as "0.00".
if "%.3f" % coords[c] == "-0.00":
coords[c] = 0
comparison_coords = ["%.3f" % coords[0], "%.3f" % coords[1], "%.3f" % coords[2]]
if comparison_coords in main_object_verts_coords:
main_object_related_vert_idx = main_object_verts_coords.index(comparison_coords) # Get the index of the vert with those coords in the main object.
if self.main_object.data.vertices[main_object_related_vert_idx].select == True or self.main_object_selected_verts_count == 0:
ob_surface.data.vertices[i].co = final_ob_duplicate.data.vertices[i].co
ob_surface.data.vertices[i].select = True
crosshatch_verts_to_merge.append(i)
# Make sure the vert in the main object is selected, in case it wasn't selected and the "join crosshatch" option is active.
self.main_object.data.vertices[main_object_related_vert_idx].select = True
# Delete duplicated object.
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[final_ob_duplicate.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[final_ob_duplicate.name]
bpy.ops.object.delete()
# Join crosshatched surface and main object.
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_surface.name].select = True
bpy.data.objects[self.main_object.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
bpy.ops.object.join('INVOKE_REGION_WIN')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
# Perform Remove doubles to merge verts.
if not (self.automatic_join == False and self.main_object_selected_verts_count == 0):
bpy.ops.mesh.remove_doubles(mergedist=0.0001)
bpy.ops.mesh.select_all(action='DESELECT')
#### If the main object has modifiers, turn their "viewport view status" to what it was before the forced deactivation above.
if len(self.main_object.modifiers) > 0:
for m_idx in range(len(self.main_object.modifiers)):
self.main_object.modifiers[m_idx].show_viewport = self.modifiers_prev_viewport_state[m_idx]
return{'FINISHED'}
def rectangular_surface(self):
#### Selected edges.
all_selected_edges_idx = []
all_selected_verts = []
all_verts_idx = []
for ed in self.main_object.data.edges:
if ed.select:
all_selected_edges_idx.append(ed.index)
# Selected vertices.
if not ed.vertices[0] in all_selected_verts:
all_selected_verts.append(self.main_object.data.vertices[ed.vertices[0]])
if not ed.vertices[1] in all_selected_verts:
all_selected_verts.append(self.main_object.data.vertices[ed.vertices[1]])
# All verts (both from each edge) to determine later which are at the tips (those not repeated twice).
all_verts_idx.append(ed.vertices[0])
all_verts_idx.append(ed.vertices[1])
#### Identify the tips and "middle-vertex" that separates U from V, if there is one.
all_chains_tips_idx = []
for v_idx in all_verts_idx:
if all_verts_idx.count(v_idx) < 2:
all_chains_tips_idx.append(v_idx)
edges_connected_to_tips = []
for ed in self.main_object.data.edges:
if (ed.vertices[0] in all_chains_tips_idx or ed.vertices[1] in all_chains_tips_idx) and not (ed.vertices[0] in all_verts_idx and ed.vertices[1] in all_verts_idx):
edges_connected_to_tips.append(ed)
#### Check closed selections.
single_unselected_verts_and_neighbors = [] # List with groups of three verts, where the first element of the pair is the unselected vert of a closed selection and the other two elements are the selected neighbor verts (it will be useful to determine which selection chain the unselected vert belongs to, and determine the "middle-vertex")
# To identify a "closed" selection (a selection that is a closed chain except for one vertex) find the vertex in common that have the edges connected to tips. If there is a vertex in common, that one is the unselected vert that closes the selection or is a "middle-vertex".
single_unselected_verts = []
for ed in edges_connected_to_tips:
for ed_b in edges_connected_to_tips:
if ed != ed_b:
if ed.vertices[0] == ed_b.vertices[0] and not self.main_object.data.vertices[ed.vertices[0]].select and ed.vertices[0] not in single_unselected_verts:
single_unselected_verts_and_neighbors.append([ed.vertices[0], ed.vertices[1], ed_b.vertices[1]]) # The second element is one of the tips of the selected vertices of the closed selection.
single_unselected_verts.append(ed.vertices[0])
break
elif ed.vertices[0] == ed_b.vertices[1] and not self.main_object.data.vertices[ed.vertices[0]].select and ed.vertices[0] not in single_unselected_verts:
single_unselected_verts_and_neighbors.append([ed.vertices[0], ed.vertices[1], ed_b.vertices[0]])
single_unselected_verts.append(ed.vertices[0])
break
elif ed.vertices[1] == ed_b.vertices[0] and not self.main_object.data.vertices[ed.vertices[1]].select and ed.vertices[1] not in single_unselected_verts:
single_unselected_verts_and_neighbors.append([ed.vertices[1], ed.vertices[0], ed_b.vertices[1]])
single_unselected_verts.append(ed.vertices[1])
break
elif ed.vertices[1] == ed_b.vertices[1] and not self.main_object.data.vertices[ed.vertices[1]].select and ed.vertices[1] not in single_unselected_verts:
single_unselected_verts_and_neighbors.append([ed.vertices[1], ed.vertices[0], ed_b.vertices[0]])
single_unselected_verts.append(ed.vertices[1])
break
middle_vertex_idx = None
tips_to_discard_idx = []
# Check if there is a "middle-vertex", and get its index.
for i in range(0, len(single_unselected_verts_and_neighbors)):
actual_chain_verts = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, single_unselected_verts_and_neighbors[i][1], None, None)
if single_unselected_verts_and_neighbors[i][2] != actual_chain_verts[len(actual_chain_verts) - 1].index:
middle_vertex_idx = single_unselected_verts_and_neighbors[i][0]
tips_to_discard_idx.append(single_unselected_verts_and_neighbors[i][1])
tips_to_discard_idx.append(single_unselected_verts_and_neighbors[i][2])
#### List with pairs of verts that belong to the tips of each selection chain (row).
verts_tips_same_chain_idx = []
if len(all_chains_tips_idx) >= 2:
checked_v = []
for i in range(0, len(all_chains_tips_idx)):
if all_chains_tips_idx[i] not in checked_v:
v_chain = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, all_chains_tips_idx[i], middle_vertex_idx, None)
verts_tips_same_chain_idx.append([v_chain[0].index, v_chain[len(v_chain) - 1].index])
checked_v.append(v_chain[0].index)
checked_v.append(v_chain[len(v_chain) - 1].index)
#### Selection tips (vertices).
verts_tips_parsed_idx = []
if len(all_chains_tips_idx) >= 2:
for spec_v_idx in all_chains_tips_idx:
if (spec_v_idx not in tips_to_discard_idx):
verts_tips_parsed_idx.append(spec_v_idx)
#### Identify the type of selection made by the user.
if middle_vertex_idx != None:
if len(all_chains_tips_idx) == 4 and len(single_unselected_verts_and_neighbors) == 1: # If there are 4 tips (two selection chains), and there is only one single unselected vert (the middle vert).
selection_type = "TWO_CONNECTED"
else:
# The type of the selection was not identified, the script stops.
self.report({'WARNING'}, "The selection isn't valid.")
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.cleanup_on_interruption()
self.stopping_errors = True
return{'CANCELLED'}
else:
if len(all_chains_tips_idx) == 2: # If there are 2 tips
selection_type = "SINGLE"
elif len(all_chains_tips_idx) == 4: # If there are 4 tips
selection_type = "TWO_NOT_CONNECTED"
elif len(all_chains_tips_idx) == 0:
if len(self.main_splines.data.splines) > 1:
selection_type = "NO_SELECTION"
else:
# If the selection was not identified and there is only one stroke, there's no possibility to build a surface, so the script is interrupted.
self.report({'WARNING'}, "The selection isn't valid.")
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.cleanup_on_interruption()
self.stopping_errors = True
return{'CANCELLED'}
else:
# The type of the selection was not identified, the script stops.
self.report({'WARNING'}, "The selection isn't valid.")
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.cleanup_on_interruption()
self.stopping_errors = True
return{'CANCELLED'}
#### If the selection type is TWO_NOT_CONNECTED and there is only one stroke, stop the script.
if selection_type == "TWO_NOT_CONNECTED" and len(self.main_splines.data.splines) == 1:
self.report({'WARNING'}, "At least two strokes are needed when there are two not connected selections.")
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.cleanup_on_interruption()
self.stopping_errors = True
return{'CANCELLED'}
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.main_splines.name].select = True
bpy.context.scene.objects.active = bpy.context.scene.objects[self.main_splines.name]
#### Enter editmode for the new curve (converted from grease pencil strokes), to smooth it out.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.selection_U_exists = False
self.selection_U2_exists = False
self.selection_V_exists = False
self.selection_V2_exists = False
self.selection_U_is_closed = False
self.selection_U2_is_closed = False
self.selection_V_is_closed = False
self.selection_V2_is_closed = False
#### Define what vertices are at the tips of each selection and are not the middle-vertex.
if selection_type == "TWO_CONNECTED":
self.selection_U_exists = True
self.selection_V_exists = True
closing_vert_U_idx = None
closing_vert_V_idx = None
closing_vert_U2_idx = None
closing_vert_V2_idx = None
# Determine which selection is Selection-U and which is Selection-V.
points_A = []
points_B = []
points_first_stroke_tips = []
points_A.append(self.main_object.matrix_world * self.main_object.data.vertices[verts_tips_parsed_idx[0]].co)
points_A.append(self.main_object.matrix_world * self.main_object.data.vertices[middle_vertex_idx].co)
points_B.append(self.main_object.matrix_world * self.main_object.data.vertices[verts_tips_parsed_idx[1]].co)
points_B.append(self.main_object.matrix_world * self.main_object.data.vertices[middle_vertex_idx].co)
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co)
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[len(self.main_splines.data.splines[0].bezier_points) - 1].co)
angle_A = self.orientation_difference(points_A, points_first_stroke_tips)
angle_B = self.orientation_difference(points_B, points_first_stroke_tips)
if angle_A < angle_B:
first_vert_U_idx = verts_tips_parsed_idx[0]
first_vert_V_idx = verts_tips_parsed_idx[1]
else:
first_vert_U_idx = verts_tips_parsed_idx[1]
first_vert_V_idx = verts_tips_parsed_idx[0]
elif selection_type == "SINGLE" or selection_type == "TWO_NOT_CONNECTED":
first_sketched_point_first_stroke_co = self.main_splines.data.splines[0].bezier_points[0].co
last_sketched_point_first_stroke_co = self.main_splines.data.splines[0].bezier_points[len(self.main_splines.data.splines[0].bezier_points) - 1].co
first_sketched_point_last_stroke_co = self.main_splines.data.splines[len(self.main_splines.data.splines) - 1].bezier_points[0].co
if len(self.main_splines.data.splines) > 1:
first_sketched_point_second_stroke_co = self.main_splines.data.splines[1].bezier_points[0].co
last_sketched_point_second_stroke_co = self.main_splines.data.splines[1].bezier_points[len(self.main_splines.data.splines[1].bezier_points) - 1].co
single_unselected_neighbors = [] # Only the neighbors of the single unselected verts.
for verts_neig_idx in single_unselected_verts_and_neighbors:
single_unselected_neighbors.append(verts_neig_idx[1])
single_unselected_neighbors.append(verts_neig_idx[2])
all_chains_tips_and_middle_vert = []
for v_idx in all_chains_tips_idx:
if v_idx not in single_unselected_neighbors:
all_chains_tips_and_middle_vert.append(v_idx)
all_chains_tips_and_middle_vert += single_unselected_verts
all_participating_verts = all_chains_tips_and_middle_vert + all_verts_idx
# The tip of the selected vertices nearest to the first point of the first sketched stroke.
nearest_tip_to_first_st_first_pt_idx, shortest_distance_to_first_stroke = self.shortest_distance(self.main_object, first_sketched_point_first_stroke_co, all_chains_tips_and_middle_vert)
# If the nearest tip is not from a closed selection, get the opposite tip vertex index.
if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx:
nearest_tip_to_first_st_first_pt_opposite_idx = self.opposite_tip(nearest_tip_to_first_st_first_pt_idx, verts_tips_same_chain_idx)
# The tip of the selected vertices nearest to the last point of the first sketched stroke.
nearest_tip_to_first_st_last_pt_idx, temp_dist = self.shortest_distance(self.main_object, last_sketched_point_first_stroke_co, all_chains_tips_and_middle_vert)
# The tip of the selected vertices nearest to the first point of the last sketched stroke.
nearest_tip_to_last_st_first_pt_idx, shortest_distance_to_last_stroke = self.shortest_distance(self.main_object, first_sketched_point_last_stroke_co, all_chains_tips_and_middle_vert)
if len(self.main_splines.data.splines) > 1:
# The selected vertex nearest to the first point of the second sketched stroke. (This will be useful to determine the direction of the closed selection V when extruding along strokes)
nearest_vert_to_second_st_first_pt_idx, temp_dist = self.shortest_distance(self.main_object, first_sketched_point_second_stroke_co, all_verts_idx)
# The selected vertex nearest to the first point of the second sketched stroke. (This will be useful to determine the direction of the closed selection V2 when extruding along strokes)
nearest_vert_to_second_st_last_pt_idx, temp_dist = self.shortest_distance(self.main_object, last_sketched_point_second_stroke_co, all_verts_idx)
# Determine if the single selection will be treated as U or as V.
edges_sum = 0
for i in all_selected_edges_idx:
edges_sum += ((self.main_object.matrix_world * self.main_object.data.vertices[self.main_object.data.edges[i].vertices[0]].co) - (self.main_object.matrix_world * self.main_object.data.vertices[self.main_object.data.edges[i].vertices[1]].co)).length
average_edge_length = edges_sum / len(all_selected_edges_idx)
# Get shortest distance from the first point of the last stroke to any participating vertex.
temp_idx, shortest_distance_to_last_stroke = self.shortest_distance(self.main_object, first_sketched_point_last_stroke_co, all_participating_verts)
if shortest_distance_to_first_stroke < average_edge_length / 4 and shortest_distance_to_last_stroke < average_edge_length and len(self.main_splines.data.splines) > 1: # If the beginning of the first stroke is near enough, and its orientation difference with the first edge of the nearest selection chain is not too high, interpret things as an "extrude along strokes" instead of "extrude through strokes"
self.selection_U_exists = False
self.selection_V_exists = True
if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx: # If the first selection is not closed.
self.selection_V_is_closed = False
first_neighbor_V_idx = None
closing_vert_U_idx = None
closing_vert_U2_idx = None
closing_vert_V_idx = None
closing_vert_V2_idx = None
first_vert_V_idx = nearest_tip_to_first_st_first_pt_idx
if selection_type == "TWO_NOT_CONNECTED":
self.selection_V2_exists = True
first_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx
else:
self.selection_V_is_closed = True
closing_vert_V_idx = nearest_tip_to_first_st_first_pt_idx
# Get the neighbors of the first (unselected) vert of the closed selection U.
vert_neighbors = []
for verts in single_unselected_verts_and_neighbors:
if verts[0] == nearest_tip_to_first_st_first_pt_idx:
vert_neighbors.append(verts[1])
vert_neighbors.append(verts[2])
break
verts_V = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, vert_neighbors[0], middle_vertex_idx, None)
for i in range(0, len(verts_V)):
if verts_V[i].index == nearest_vert_to_second_st_first_pt_idx:
if i >= len(verts_V) / 2: # If the vertex nearest to the first point of the second stroke is in the first half of the selected verts.
first_vert_V_idx = vert_neighbors[1]
break
else:
first_vert_V_idx = vert_neighbors[0]
break
if selection_type == "TWO_NOT_CONNECTED":
self.selection_V2_exists = True
if nearest_tip_to_first_st_last_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_last_pt_idx == middle_vertex_idx: # If the second selection is not closed.
self.selection_V2_is_closed = False
first_neighbor_V2_idx = None
closing_vert_V2_idx = None
first_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx
else:
self.selection_V2_is_closed = True
closing_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx
# Get the neighbors of the first (unselected) vert of the closed selection U.
vert_neighbors = []
for verts in single_unselected_verts_and_neighbors:
if verts[0] == nearest_tip_to_first_st_last_pt_idx:
vert_neighbors.append(verts[1])
vert_neighbors.append(verts[2])
break
verts_V2 = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, vert_neighbors[0], middle_vertex_idx, None)
for i in range(0, len(verts_V2)):
if verts_V2[i].index == nearest_vert_to_second_st_last_pt_idx:
if i >= len(verts_V2) / 2: # If the vertex nearest to the first point of the second stroke is in the first half of the selected verts.
first_vert_V2_idx = vert_neighbors[1]
break
else:
first_vert_V2_idx = vert_neighbors[0]
break
else:
self.selection_V2_exists = False
else:
self.selection_U_exists = True
self.selection_V_exists = False
if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx: # If the first selection is not closed.
self.selection_U_is_closed = False
first_neighbor_U_idx = None
closing_vert_U_idx = None
points_tips = []
points_tips.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_idx].co)
points_tips.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_opposite_idx].co)
points_first_stroke_tips = []
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co)
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[len(self.main_splines.data.splines[0].bezier_points) - 1].co)
vec_A = points_tips[0] - points_tips[1]
vec_B = points_first_stroke_tips[0] - points_first_stroke_tips[1]
# Compare the direction of the selection and the first grease pencil stroke to determine which is the "first" vertex of the selection.
if vec_A.dot(vec_B) < 0:
first_vert_U_idx = nearest_tip_to_first_st_first_pt_opposite_idx
else:
first_vert_U_idx = nearest_tip_to_first_st_first_pt_idx
else:
self.selection_U_is_closed = True
closing_vert_U_idx = nearest_tip_to_first_st_first_pt_idx
# Get the neighbors of the first (unselected) vert of the closed selection U.
vert_neighbors = []
for verts in single_unselected_verts_and_neighbors:
if verts[0] == nearest_tip_to_first_st_first_pt_idx:
vert_neighbors.append(verts[1])
vert_neighbors.append(verts[2])
break
points_first_and_neighbor = []
points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_idx].co)
points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[vert_neighbors[0]].co)
points_first_stroke_tips = []
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co)
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[1].co)
vec_A = points_first_and_neighbor[0] - points_first_and_neighbor[1]
vec_B = points_first_stroke_tips[0] - points_first_stroke_tips[1]
# Compare the direction of the selection and the first grease pencil stroke to determine which is the vertex neighbor to the first vertex (unselected) of the closed selection. This will determine the direction of the closed selection.
if vec_A.dot(vec_B) < 0:
first_vert_U_idx = vert_neighbors[1]
else:
first_vert_U_idx = vert_neighbors[0]
if selection_type == "TWO_NOT_CONNECTED":
self.selection_U2_exists = True
if nearest_tip_to_last_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_last_st_first_pt_idx == middle_vertex_idx: # If the second selection is not closed.
self.selection_U2_is_closed = False
first_neighbor_U2_idx = None
closing_vert_U2_idx = None
first_vert_U2_idx = nearest_tip_to_last_st_first_pt_idx
else:
self.selection_U2_is_closed = True
closing_vert_U2_idx = nearest_tip_to_last_st_first_pt_idx
# Get the neighbors of the first (unselected) vert of the closed selection U.
vert_neighbors = []
for verts in single_unselected_verts_and_neighbors:
if verts[0] == nearest_tip_to_last_st_first_pt_idx:
vert_neighbors.append(verts[1])
vert_neighbors.append(verts[2])
break
points_first_and_neighbor = []
points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_last_st_first_pt_idx].co)
points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[vert_neighbors[0]].co)
points_last_stroke_tips = []
points_last_stroke_tips.append(self.main_splines.data.splines[len(self.main_splines.data.splines) - 1].bezier_points[0].co)
points_last_stroke_tips.append(self.main_splines.data.splines[len(self.main_splines.data.splines) - 1].bezier_points[1].co)
vec_A = points_first_and_neighbor[0] - points_first_and_neighbor[1]
vec_B = points_last_stroke_tips[0] - points_last_stroke_tips[1]
# Compare the direction of the selection and the last grease pencil stroke to determine which is the vertex neighbor to the first vertex (unselected) of the closed selection. This will determine the direction of the closed selection.
if vec_A.dot(vec_B) < 0:
first_vert_U2_idx = vert_neighbors[1]
else:
first_vert_U2_idx = vert_neighbors[0]
else:
self.selection_U2_exists = False
elif selection_type == "NO_SELECTION":
self.selection_U_exists = False
self.selection_V_exists = False
#### Get an ordered list of the vertices of Selection-U.
verts_ordered_U = []
if self.selection_U_exists:
verts_ordered_U = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_U_idx, middle_vertex_idx, closing_vert_U_idx)
verts_ordered_U_indices = [x.index for x in verts_ordered_U]
#### Get an ordered list of the vertices of Selection-U2.
verts_ordered_U2 = []
if self.selection_U2_exists:
verts_ordered_U2 = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_U2_idx, middle_vertex_idx, closing_vert_U2_idx)
verts_ordered_U2_indices = [x.index for x in verts_ordered_U2]
#### Get an ordered list of the vertices of Selection-V.
verts_ordered_V = []
if self.selection_V_exists:
verts_ordered_V = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_V_idx, middle_vertex_idx, closing_vert_V_idx)
verts_ordered_V_indices = [x.index for x in verts_ordered_V]
#### Get an ordered list of the vertices of Selection-V2.
verts_ordered_V2 = []
if self.selection_V2_exists:
verts_ordered_V2 = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_V2_idx, middle_vertex_idx, closing_vert_V2_idx)
verts_ordered_V2_indices = [x.index for x in verts_ordered_V2]
#### Check if when there are two-not-connected selections both have the same number of verts. If not terminate the script.
if ((self.selection_U2_exists and len(verts_ordered_U) != len(verts_ordered_U2)) or (self.selection_V2_exists and len(verts_ordered_V) != len(verts_ordered_V2))):
# Display a warning.
Loading
Loading full blame...