Skip to content
Snippets Groups Projects
mesh_looptools.py 167 KiB
Newer Older
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
        x = math.cos(t) * r
        y = math.sin(t) * r
        locs_2d[i] = [x, y, locs_2d[i][2]]
    
    return(locs_2d)


# shift loop, so the first vertex is closest to the center
def circle_shift_loop(bm_mod, loop, com):
    verts, circular = loop
    distances = [[(bm_mod.verts[vert].co - com).length, i] \
        for i, vert in enumerate(verts)]
    distances.sort()
    shift = distances[0][1]
    loop = [verts[shift:] + verts[:shift], circular]
    
    return(loop)


##########################################
####### Curve functions ##################
##########################################

# create lists with knots and points, all correctly sorted
def curve_calculate_knots(loop, verts_selected):
    knots = [v for v in loop[0] if v in verts_selected]
    points = loop[0][:]
    # circular loop, potential for weird splines
    if loop[1]:
        offset = int(len(loop[0]) / 4)
        kpos = []
        for k in knots:
            kpos.append(loop[0].index(k))
        kdif = []
        for i in range(len(kpos) - 1):
            kdif.append(kpos[i+1] - kpos[i])
        kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
        kadd = []
        for k in kdif:
            if k > 2 * offset:
                kadd.append([kdif.index(k), True])
            # next 2 lines are optional, they insert
            # an extra control point in small gaps
            #elif k > offset:
            #   kadd.append([kdif.index(k), False])
        kins = []
        krot = False
        for k in kadd: # extra knots to be added
            if k[1]: # big gap (break circular spline)
                kpos = loop[0].index(knots[k[0]]) + offset
                if kpos > len(loop[0]) - 1:
                    kpos -= len(loop[0])
                kins.append([knots[k[0]], loop[0][kpos]])
                kpos2 = k[0] + 1
                if kpos2 > len(knots)-1:
                    kpos2 -= len(knots)
                kpos2 = loop[0].index(knots[kpos2]) - offset
                if kpos2 < 0:
                    kpos2 += len(loop[0])
                kins.append([loop[0][kpos], loop[0][kpos2]])
                krot = loop[0][kpos2]
            else: # small gap (keep circular spline)
                k1 = loop[0].index(knots[k[0]])
                k2 = k[0] + 1
                if k2 > len(knots)-1:
                    k2 -= len(knots)
                k2 = loop[0].index(knots[k2])
                if k2 < k1:
                    dif = len(loop[0]) - 1 - k1 + k2
                else:
                    dif = k2 - k1
                kn = k1 + int(dif/2)
                if kn > len(loop[0]) - 1:
                    kn -= len(loop[0])
                kins.append([loop[0][k1], loop[0][kn]])
        for j in kins: # insert new knots
            knots.insert(knots.index(j[0]) + 1, j[1])
        if not krot: # circular loop
            knots.append(knots[0])
            points = loop[0][loop[0].index(knots[0]):]
            points += loop[0][0:loop[0].index(knots[0]) + 1]
        else: # non-circular loop (broken by script)
            krot = knots.index(krot)
            knots = knots[krot:] + knots[0:krot]
            if loop[0].index(knots[0]) > loop[0].index(knots[-1]):
                points = loop[0][loop[0].index(knots[0]):]
                points += loop[0][0:loop[0].index(knots[-1])+1]
            else:
                points = loop[0][loop[0].index(knots[0]):\
                    loop[0].index(knots[-1]) + 1]
    # non-circular loop, add first and last point as knots
    else:
        if loop[0][0] not in knots:
            knots.insert(0, loop[0][0])
        if loop[0][-1] not in knots:
            knots.append(loop[0][-1])
    
    return(knots, points)


# calculate relative positions compared to first knot
def curve_calculate_t(bm_mod, knots, points, pknots, regular, circular):
    tpoints = []
    loc_prev = False
    len_total = 0
    
    for p in points:
        if p in knots:
            loc = pknots[knots.index(p)] # use projected knot location
        else:
            loc = mathutils.Vector(bm_mod.verts[p].co[:])
        if not loc_prev:
            loc_prev = loc
        len_total += (loc-loc_prev).length
        tpoints.append(len_total)
        loc_prev = loc
    tknots = []
    for p in points:
        if p in knots:
            tknots.append(tpoints[points.index(p)])
    if circular:
        tknots[-1] = tpoints[-1]
    
    # regular option
    if regular:
        tpoints_average = tpoints[-1] / (len(tpoints) - 1)
        for i in range(1, len(tpoints) - 1):
            tpoints[i] = i * tpoints_average
        for i in range(len(knots)):
            tknots[i] = tpoints[points.index(knots[i])]
        if circular:
            tknots[-1] = tpoints[-1]
    
    
    return(tknots, tpoints)


# change the location of non-selected points to their place on the spline
def curve_calculate_vertices(bm_mod, knots, tknots, points, tpoints, splines,
interpolation, restriction):
    newlocs = {}
    move = []
    
    for p in points:
        if p in knots:
            continue
        m = tpoints[points.index(p)]
        if m in tknots:
            n = tknots.index(m)
        else:
            t = tknots[:]
            t.append(m)
            t.sort()
            n = t.index(m) - 1
        if n > len(splines) - 1:
            n = len(splines) - 1
        elif n < 0:
            n = 0
        
        if interpolation == 'cubic':
            ax, bx, cx, dx, tx = splines[n][0]
            x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
            ay, by, cy, dy, ty = splines[n][1]
            y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
            az, bz, cz, dz, tz = splines[n][2]
            z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
            newloc = mathutils.Vector([x,y,z])
        else: # interpolation == 'linear'
            a, d, t, u = splines[n]
            newloc = ((m-t)/u)*d + a

        if restriction != 'none': # vertex movement is restricted
            newlocs[p] = newloc
        else: # set the vertex to its new location
            move.append([p, newloc])
        
    if restriction != 'none': # vertex movement is restricted
        for p in points:
            if p in newlocs:
                newloc = newlocs[p]
            else:
                move.append([p, bm_mod.verts[p].co])
                continue
            oldloc = bm_mod.verts[p].co
            normal = bm_mod.verts[p].normal
            dloc = newloc - oldloc
            if dloc.length < 1e-6:
                move.append([p, newloc])
            elif restriction == 'extrude': # only extrusions
                if dloc.angle(normal, 0) < 0.5 * math.pi + 1e-6:
                    move.append([p, newloc])
            else: # restriction == 'indent' only indentations
                if dloc.angle(normal) > 0.5 * math.pi - 1e-6:
                    move.append([p, newloc])

    return(move)


# trim loops to part between first and last selected vertices (including)
def curve_cut_boundaries(bm_mod, loops):
    cut_loops = []
    for loop, circular in loops:
        if circular:
            # don't cut
            cut_loops.append([loop, circular])
            continue
        selected = [bm_mod.verts[v].select for v in loop]
        first = selected.index(True)
        selected.reverse()
        last = -selected.index(True)
        if last == 0:
            cut_loops.append([loop[first:], circular])
        else:
            cut_loops.append([loop[first:last], circular])
    
    return(cut_loops)


# calculate input loops
def curve_get_input(object, bm, boundaries, scene):
    # get mesh with modifiers applied
    derived, bm_mod = get_derived_bmesh(object, bm, scene)
    
    # vertices that still need a loop to run through it
    verts_unsorted = [v.index for v in bm_mod.verts if \
        v.select and not v.hide]
    # necessary dictionaries
    vert_edges = dict_vert_edges(bm_mod)
    edge_faces = dict_edge_faces(bm_mod)
    correct_loops = []
    
    # find loops through each selected vertex
    while len(verts_unsorted) > 0:
        loops = curve_vertex_loops(bm_mod, verts_unsorted[0], vert_edges,
            edge_faces)
        verts_unsorted.pop(0)
        
        # check if loop is fully selected
        search_perpendicular = False
        i = -1
        for loop, circular in loops:
            i += 1
            selected = [v for v in loop if bm_mod.verts[v].select]
            if len(selected) < 2:
                # only one selected vertex on loop, don't use
                loops.pop(i)
                continue
            elif len(selected) == len(loop):
                search_perpendicular = loop
                break
        # entire loop is selected, find perpendicular loops
        if search_perpendicular:
            for vert in loop:
                if vert in verts_unsorted:
                    verts_unsorted.remove(vert)
            perp_loops = curve_perpendicular_loops(bm_mod, loop,
                vert_edges, edge_faces)
            for perp_loop in perp_loops:
                correct_loops.append(perp_loop)
        # normal input
        else:
            for loop, circular in loops:
                correct_loops.append([loop, circular])
    
    # boundaries option
    if boundaries:
        correct_loops = curve_cut_boundaries(bm_mod, correct_loops)
    
    return(derived, bm_mod, correct_loops)


# return all loops that are perpendicular to the given one
def curve_perpendicular_loops(bm_mod, start_loop, vert_edges, edge_faces):
    # find perpendicular loops
    perp_loops = []
    for start_vert in start_loop:
        loops = curve_vertex_loops(bm_mod, start_vert, vert_edges,
            edge_faces)
        for loop, circular in loops:
            selected = [v for v in loop if bm_mod.verts[v].select]
            if len(selected) == len(loop):
                continue
            else:
                perp_loops.append([loop, circular, loop.index(start_vert)])
    
    # trim loops to same lengths
    shortest = [[len(loop[0]), i] for i, loop in enumerate(perp_loops)\
        if not loop[1]]
    if not shortest:
        # all loops are circular, not trimming
        return([[loop[0], loop[1]] for loop in perp_loops])
    else:
        shortest = min(shortest)
    shortest_start = perp_loops[shortest[1]][2]
    before_start = shortest_start
    after_start = shortest[0] - shortest_start - 1
    bigger_before = before_start > after_start
    trimmed_loops = []
    for loop in perp_loops:
        # have the loop face the same direction as the shortest one
        if bigger_before:
            if loop[2] < len(loop[0]) / 2:
                loop[0].reverse()
                loop[2] = len(loop[0]) - loop[2] - 1
        else:
            if loop[2] > len(loop[0]) / 2:
                loop[0].reverse()
                loop[2] = len(loop[0]) - loop[2] - 1
        # circular loops can shift, to prevent wrong trimming
        if loop[1]:
            shift = shortest_start - loop[2]
            if loop[2] + shift > 0 and loop[2] + shift < len(loop[0]):
                loop[0] = loop[0][-shift:] + loop[0][:-shift]
            loop[2] += shift
            if loop[2] < 0:
                loop[2] += len(loop[0])
            elif loop[2] > len(loop[0]) -1:
                loop[2] -= len(loop[0])
        # trim
        start = max(0, loop[2] - before_start)
        end = min(len(loop[0]), loop[2] + after_start + 1)
        trimmed_loops.append([loop[0][start:end], False])
    
    return(trimmed_loops)


# project knots on non-selected geometry
def curve_project_knots(bm_mod, verts_selected, knots, points, circular):
    # function to project vertex on edge
    def project(v1, v2, v3):
        # v1 and v2 are part of a line
        # v3 is projected onto it
        v2 -= v1
        v3 -= v1
        p = v3.project(v2)
        return(p + v1)
    
    if circular: # project all knots
        start = 0
        end = len(knots)
        pknots = []
    else: # first and last knot shouldn't be projected
        start = 1
        end = -1
        pknots = [mathutils.Vector(bm_mod.verts[knots[0]].co[:])]
    for knot in knots[start:end]:
        if knot in verts_selected:
            knot_left = knot_right = False
            for i in range(points.index(knot)-1, -1*len(points), -1):
                if points[i] not in knots:
                    knot_left = points[i]
                    break
            for i in range(points.index(knot)+1, 2*len(points)):
                if i > len(points) - 1:
                    i -= len(points)
                if points[i] not in knots:
                    knot_right = points[i]
                    break
            if knot_left and knot_right and knot_left != knot_right:
                knot_left = mathutils.Vector(\
                    bm_mod.verts[knot_left].co[:])
                knot_right = mathutils.Vector(\
                    bm_mod.verts[knot_right].co[:])
                knot = mathutils.Vector(bm_mod.verts[knot].co[:])
                pknots.append(project(knot_left, knot_right, knot))
            else:
                pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
        else: # knot isn't selected, so shouldn't be changed
            pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
    if not circular:
        pknots.append(mathutils.Vector(bm_mod.verts[knots[-1]].co[:]))
    
    return(pknots)


# find all loops through a given vertex
def curve_vertex_loops(bm_mod, start_vert, vert_edges, edge_faces):
    edges_used = []
    loops = []
        
    for edge in vert_edges[start_vert]:
        if edge in edges_used:
            continue
        loop = []
        circular = False
        for vert in edge:
            active_faces = edge_faces[edge]
            new_vert = vert
            growing = True
            while growing:
                growing = False
                new_edges = vert_edges[new_vert]
                loop.append(new_vert)
                if len(loop) > 1:
                    edges_used.append(tuple(sorted([loop[-1], loop[-2]])))
                if len(new_edges) < 3 or len(new_edges) > 4:
                    # pole
                    break
                else:
                    # find next edge
                    for new_edge in new_edges:
                        if new_edge in edges_used:
                            continue
                        eliminate = False
                        for new_face in edge_faces[new_edge]:
                            if new_face in active_faces:
                                eliminate = True
                                break
                        if eliminate:
                            continue
                        # found correct new edge
                        active_faces = edge_faces[new_edge]
                        v1, v2 = new_edge
                        if v1 != new_vert:
                            new_vert = v1
                        else:
                            new_vert = v2
                        if new_vert == loop[0]:
                            circular = True
                        else:
                            growing = True
                        break
            if circular:
                break
            loop.reverse()
        loops.append([loop, circular])
    
    return(loops)


##########################################
####### Flatten functions ################
##########################################

# sort input into loops
def flatten_get_input(bm):
    vert_verts = dict_vert_verts([edgekey(edge) for edge in bm.edges \
        if edge.select and not edge.hide])
    verts = [v.index for v in bm.verts if v.select and not v.hide]
    
    # no connected verts, consider all selected verts as a single input
    if not vert_verts:
        return([[verts, False]])
    
    loops = []
    while len(verts) > 0:
        # start of loop
        loop = [verts[0]]
        verts.pop(0)
        if loop[-1] in vert_verts:
            to_grow = vert_verts[loop[-1]]
        else:
            to_grow = []
        # grow loop
        while len(to_grow) > 0:
            new_vert = to_grow[0]
            to_grow.pop(0)
            if new_vert in loop:
                continue
            loop.append(new_vert)
            verts.remove(new_vert)
            to_grow += vert_verts[new_vert]
        # add loop to loops
        loops.append([loop, False])
    
    return(loops)


# calculate position of vertex projections on plane
def flatten_project(bm, loop, com, normal):
    verts = [bm.verts[v] for v in loop[0]]
    verts_projected = [[v.index, mathutils.Vector(v.co[:]) - \
        (mathutils.Vector(v.co[:])-com).dot(normal)*normal] for v in verts]
    
    return(verts_projected)


Bart Crouch's avatar
Bart Crouch committed
##########################################
####### Gstretch functions ###############
##########################################

# fake stroke class, used to create custom strokes if no GP data is found
class gstretch_fake_stroke():
    def __init__(self, points):
        self.points = [gstretch_fake_stroke_point(p) for p in points]


# fake stroke point class, used in fake strokes
class gstretch_fake_stroke_point():
    def __init__(self, loc):
        self.co = loc


Bart Crouch's avatar
Bart Crouch committed
# flips loops, if necessary, to obtain maximum alignment to stroke
def gstretch_align_pairs(ls_pairs, object, bm_mod, method):    
    # returns total distance between all verts in loop and corresponding stroke
    def distance_loop_stroke(loop, stroke, object, bm_mod, method):
        stroke_lengths_cache = False
        loop_length = len(loop[0])
        total_distance = 0
        
        if method != 'regular':
            relative_lengths = gstretch_relative_lengths(loop, bm_mod)
        
        for i, v_index in enumerate(loop[0]):
            if method == 'regular':
                relative_distance = i / (loop_length - 1)
            else:
                relative_distance = relative_lengths[i]
            
            loc1 = object.matrix_world * bm_mod.verts[v_index].co
            loc2, stroke_lengths_cache = gstretch_eval_stroke(stroke,
                relative_distance, stroke_lengths_cache)
            total_distance += (loc2 - loc1).length
    
        return(total_distance)
    
    if ls_pairs:
        for (loop, stroke) in ls_pairs:
            distance_loop_stroke 
            total_dist = distance_loop_stroke(loop, stroke, object, bm_mod,
                method)
            loop[0].reverse()
            total_dist_rev = distance_loop_stroke(loop, stroke, object, bm_mod,
                method)
            if total_dist_rev > total_dist:
                loop[0].reverse()
    
    return(ls_pairs)


# calculate vertex positions on stroke
def gstretch_calculate_verts(loop, stroke, object, bm_mod, method):
    move = []
    stroke_lengths_cache = False
    loop_length = len(loop[0])
    matrix_inverse = object.matrix_world.inverted()
    
    # return intersection of line with stroke, or None
    def intersect_line_stroke(vec1, vec2, stroke):
        for i, p in enumerate(stroke.points[1:]):
            intersections = mathutils.geometry.intersect_line_line(vec1, vec2,
                p.co, stroke.points[i].co)
            if intersections and \
            (intersections[0] - intersections[1]).length < 1e-2:
                x, dist = mathutils.geometry.intersect_point_line(
                    intersections[0], p.co, stroke.points[i].co)
                if -1 < dist < 1:
                    return(intersections[0])
        return(None)
    
    if method == 'project':
        projection_vectors = []
        vert_edges = dict_vert_edges(bm_mod)
        
        for v_index in loop[0]:
            for ek in vert_edges[v_index]:
                v1, v2 = ek
                v1 = bm_mod.verts[v1]
                v2 = bm_mod.verts[v2]
                if v1.select + v2.select == 1 and not v1.hide and not v2.hide:
                    vec1 = object.matrix_world * v1.co
                    vec2 = object.matrix_world * v2.co
                    intersection = intersect_line_stroke(vec1, vec2, stroke)
                    if intersection:
                        break
            if not intersection:
                v = bm_mod.verts[v_index]
                intersection = intersect_line_stroke(v.co, v.co + v.normal,
                    stroke)
            if intersection:
                move.append([v_index, matrix_inverse * intersection])
    
    else:
        if method == 'irregular':
            relative_lengths = gstretch_relative_lengths(loop, bm_mod)
        
        for i, v_index in enumerate(loop[0]):
            if method == 'regular':
                relative_distance = i / (loop_length - 1)
            else: # method == 'irregular'
                relative_distance = relative_lengths[i]
            loc, stroke_lengths_cache = gstretch_eval_stroke(stroke,
                relative_distance, stroke_lengths_cache)
            loc = matrix_inverse * loc
            move.append([v_index, loc])
    
    return(move)


# create new vertices, based on GP strokes
def gstretch_create_verts(object, bm_mod, strokes, method, conversion,
conversion_distance, conversion_max, conversion_min, conversion_vertices):
    move = []
    stroke_verts = []
    mat_world = object.matrix_world.inverted()
    singles = gstretch_match_single_verts(bm_mod, strokes, mat_world)
    
    for stroke in strokes:
        stroke_verts.append([stroke, []])
        min_end_point = 0
        if conversion == 'vertices':
            min_end_point = conversion_vertices
            end_point = conversion_vertices
        elif conversion == 'limit_vertices':
            min_end_point = conversion_min
            end_point = conversion_max
        else:
            end_point = len(stroke.points)
        # creation of new vertices at fixed user-defined distances
        if conversion == 'distance':
            method = 'project'
            prev_point = stroke.points[0]
            stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * \
                prev_point.co))
            distance = 0
            limit = conversion_distance
            for point in stroke.points:
                new_distance = distance + (point.co - prev_point.co).length
                iteration = 0
                while new_distance > limit:
                    to_cover = limit - distance + (limit * iteration)
                    new_loc = prev_point.co + to_cover * \
                        (point.co - prev_point.co).normalized()
                    stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * \
                        new_loc))
                    new_distance -= limit
                    iteration += 1
                distance = new_distance
                prev_point = point
        # creation of new vertices for other methods
        else:
            # add vertices at stroke points
            for point in stroke.points[:end_point]:
                stroke_verts[-1][1].append(bm_mod.verts.new(\
                    mat_world * point.co))
            # add more vertices, beyond the points that are available
            if min_end_point > min(len(stroke.points), end_point):
                for i in range(min_end_point -
                (min(len(stroke.points), end_point))):
                    stroke_verts[-1][1].append(bm_mod.verts.new(\
                        mat_world * point.co))
                # force even spreading of points, so they are placed on stroke
                method = 'regular'
    bm_mod.verts.index_update()
    for stroke, verts_seq in stroke_verts:
        if len(verts_seq) < 2:
            continue
        # spread vertices evenly over the stroke
        if method == 'regular':
            loop = [[vert.index for vert in verts_seq], False]
            move += gstretch_calculate_verts(loop, stroke, object, bm_mod,
                method)
        # create edges
        for i, vert in enumerate(verts_seq):
            if i > 0:
                bm_mod.edges.new((verts_seq[i-1], verts_seq[i]))
            vert.select = True
        # connect single vertices to the closest stroke
        if singles:
            for vert, m_stroke, point in singles:
                if m_stroke != stroke:
                    continue
                bm_mod.edges.new((vert, verts_seq[point]))
                
    bmesh.update_edit_mesh(object.data)

    return(move)


Bart Crouch's avatar
Bart Crouch committed
# erases the grease pencil stroke
def gstretch_erase_stroke(stroke, context):
    # change 3d coordinate into a stroke-point
    def sp(loc, context):
        lib = {'name': "",
            'pen_flip': False,
            'is_start': False,
            'location': (0, 0, 0),
            'mouse': (view3d_utils.location_3d_to_region_2d(\
                context.region, context.space_data.region_3d, loc)),
            'pressure': 1,
            'time': 0}
        return(lib)

    if type(stroke) != bpy.types.GPencilStroke:
        # fake stroke, there is nothing to delete
        return

Bart Crouch's avatar
Bart Crouch committed
    erase_stroke = [sp(p.co, context) for p in stroke.points]
    if erase_stroke:
        erase_stroke[0]['is_start'] = True
    bpy.ops.gpencil.draw(mode='ERASER', stroke=erase_stroke)


# get point on stroke, given by relative distance (0.0 - 1.0)
def gstretch_eval_stroke(stroke, distance, stroke_lengths_cache=False):
    # use cache if available
    if not stroke_lengths_cache:
        lengths = [0]
        for i, p in enumerate(stroke.points[1:]):
            lengths.append((p.co - stroke.points[i].co).length + \
                lengths[-1])
        total_length = max(lengths[-1], 1e-7)
        stroke_lengths_cache = [length / total_length for length in
            lengths]
    stroke_lengths = stroke_lengths_cache[:]
    
    if distance in stroke_lengths:
        loc = stroke.points[stroke_lengths.index(distance)].co
    elif distance > stroke_lengths[-1]:
        # should be impossible, but better safe than sorry
        loc = stroke.points[-1].co
    else:
        stroke_lengths.append(distance)
        stroke_lengths.sort()
        stroke_index = stroke_lengths.index(distance)
        interval_length = stroke_lengths[stroke_index+1] - \
            stroke_lengths[stroke_index-1]
        distance_relative = (distance - stroke_lengths[stroke_index-1]) / \
            interval_length
        interval_vector = stroke.points[stroke_index].co - \
            stroke.points[stroke_index-1].co
        loc = stroke.points[stroke_index-1].co + \
            distance_relative * interval_vector
    
    return(loc, stroke_lengths_cache)


# create fake grease pencil strokes for the active object
def gstretch_get_fake_strokes(object, bm_mod, loops):
    strokes = []
    for loop in loops:
        p1 = object.matrix_world * bm_mod.verts[loop[0][0]].co
        p2 = object.matrix_world * bm_mod.verts[loop[0][-1]].co
        strokes.append(gstretch_fake_stroke([p1, p2]))

    return(strokes)


Bart Crouch's avatar
Bart Crouch committed
# get grease pencil strokes for the active object
def gstretch_get_strokes(object):
    gp = object.grease_pencil
    if not gp:
        return(None)
    layer = gp.layers.active
    if not layer:
        return(None)
    frame = layer.active_frame
    if not frame:
        return(None)
    strokes = frame.strokes
    if len(strokes) < 1:
        return(None)
    
    return(strokes)


# returns a list with loop-stroke pairs
def gstretch_match_loops_strokes(loops, strokes, object, bm_mod):
    if not loops or not strokes:
        return(None)
    
    # calculate loop centers
    loop_centers = []
    for loop in loops:
        center = mathutils.Vector()
        for v_index in loop[0]:
            center += bm_mod.verts[v_index].co
        center /= len(loop[0])
        center = object.matrix_world * center
        loop_centers.append([center, loop])
    
    # calculate stroke centers
    stroke_centers = []
    for stroke in strokes:
        center = mathutils.Vector()
        for p in stroke.points:
            center += p.co
        center /= len(stroke.points)
        stroke_centers.append([center, stroke, 0])
    
    # match, first by stroke use count, then by distance
    ls_pairs = []
    for lc in loop_centers:
        distances = []
        for i, sc in enumerate(stroke_centers):
            distances.append([sc[2], (lc[0] - sc[0]).length, i])
        distances.sort()
        best_stroke = distances[0][2]
        ls_pairs.append([lc[1], stroke_centers[best_stroke][1]])
        stroke_centers[best_stroke][2] += 1 # increase stroke use count
    
    return(ls_pairs)


# match single selected vertices to the closest stroke endpoint
# returns a list of tuples, constructed as: (vertex, stroke, stroke point index)
def gstretch_match_single_verts(bm_mod, strokes, mat_world):
    # calculate stroke endpoints in object space
    endpoints = []
    for stroke in strokes:
        endpoints.append((mat_world * stroke.points[0].co, stroke, 0))
        endpoints.append((mat_world * stroke.points[-1].co, stroke, -1))
    
    distances = []
    # find single vertices (not connected to other selected verts)
    for vert in bm_mod.verts:
        if not vert.select:
            continue
        single = True
        for edge in vert.link_edges:
            if edge.other_vert(vert).select:
                single = False
                break
        if not single:
            continue
        # calculate distances from vertex to endpoints
        distance = [((vert.co - loc).length, vert, stroke, stroke_point,
            endpoint_index) for endpoint_index, (loc, stroke, stroke_point) in 
            enumerate(endpoints)]
        distance.sort()
        distances.append(distance[0])
    
    # create matches, based on shortest distance first
    singles = []
    while distances:
        distances.sort()
        singles.append((distances[0][1], distances[0][2], distances[0][3]))
        endpoints.pop(distances[0][4])
        distances.pop(0)
        distances_new = []
        for (i, vert, j, k, l) in distances:
            distance_new = [((vert.co - loc).length, vert, stroke, stroke_point,
                endpoint_index) for endpoint_index, (loc, stroke,
                stroke_point) in enumerate(endpoints)]
            distance_new.sort()
            distances_new.append(distance_new[0])
        distances = distances_new
    
    return(singles)


Bart Crouch's avatar
Bart Crouch committed
# returns list with a relative distance (0.0 - 1.0) of each vertex on the loop
def gstretch_relative_lengths(loop, bm_mod):
    lengths = [0]
    for i, v_index in enumerate(loop[0][1:]):
        lengths.append((bm_mod.verts[v_index].co - \
            bm_mod.verts[loop[0][i]].co).length + lengths[-1])
        total_length = max(lengths[-1], 1e-7)
        relative_lengths = [length / total_length for length in
            lengths]
    
    return(relative_lengths)


# convert cache-stored strokes into usable (fake) GP strokes
def gstretch_safe_to_true_strokes(safe_strokes):
    strokes = []
    for safe_stroke in safe_strokes:
        strokes.append(gstretch_fake_stroke(safe_stroke))
    
    return(strokes)


# convert a GP stroke into a list of points which can be stored in cache
def gstretch_true_to_safe_strokes(strokes):
    safe_strokes = []
    for stroke in strokes:
        safe_strokes.append([p.co.copy() for p in stroke.points])
    
    return(safe_strokes)


# force consistency in GUI, max value can never be lower than min value
def gstretch_update_max(self, context):
    # called from operator settings (after execution)
    if 'conversion_min' in self.keys():
        if self.conversion_min > self.conversion_max:
            self.conversion_max = self.conversion_min
    # called from toolbar
    else:
        lt = context.window_manager.looptools
        if lt.gstretch_conversion_min > lt.gstretch_conversion_max:
            lt.gstretch_conversion_max = lt.gstretch_conversion_min


# force consistency in GUI, min value can never be higher than max value
def gstretch_update_min(self, context):
    # called from operator settings (after execution)
    if 'conversion_max' in self.keys():
        if self.conversion_max < self.conversion_min:
            self.conversion_min = self.conversion_max
    # called from toolbar
    else:
        lt = context.window_manager.looptools
        if lt.gstretch_conversion_max < lt.gstretch_conversion_min:
            lt.gstretch_conversion_min = lt.gstretch_conversion_max


##########################################
####### Relax functions ##################
##########################################

# create lists with knots and points, all correctly sorted
def relax_calculate_knots(loops):
    all_knots = []
    all_points = []
    for loop, circular in loops:
        knots = [[], []]
        points = [[], []]
        if circular:
            if len(loop)%2 == 1: # odd
                extend = [False, True, 0, 1, 0, 1]
            else: # even
                extend = [True, False, 0, 1, 1, 2]
        else:
            if len(loop)%2 == 1: # odd
                extend = [False, False, 0, 1, 1, 2]
            else: # even
                extend = [False, False, 0, 1, 1, 2]
        for j in range(2):
            if extend[j]:
                loop = [loop[-1]] + loop + [loop[0]]
            for i in range(extend[2+2*j], len(loop), 2):
                knots[j].append(loop[i])
            for i in range(extend[3+2*j], len(loop), 2):
                if loop[i] == loop[-1] and not circular:
                    continue
                if len(points[j]) == 0:
                    points[j].append(loop[i])
                elif loop[i] != points[j][0]:
                    points[j].append(loop[i])
            if circular:
                if knots[j][0] != knots[j][-1]:
                    knots[j].append(knots[j][0])
        if len(points[1]) == 0:
            knots.pop(1)
            points.pop(1)
        for k in knots:
            all_knots.append(k)
        for p in points:
            all_points.append(p)
    
    return(all_knots, all_points)


# calculate relative positions compared to first knot
def relax_calculate_t(bm_mod, knots, points, regular):
    all_tknots = []
    all_tpoints = []
    for i in range(len(knots)):
        amount = len(knots[i]) + len(points[i])
        mix  = []
        for j in range(amount):
            if j%2 == 0:
                mix.append([True, knots[i][round(j/2)]])
            elif j == amount-1:
                mix.append([True, knots[i][-1]])
            else:
                mix.append([False, points[i][int(j/2)]])
        len_total = 0
        loc_prev = False
        tknots = []
        tpoints = []
        for m in mix:
            loc = mathutils.Vector(bm_mod.verts[m[1]].co[:])
            if not loc_prev:
                loc_prev = loc
            len_total += (loc - loc_prev).length
            if m[0]:
                tknots.append(len_total)
            else:
                tpoints.append(len_total)
            loc_prev = loc
        if regular:
            tpoints = []
            for p in range(len(points[i])):
                tpoints.append((tknots[p] + tknots[p+1]) / 2)
        all_tknots.append(tknots)
        all_tpoints.append(tpoints)
    
    return(all_tknots, all_tpoints)


# change the location of the points to their place on the spline
def relax_calculate_verts(bm_mod, interpolation, tknots, knots, tpoints,
points, splines):
    change = []
    move = []
    for i in range(len(knots)):
        for p in points[i]:
            m = tpoints[i][points[i].index(p)]
            if m in tknots[i]:
                n = tknots[i].index(m)
            else:
                t = tknots[i][:]
                t.append(m)
                t.sort()
                n = t.index(m)-1
            if n > len(splines[i]) - 1: