Newer
Older
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
n = len(splines[i]) - 1
elif n < 0:
n = 0
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[i][n][0]
x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
ay, by, cy, dy, ty = splines[i][n][1]
y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
az, bz, cz, dz, tz = splines[i][n][2]
z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
change.append([p, mathutils.Vector([x,y,z])])
else: # interpolation == 'linear'
a, d, t, u = splines[i][n]
if u == 0:
u = 1e-8
change.append([p, ((m-t)/u)*d + a])
for c in change:
move.append([c[0], (bm_mod.verts[c[0]].co + c[1]) / 2])
return(move)
##########################################
####### Space functions ##################
##########################################
# calculate relative positions compared to first knot
def space_calculate_t(bm_mod, knots):
tknots = []
loc_prev = False
len_total = 0
for k in knots:
loc = mathutils.Vector(bm_mod.verts[k].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc - loc_prev).length
tknots.append(len_total)
loc_prev = loc
amount = len(knots)
t_per_segment = len_total / (amount - 1)
tpoints = [i * t_per_segment for i in range(amount)]
return(tknots, tpoints)
# change the location of the points to their place on the spline
def space_calculate_verts(bm_mod, interpolation, tknots, tpoints, points,
splines):
move = []
for p in points:
m = tpoints[points.index(p)]
if m in tknots:
n = tknots.index(m)
else:
t = tknots[:]
t.append(m)
t.sort()
n = t.index(m) - 1
if n > len(splines) - 1:
n = len(splines) - 1
elif n < 0:
n = 0
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
ay, by, cy, dy, ty = splines[n][1]
y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
az, bz, cz, dz, tz = splines[n][2]
z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
move.append([p, mathutils.Vector([x,y,z])])
else: # interpolation == 'linear'
a, d, t, u = splines[n]
move.append([p, ((m-t)/u)*d + a])
return(move)
##########################################
####### Operators ########################
##########################################
# bridge operator
class Bridge(bpy.types.Operator):
bl_idname = 'mesh.looptools_bridge'
bl_label = "Bridge / Loft"
bl_description = "Bridge two, or loft several, loops of vertices"
bl_options = {'REGISTER', 'UNDO'}
cubic_strength = bpy.props.FloatProperty(name = "Strength",
description = "Higher strength results in more fluid curves",
default = 1.0,
soft_min = -3.0,
soft_max = 3.0)
interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
items = (('cubic', "Cubic", "Gives curved results"),
('linear', "Linear", "Basic, fast, straight interpolation")),
description = "Interpolation mode: algorithm used when creating "\
"segments",
default = 'cubic')
loft = bpy.props.BoolProperty(name = "Loft",
description = "Loft multiple loops, instead of considering them as "\
"a multi-input for bridging",
default = False)
loft_loop = bpy.props.BoolProperty(name = "Loop",
description = "Connect the first and the last loop with each other",
default = False)
min_width = bpy.props.IntProperty(name = "Minimum width",
description = "Segments with an edge smaller than this are merged "\
"(compared to base edge)",
default = 0,
min = 0,
max = 100,
subtype = 'PERCENTAGE')
mode = bpy.props.EnumProperty(name = "Mode",
items = (('basic', "Basic", "Fast algorithm"), ('shortest',
"Shortest edge", "Slower algorithm with better vertex matching")),
description = "Algorithm used for bridging",
default = 'shortest')
remove_faces = bpy.props.BoolProperty(name = "Remove faces",
description = "Remove faces that are internal after bridging",
default = True)
reverse = bpy.props.BoolProperty(name = "Reverse",
description = "Manually override the direction in which the loops "\
"are bridged. Only use if the tool gives the wrong " \
"result",
default = False)
segments = bpy.props.IntProperty(name = "Segments",
description = "Number of segments used to bridge the gap "\
"(0 = automatic)",
default = 1,
min = 0,
soft_max = 20)
twist = bpy.props.IntProperty(name = "Twist",
description = "Twist what vertices are connected to each other",
default = 0)
@classmethod
def poll(cls, context):
ob = context.active_object
return (ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
#layout.prop(self, "mode") # no cases yet where 'basic' mode is needed
# top row
col_top = layout.column(align=True)
row = col_top.row(align=True)
col_left = row.column(align=True)
col_right = row.column(align=True)
col_right.active = self.segments != 1
col_left.prop(self, "segments")
col_right.prop(self, "min_width", text="")
# bottom row
bottom_left = col_left.row()
bottom_left.active = self.segments != 1
bottom_left.prop(self, "interpolation", text="")
bottom_right = col_right.row()
bottom_right.active = self.interpolation == 'cubic'
bottom_right.prop(self, "cubic_strength")
# boolean properties
col_top.prop(self, "remove_faces")
if self.loft:
col_top.prop(self, "loft_loop")
# override properties
col_top.separator()
row = layout.row(align = True)
row.prop(self, "twist")
row.prop(self, "reverse")
def invoke(self, context, event):
# load custom settings
context.window_manager.looptools.bridge_loft = self.loft
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
edge_faces, edgekey_to_edge, old_selected_faces, smooth = \
bridge_initialise(bm, self.interpolation)
settings_write(self)
# check cache to see if we can save time
input_method = bridge_input_method(self.loft, self.loft_loop)
cached, single_loops, loops, derived, mapping = cache_read("Bridge",
object, bm, input_method, False)
if not cached:
# get loops
loops = bridge_get_input(bm)
if loops:
# reorder loops if there are more than 2
if len(loops) > 2:
if self.loft:
loops = bridge_sort_loops(bm, loops, self.loft_loop)
else:
loops = bridge_match_loops(bm, loops)
# saving cache for faster execution next time
if not cached:
cache_write("Bridge", object, bm, input_method, False, False,
loops, False, False)
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
if loops:
# calculate new geometry
vertices = []
faces = []
max_vert_index = len(bm.verts)-1
for i in range(1, len(loops)):
if not self.loft and i%2 == 0:
continue
lines = bridge_calculate_lines(bm, loops[i-1:i+1],
self.mode, self.twist, self.reverse)
vertex_normals = bridge_calculate_virtual_vertex_normals(bm,
lines, loops[i-1:i+1], edge_faces, edgekey_to_edge)
segments = bridge_calculate_segments(bm, lines,
loops[i-1:i+1], self.segments)
new_verts, new_faces, max_vert_index = \
bridge_calculate_geometry(bm, lines, vertex_normals,
segments, self.interpolation, self.cubic_strength,
self.min_width, max_vert_index)
if new_verts:
vertices += new_verts
if new_faces:
faces += new_faces
# make sure faces in loops that aren't used, aren't removed
if self.remove_faces and old_selected_faces:
bridge_save_unused_faces(bm, old_selected_faces, loops)
# create vertices
if vertices:
bridge_create_vertices(bm, vertices)
# create faces
if faces:
new_faces = bridge_create_faces(object, bm, faces, self.twist)
old_selected_faces = [i for i, face in enumerate(bm.faces) \
if face.index in old_selected_faces] # updating list
bridge_select_new_faces(new_faces, smooth)
# edge-data could have changed, can't use cache next run
if faces and not vertices:
cache_delete("Bridge")
# delete internal faces
if self.remove_faces and old_selected_faces:
bridge_remove_internal_faces(bm, old_selected_faces)
# make sure normals are facing outside
bmesh.update_edit_mesh(object.data, tessface=False,
destructive=True)
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
bpy.ops.mesh.normals_make_consistent()
# cleaning up
terminate(global_undo)
return{'FINISHED'}
# circle operator
class Circle(bpy.types.Operator):
bl_idname = "mesh.looptools_circle"
bl_label = "Circle"
bl_description = "Move selected vertices into a circle shape"
bl_options = {'REGISTER', 'UNDO'}
custom_radius = bpy.props.BoolProperty(name = "Radius",
description = "Force a custom radius",
default = False)
fit = bpy.props.EnumProperty(name = "Method",
items = (("best", "Best fit", "Non-linear least squares"),
("inside", "Fit inside","Only move vertices towards the center")),
description = "Method used for fitting a circle to the vertices",
default = 'best')
flatten = bpy.props.BoolProperty(name = "Flatten",
description = "Flatten the circle, instead of projecting it on the " \
"mesh",
default = True)
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
radius = bpy.props.FloatProperty(name = "Radius",
description = "Custom radius for circle",
default = 1.0,
min = 0.0,
soft_max = 1000.0)
regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the " \
"circle",
default = True)
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "fit")
col.separator()
col.prop(self, "flatten")
row = col.row(align=True)
row.prop(self, "custom_radius")
row_right = row.row(align=True)
row_right.active = self.custom_radius
row_right.prop(self, "radius", text="")
col.prop(self, "regular")
col.separator()
col.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Circle",
object, bm, False, False)
if cached:
derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
else:
# find loops
derived, bm_mod, single_vertices, single_loops, loops = \
circle_get_input(object, bm, context.scene)
mapping = get_mapping(derived, bm, bm_mod, single_vertices,
False, loops)
single_loops, loops = circle_check_loops(single_loops, loops,
mapping, bm_mod)
# saving cache for faster execution next time
if not cached:
cache_write("Circle", object, bm, False, False, single_loops,
loops, derived, mapping)
move = []
for i, loop in enumerate(loops):
# best fitting flat plane
com, normal = calculate_plane(bm_mod, loop)
# if circular, shift loop so we get a good starting vertex
if loop[1]:
loop = circle_shift_loop(bm_mod, loop, com)
# flatten vertices on plane
locs_2d, p, q = circle_3d_to_2d(bm_mod, loop, com, normal)
# calculate circle
if self.fit == 'best':
x0, y0, r = circle_calculate_best_fit(locs_2d)
else: # self.fit == 'inside'
x0, y0, r = circle_calculate_min_fit(locs_2d)
# radius override
if self.custom_radius:
r = self.radius / p.length
# calculate positions on circle
if self.regular:
new_locs_2d = circle_project_regular(locs_2d[:], x0, y0, r)
else:
new_locs_2d = circle_project_non_regular(locs_2d[:], x0, y0, r)
# take influence into account
locs_2d = circle_influence_locs(locs_2d, new_locs_2d,
self.influence)
# calculate 3d positions of the created 2d input
move.append(circle_calculate_verts(self.flatten, bm_mod,
locs_2d, com, p, q, normal))
# flatten single input vertices on plane defined by loop
if self.flatten and single_loops:
move.append(circle_flatten_singles(bm_mod, com, p, q,
normal, single_loops[i]))
# move vertices to new locations
move_verts(object, bm, mapping, move, -1)
# cleaning up
if derived:
bm_mod.free()
terminate(global_undo)
return{'FINISHED'}
# curve operator
class Curve(bpy.types.Operator):
bl_idname = "mesh.looptools_curve"
bl_label = "Curve"
bl_description = "Turn a loop into a smooth curve"
bl_options = {'REGISTER', 'UNDO'}
boundaries = bpy.props.BoolProperty(name = "Boundaries",
description = "Limit the tool to work within the boundaries of the "\
"selected vertices",
default = False)
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
description = "Algorithm used for interpolation",
default = 'cubic')
regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the" \
"curve",
default = True)
restriction = bpy.props.EnumProperty(name = "Restriction",
items = (("none", "None", "No restrictions on vertex movement"),
("extrude", "Extrude only","Only allow extrusions (no "\
"indentations)"),
("indent", "Indent only", "Only allow indentation (no "\
"extrusions)")),
description = "Restrictions on how the vertices can be moved",
default = 'none')
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "interpolation")
col.prop(self, "restriction")
col.prop(self, "boundaries")
col.prop(self, "regular")
col.separator()
col.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Curve",
object, bm, False, self.boundaries)
if cached:
derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
else:
# find loops
derived, bm_mod, loops = curve_get_input(object, bm,
self.boundaries, context.scene)
mapping = get_mapping(derived, bm, bm_mod, False, True, loops)
loops = check_loops(loops, mapping, bm_mod)
verts_selected = [v.index for v in bm_mod.verts if v.select \
and not v.hide]
# saving cache for faster execution next time
if not cached:
cache_write("Curve", object, bm, False, self.boundaries, False,
loops, derived, mapping)
move = []
for loop in loops:
knots, points = curve_calculate_knots(loop, verts_selected)
pknots = curve_project_knots(bm_mod, verts_selected, knots,
points, loop[1])
tknots, tpoints = curve_calculate_t(bm_mod, knots, points,
pknots, self.regular, loop[1])
splines = calculate_splines(self.interpolation, bm_mod,
tknots, knots)
move.append(curve_calculate_vertices(bm_mod, knots, tknots,
points, tpoints, splines, self.interpolation,
self.restriction))
# move vertices to new locations
move_verts(object, bm, mapping, move, self.influence)
# cleaning up
if derived:
bm_mod.free()
terminate(global_undo)
return{'FINISHED'}
# flatten operator
class Flatten(bpy.types.Operator):
bl_idname = "mesh.looptools_flatten"
bl_label = "Flatten"
bl_description = "Flatten vertices on a best-fitting plane"
bl_options = {'REGISTER', 'UNDO'}
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
plane = bpy.props.EnumProperty(name = "Plane",
items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
("normal", "Normal", "Derive plane from averaging vertex "\
"normals"),
("view", "View", "Flatten on a plane perpendicular to the "\
"viewing angle")),
description = "Plane on which vertices are flattened",
default = 'best_fit')
restriction = bpy.props.EnumProperty(name = "Restriction",
items = (("none", "None", "No restrictions on vertex movement"),
("bounding_box", "Bounding box", "Vertices are restricted to "\
"movement inside the bounding box of the selection")),
description = "Restrictions on how the vertices can be moved",
default = 'none')
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "plane")
#col.prop(self, "restriction")
col.separator()
col.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Flatten",
object, bm, False, False)
if not cached:
# order input into virtual loops
loops = flatten_get_input(bm)
loops = check_loops(loops, mapping, bm)
# saving cache for faster execution next time
if not cached:
cache_write("Flatten", object, bm, False, False, False, loops,
False, False)
move = []
for loop in loops:
# calculate plane and position of vertices on them
com, normal = calculate_plane(bm, loop, method=self.plane,
object=object)
to_move = flatten_project(bm, loop, com, normal)
if self.restriction == 'none':
move.append(to_move)
else:
move.append(to_move)
move_verts(object, bm, False, move, self.influence)
# cleaning up
terminate(global_undo)
return{'FINISHED'}
# gstretch operator
class GStretch(bpy.types.Operator):
bl_idname = "mesh.looptools_gstretch"
bl_label = "Gstretch"
bl_description = "Stretch selected vertices to Grease Pencil stroke"
bl_options = {'REGISTER', 'UNDO'}
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
conversion = bpy.props.EnumProperty(name = "Conversion",
items = (("distance", "Distance", "Set the distance between vertices "\
"of the converted grease pencil stroke"),
("limit_vertices", "Limit vertices", "Set the minimum and maximum "\
"number of vertices that converted GP strokes will have"),
("vertices", "Exact vertices", "Set the exact number of vertices "\
"that converted grease pencil strokes will have. Short strokes "\
"with few points may contain less vertices than this number."),
("none", "No simplification", "Convert each grease pencil point "\
"to a vertex")),
description = "If grease pencil strokes are converted to geometry, "\
"use this simplification method",
default = 'limit_vertices')
conversion_distance = bpy.props.FloatProperty(name = "Distance",
description = "Absolute distance between vertices along the converted "\
"grease pencil stroke",
default = 0.1,
min = 0.000001,
soft_min = 0.01,
soft_max = 100)
conversion_max = bpy.props.IntProperty(name = "Max Vertices",
description = "Maximum number of vertices grease pencil strokes will "\
"have, when they are converted to geomtery",
default = 32,
min = 3,
soft_max = 500,
update = gstretch_update_min)
conversion_min = bpy.props.IntProperty(name = "Min Vertices",
description = "Minimum number of vertices grease pencil strokes will "\
"have, when they are converted to geomtery",
default = 8,
min = 3,
soft_max = 500,
update = gstretch_update_max)
conversion_vertices = bpy.props.IntProperty(name = "Vertices",
description = "Number of vertices grease pencil strokes will "\
"have, when they are converted to geometry. If strokes have less "\
"points than required, the 'Spread evenly' method is used.",
default = 32,
min = 3,
soft_max = 500)
delete_strokes = bpy.props.BoolProperty(name="Delete strokes",
description = "Remove Grease Pencil strokes if they have been used "\
"for Gstretch. WARNING: DOES NOT SUPPORT UNDO",
default = False)
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
method = bpy.props.EnumProperty(name = "Method",
items = (("project", "Project", "Project vertices onto the stroke, "\
"using vertex normals and connected edges"),
("irregular", "Spread", "Distribute vertices along the full "\
"stroke, retaining relative distances between the vertices"),
("regular", "Spread evenly", "Distribute vertices at regular "\
"distances along the full stroke")),
description = "Method of distributing the vertices over the Grease "\
"Pencil stroke",
default = 'regular')
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "method")
col.prop(self, "delete_strokes")
col.separator()
col_conv = col.column(align=True)
col_conv.prop(self, "conversion", text="")
if self.conversion == 'distance':
col_conv.prop(self, "conversion_distance")
elif self.conversion == 'limit_vertices':
row = col_conv.row(align=True)
row.prop(self, "conversion_min", text="Min")
row.prop(self, "conversion_max", text="Max")
elif self.conversion == 'vertices':
col_conv.prop(self, "conversion_vertices")
col.prop(self, "influence")
def invoke(self, context, event):
# flush cached strokes
if 'Gstretch' in looptools_cache:
looptools_cache['Gstretch']['single_loops'] = []
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, safe_strokes, loops, derived, mapping = cache_read("Gstretch",
if safe_strokes:
strokes = gstretch_safe_to_true_strokes(safe_strokes)
# cached strokes were flushed (see operator's invoke function)
elif object.grease_pencil:
strokes = gstretch_get_strokes(object)
else:
derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
strokes = gstretch_get_fake_strokes(object, bm_mod, loops)
derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
else:
# find loops
derived, bm_mod, loops = get_connected_input(object, bm,
context.scene, input='selected')
mapping = get_mapping(derived, bm, bm_mod, False, False, loops)
loops = check_loops(loops, mapping, bm_mod)
# get strokes
if object.grease_pencil:
strokes = gstretch_get_strokes(object)
else:
strokes = gstretch_get_fake_strokes(object, bm_mod, loops)
# saving cache for faster execution next time
if not cached:
if strokes:
safe_strokes = gstretch_true_to_safe_strokes(strokes)
else:
safe_strokes = []
cache_write("Gstretch", object, bm, False, False,
safe_strokes, loops, derived, mapping)
# pair loops and strokes
ls_pairs = gstretch_match_loops_strokes(loops, strokes, object, bm_mod)
ls_pairs = gstretch_align_pairs(ls_pairs, object, bm_mod, self.method)
move = []
if not loops:
# no selected geometry, convert GP to verts
if strokes:
move.append(gstretch_create_verts(object, bm, strokes,
self.method, self.conversion, self.conversion_distance,
self.conversion_max, self.conversion_min,
self.conversion_vertices))
for stroke in strokes:
gstretch_erase_stroke(stroke, context)
elif ls_pairs:
for (loop, stroke) in ls_pairs:
move.append(gstretch_calculate_verts(loop, stroke, object,
bm_mod, self.method))
if self.delete_strokes:
if type(stroke) != bpy.types.GPencilStroke:
# in case of cached fake stroke, get the real one
if object.grease_pencil:
strokes = gstretch_get_strokes(object)
ls_pairs = gstretch_match_loops_strokes(loops,
strokes, object, bm_mod)
ls_pairs = gstretch_align_pairs(ls_pairs, object,
bm_mod, self.method)
for (l, s) in ls_pairs:
if l == loop:
stroke = s
break
bmesh.update_edit_mesh(object.data, tessface=True,
destructive=True)
move_verts(object, bm, mapping, move, self.influence)
# cleaning up
if derived:
bm_mod.free()
terminate(global_undo)
return{'FINISHED'}
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
# relax operator
class Relax(bpy.types.Operator):
bl_idname = "mesh.looptools_relax"
bl_label = "Relax"
bl_description = "Relax the loop, so it is smoother"
bl_options = {'REGISTER', 'UNDO'}
input = bpy.props.EnumProperty(name = "Input",
items = (("all", "Parallel (all)", "Also use non-selected "\
"parallel loops as input"),
("selected", "Selection","Only use selected vertices as input")),
description = "Loops that are relaxed",
default = 'selected')
interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
description = "Algorithm used for interpolation",
default = 'cubic')
iterations = bpy.props.EnumProperty(name = "Iterations",
items = (("1", "1", "One"),
("3", "3", "Three"),
("5", "5", "Five"),
("10", "10", "Ten"),
("25", "25", "Twenty-five")),
description = "Number of times the loop is relaxed",
default = "1")
regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the" \
"loop",
default = True)
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "interpolation")
col.prop(self, "input")
col.prop(self, "iterations")
col.prop(self, "regular")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Relax",
object, bm, self.input, False)
if cached:
derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
else:
# find loops
derived, bm_mod, loops = get_connected_input(object, bm,
context.scene, self.input)
mapping = get_mapping(derived, bm, bm_mod, False, False, loops)
loops = check_loops(loops, mapping, bm_mod)
knots, points = relax_calculate_knots(loops)
# saving cache for faster execution next time
if not cached:
cache_write("Relax", object, bm, self.input, False, False, loops,
derived, mapping)
for iteration in range(int(self.iterations)):
# calculate splines and new positions
tknots, tpoints = relax_calculate_t(bm_mod, knots, points,
self.regular)
splines = []
for i in range(len(knots)):
splines.append(calculate_splines(self.interpolation, bm_mod,
tknots[i], knots[i]))
move = [relax_calculate_verts(bm_mod, self.interpolation,
tknots, knots, tpoints, points, splines)]
move_verts(object, bm, mapping, move, -1)
# cleaning up
if derived:
bm_mod.free()
terminate(global_undo)
return{'FINISHED'}
# space operator
class Space(bpy.types.Operator):
bl_idname = "mesh.looptools_space"
bl_label = "Space"
bl_description = "Space the vertices in a regular distrubtion on the loop"
bl_options = {'REGISTER', 'UNDO'}
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
input = bpy.props.EnumProperty(name = "Input",
items = (("all", "Parallel (all)", "Also use non-selected "\
"parallel loops as input"),
("selected", "Selection","Only use selected vertices as input")),
description = "Loops that are spaced",
default = 'selected')
interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Vertices are projected on existing edges")),
description = "Algorithm used for interpolation",
default = 'cubic')
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "interpolation")
col.prop(self, "input")
col.separator()
col.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Space",
object, bm, self.input, False)
if cached:
derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
else:
# find loops
derived, bm_mod, loops = get_connected_input(object, bm,
context.scene, self.input)
mapping = get_mapping(derived, bm, bm_mod, False, False, loops)
loops = check_loops(loops, mapping, bm_mod)
# saving cache for faster execution next time
if not cached:
cache_write("Space", object, bm, self.input, False, False, loops,
derived, mapping)
move = []
for loop in loops:
# calculate splines and new positions
if loop[1]: # circular
loop[0].append(loop[0][0])
tknots, tpoints = space_calculate_t(bm_mod, loop[0][:])
splines = calculate_splines(self.interpolation, bm_mod,
tknots, loop[0][:])
move.append(space_calculate_verts(bm_mod, self.interpolation,
tknots, tpoints, loop[0][:-1], splines))
# move vertices to new locations
move_verts(object, bm, mapping, move, self.influence)
# cleaning up
if derived:
bm_mod.free()
terminate(global_undo)
return{'FINISHED'}
##########################################
####### GUI and registration #############
##########################################
# menu containing all tools
class VIEW3D_MT_edit_mesh_looptools(bpy.types.Menu):
bl_label = "LoopTools"
def draw(self, context):
layout = self.layout
layout.operator("mesh.looptools_bridge", text="Bridge").loft = False
layout.operator("mesh.looptools_circle")
layout.operator("mesh.looptools_curve")
layout.operator("mesh.looptools_flatten")
layout.operator("mesh.looptools_bridge", text="Loft").loft = True
layout.operator("mesh.looptools_relax")
layout.operator("mesh.looptools_space")
# panel containing all tools
class VIEW3D_PT_tools_looptools(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_context = "mesh_edit"
bl_label = "LoopTools"
def draw(self, context):
layout = self.layout
col = layout.column(align=True)
lt = context.window_manager.looptools
# bridge - first line
split = col.split(percentage=0.15, align=True)
if lt.display_bridge:
split.prop(lt, "display_bridge", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_bridge", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_bridge", text="Bridge").loft = False
# bridge - settings
if lt.display_bridge:
box = col.column(align=True).box().column()
#box.prop(self, "mode")
# top row
col_top = box.column(align=True)
row = col_top.row(align=True)
col_left = row.column(align=True)
col_right = row.column(align=True)
col_right.active = lt.bridge_segments != 1
col_left.prop(lt, "bridge_segments")