Newer
Older
if __is_polygon_flipped(clip_uvs):
clip_uvs.reverse()
if __is_polygon_flipped(subject_uvs):
subject_uvs.reverse()
debug_print("===== Clip UV List =====")
debug_print(clip_uvs)
debug_print("===== Subject UV List =====")
debug_print(subject_uvs)
# check if clip and subject is overlapped completely
if __is_polygon_same(clip_uvs, subject_uvs, same_polygon_threshold):
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
polygons = [subject_uvs.as_list()]
debug_print("===== Polygons Overlapped Completely =====")
debug_print(polygons)
return True, polygons
# check if subject is in clip
if __is_points_in_polygon(subject_uvs, clip_uvs):
polygons = [subject_uvs.as_list()]
return True, polygons
# check if clip is in subject
if __is_points_in_polygon(clip_uvs, subject_uvs):
polygons = [subject_uvs.as_list()]
return True, polygons
# check if clip and subject is overlapped partially
intersections = []
while True:
subject_uvs.reset()
while True:
uv_start1 = clip_uvs.get()
uv_end1 = clip_uvs.get(1)
uv_start2 = subject_uvs.get()
uv_end2 = subject_uvs.get(1)
intersected, point = __is_segment_intersect(uv_start1, uv_end1,
uv_start2, uv_end2)
if intersected:
clip_uvs.insert(point, 1)
subject_uvs.insert(point, 1)
intersections.append([point,
[clip_uvs.get(), clip_uvs.get(1)]])
subject_uvs.next()
if subject_uvs.get() == subject_uvs.head():
break
clip_uvs.next()
if clip_uvs.get() == clip_uvs.head():
break
debug_print("===== Intersection List =====")
debug_print(intersections)
# no intersection, so subject and clip is not overlapped
if not intersections:
return False, None
def get_intersection_pair(intersects, key):
for sect in intersects:
if sect[0] == key:
return sect[1]
return None
# make enter/exit pair
subject_uvs.reset()
subject_entering = []
subject_exiting = []
clip_entering = []
clip_exiting = []
intersect_uv_list = []
while True:
pair = get_intersection_pair(intersections, subject_uvs.get())
if pair:
sub = subject_uvs.get(1) - subject_uvs.get(-1)
inter = pair[1] - pair[0]
cross = sub.x * inter.y - inter.x * sub.y
if cross < 0:
subject_entering.append(subject_uvs.get())
clip_exiting.append(subject_uvs.get())
else:
subject_exiting.append(subject_uvs.get())
clip_entering.append(subject_uvs.get())
intersect_uv_list.append(subject_uvs.get())
subject_uvs.next()
if subject_uvs.get() == subject_uvs.head():
break
debug_print("===== Enter List =====")
debug_print(clip_entering)
debug_print(subject_entering)
debug_print("===== Exit List =====")
debug_print(clip_exiting)
debug_print(subject_exiting)
# for now, can't handle the situation when fulfill all below conditions
# * two faces have common edge
# * each face is intersected
# * Show Mode is "Part"
# so for now, ignore this situation
if len(subject_entering) != len(subject_exiting):
if mode == 'FACE':
polygons = [subject_uvs.as_list()]
return True, polygons
return False, None
def traverse(current_list, entering, exiting, p, current, other_list):
result = current_list.find(current)
if not result:
return None
if result != current:
print("Internal Error")
return None
if not exiting:
print("Internal Error: No exiting UV")
return None
# enter
if entering.count(current) >= 1:
entering.remove(current)
current_list.find_and_next(current)
current = current_list.get()
while exiting.count(current) == 0:
p.append(current.copy())
current_list.find_and_next(current)
current = current_list.get()
if prev == current:
error = True
break
prev = current
if error:
print("Internal Error: Infinite loop")
return None
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
# exit
p.append(current.copy())
exiting.remove(current)
other_list.find_and_set(current)
return other_list.get()
# Traverse
polygons = []
current_uv_list = subject_uvs
other_uv_list = clip_uvs
current_entering = subject_entering
current_exiting = subject_exiting
poly = []
current_uv = current_entering[0]
while True:
current_uv = traverse(current_uv_list, current_entering,
current_exiting, poly, current_uv, other_uv_list)
if current_uv is None:
break
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
if current_uv_list == subject_uvs:
current_uv_list = clip_uvs
other_uv_list = subject_uvs
current_entering = clip_entering
current_exiting = clip_exiting
debug_print("-- Next: Clip --")
else:
current_uv_list = subject_uvs
other_uv_list = clip_uvs
current_entering = subject_entering
current_exiting = subject_exiting
debug_print("-- Next: Subject --")
debug_print(clip_entering)
debug_print(clip_exiting)
debug_print(subject_entering)
debug_print(subject_exiting)
if not clip_entering and not clip_exiting \
and not subject_entering and not subject_exiting:
break
polygons.append(poly)
debug_print("===== Polygons Overlapped Partially =====")
debug_print(polygons)
return True, polygons
def __is_polygon_flipped(points):
area = 0.0
for i in range(len(points)):
uv1 = points.get(i)
uv2 = points.get(i + 1)
a = uv1.x * uv2.y - uv1.y * uv2.x
area = area + a
if area < 0:
# clock-wise
return True
return False
def __is_point_in_polygon(point, subject_points):
"""Return true when point is inside of the polygon by using
'Crossing number algorithm'.
"""
count = 0
for i in range(len(subject_points)):
uv_start1 = subject_points.get(i)
uv_end1 = subject_points.get(i + 1)
uv_start2 = point
uv_end2 = Vector((1000000.0, point.y))
# If the point exactly matches to the point of the polygon,
# this point is not in polygon.
if uv_start1.x == uv_start2.x and uv_start1.y == uv_start2.y:
return False
intersected, _ = __is_segment_intersect(uv_start1, uv_end1,
uv_start2, uv_end2)
if intersected:
count = count + 1
return count % 2
def __is_points_in_polygon(points, subject_points):
for i in range(len(points)):
internal = __is_point_in_polygon(points.get(i), subject_points)
if not internal:
return False
return True
def get_uv_editable_objects(context):
if compat.check_version(2, 80, 0) < 0:
else:
objs = [o for o in bpy.data.objects
if compat.get_object_select(o) and o.type == 'MESH']
ob = context.active_object
if ob is not None:
objs.append(ob)
def get_overlapped_uv_info(bm_list, faces_list, uv_layer_list,
mode, same_polygon_threshold=0.0000001):
isl = []
for bm, uv_layer, faces in zip(bm_list, uv_layer_list, faces_list):
info = get_island_info_from_faces(bm, faces, uv_layer)
overlapped_bm_paris = []
for i, (i1, uv_layer_1, bm_1) in enumerate(isl):
for i2, uv_layer_2, bm_2 in isl[i + 1:]:
if (i1["max"].x < i2["min"].x) or (i2["max"].x < i1["min"].x) or \
(i1["max"].y < i2["min"].y) or (i2["max"].y < i1["min"].y):
continue
overlapped_isl_pairs.append([i1, i2])
overlapped_uv_layer_pairs.append([uv_layer_1, uv_layer_2])
for oip, uvlp, bmp in zip(overlapped_isl_pairs,
overlapped_uv_layer_pairs,
overlapped_bm_paris):
for subject in oip[1]["faces"]:
f_subject = subject["face"]
# fast operation, apply bounding box algorithm
if (clip["max_uv"].x < subject["min_uv"].x) or \
(subject["max_uv"].x < clip["min_uv"].x) or \
(clip["max_uv"].y < subject["min_uv"].y) or \
(subject["max_uv"].y < clip["min_uv"].y):
continue
subject_uvs = [l[uvlp[1]].uv.copy() for l in f_subject.loops]
# slow operation, apply Weiler-Atherton cliping algorithm
result, polygons = \
__do_weiler_atherton_cliping(clip_uvs, subject_uvs,
mode, same_polygon_threshold)
overlapped_uvs.append({"clip_bmesh": bmp[0],
"subject_bmesh": bmp[1],
"clip_face": f_clip,
"clip_uv_layer": uvlp[0],
"subject_uv_layer": uvlp[1],
"subject_uvs": subject_uvs,
"polygons": polygons})
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
# check polygon overlapped (intra UV island)
for info, uv_layer, bm in isl:
for i in range(len(info["faces"])):
clip = info["faces"][i]
f_clip = clip["face"]
clip_uvs = [l[uv_layer].uv.copy() for l in f_clip.loops]
for j in range(len(info["faces"])):
if j <= i:
continue
subject = info["faces"][j]
f_subject = subject["face"]
# fast operation, apply bounding box algorithm
if (clip["max_uv"].x < subject["min_uv"].x) or \
(subject["max_uv"].x < clip["min_uv"].x) or \
(clip["max_uv"].y < subject["min_uv"].y) or \
(subject["max_uv"].y < clip["min_uv"].y):
continue
subject_uvs = [l[uv_layer].uv.copy() for l in f_subject.loops]
# slow operation, apply Weiler-Atherton cliping algorithm
result, polygons = \
__do_weiler_atherton_cliping(clip_uvs, subject_uvs,
mode, same_polygon_threshold)
if result:
overlapped_uvs.append({"clip_bmesh": bm,
"subject_bmesh": bm,
"clip_face": f_clip,
"subject_face": f_subject,
"clip_uv_layer": uv_layer,
"subject_uv_layer": uv_layer,
"subject_uvs": subject_uvs,
"polygons": polygons})
def get_flipped_uv_info(bm_list, faces_list, uv_layer_list):
for bm, faces, uv_layer in zip(bm_list, faces_list, uv_layer_list):
for f in faces:
polygon = RingBuffer([l[uv_layer].uv.copy() for l in f.loops])
if __is_polygon_flipped(polygon):
uvs = [l[uv_layer].uv.copy() for l in f.loops]
"uv_layer": uv_layer,
"uvs": uvs,
"polygons": [polygon.as_list()]})
if len(points1) != len(points2):
return False
pts1 = points1.as_list()
pts2 = points2.as_list()
for p1 in pts1:
for p2 in pts2:
diff = p2 - p1
pts2.remove(p2)
break
else:
return False
return True
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
def _is_uv_loop_connected(l1, l2, uv_layer):
uv1 = l1[uv_layer].uv
uv2 = l2[uv_layer].uv
return uv1.x == uv2.x and uv1.y == uv2.y
def create_uv_graph(loops, uv_layer):
# For looking up faster.
loop_index_to_loop = {} # { loop index: loop }
for l in loops:
loop_index_to_loop[l.index] = l
# Setup relationship between uv_vert and loops.
# uv_vert is a representative of the loops which shares same
# UV coordinate.
uv_vert_to_loops = {} # { uv_vert: loops belonged to uv_vert }
loop_to_uv_vert = {} # { loop: uv_vert belonged to }
for l in loops:
found = False
for k in uv_vert_to_loops.keys():
if _is_uv_loop_connected(k, l, uv_layer):
uv_vert_to_loops[k].append(l)
loop_to_uv_vert[l] = k
found = True
break
if not found:
uv_vert_to_loops[l] = [l]
loop_to_uv_vert[l] = l
# Collect adjacent uv_vert.
uv_adj_verts = {} # { uv_vert: adj uv_vert list }
for v, vs in uv_vert_to_loops.items():
uv_adj_verts[v] = []
for ll in vs:
ln = ll.link_loop_next
lp = ll.link_loop_prev
uv_adj_verts[v].append(loop_to_uv_vert[ln])
uv_adj_verts[v].append(loop_to_uv_vert[lp])
uv_adj_verts[v] = list(set(uv_adj_verts[v]))
# Setup uv_vert graph.
graph = Graph()
for v in uv_adj_verts.keys():
graph.add_node(
Node(v.index, {"uv_vert": v, "loops": uv_vert_to_loops[v]})
)
edges = []
for v, adjs in uv_adj_verts.items():
n1 = graph.get_node(v.index)
for a in adjs:
n2 = graph.get_node(a.index)
edges.append(tuple(sorted((n1.key, n2.key))))
edges = list(set(edges))
for e in edges:
n1 = graph.get_node(e[0])
n2 = graph.get_node(e[1])
graph.add_edge(n1, n2)
return graph