Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# ***** BEGIN GPL LICENSE BLOCK *****
#
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ***** END GPL LICENCE BLOCK *****
# -----------------------------------------------------------------------
# Author: Alan Odom (Clockmender), Rune Morling (ermo) Copyright (c) 2019
# -----------------------------------------------------------------------
#
# Common Functions used in more than one place in PDT Operations
import bpy
import bmesh
import bgl
import gpu
import numpy as np
from mathutils import Vector, Quaternion
from gpu_extras.batch import batch_for_shader
from math import cos, sin, pi
from .pdt_msg_strings import (
PDT_ERR_VERT_MODE,
PDT_ERR_SEL_2_V_1_E,
PDT_ERR_SEL_2_OBJS,
PDT_ERR_NO_ACT_OBJ,
PDT_ERR_SEL_1_EDGEM,
PDT_ERR_BAD1VALS,
PDT_ERR_BAD2VALS,
PDT_ERR_BAD3VALS,
PDT_ERR_SEL_2_VERTS,
PDT_ERR_CONNECTED,
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
)
def debug(msg, prefix=""):
"""Print a debug message to the console if PDT's or Blender's debug flags are set.
The printed message will be of the form:
{prefix}{caller file name:line number}| {msg}
"""
pdt_debug = bpy.context.preferences.addons[__package__].preferences.debug
if bpy.app.debug or bpy.app.debug_python or pdt_debug:
import traceback
def extract_filename(fullpath):
"""Return only the filename part of fullpath (excluding its path)."""
# Expected to end up being a string containing only the filename
# (i.e. excluding its preceding '/' separated path)
filename = fullpath.split('/')[-1]
#print(filename)
# something went wrong
if len(filename) < 1:
return fullpath
# since this is a string, just return it
return filename
# stack frame corresponding to the line where debug(msg) was called
#print(traceback.extract_stack()[-2])
laststack = traceback.extract_stack()[-2]
#print(laststack[0])
# laststack[0] is the caller's full file name, laststack[1] is the line number
print(f"{prefix}{extract_filename(laststack[0])}:{laststack[1]}| {msg}")
def oops(self, context):
"""Error Routine.
Displays error message in a popup.
Args:
context: Blender bpy.context instance.
Note:
Uses pg.error scene variable
"""
scene = context.scene
pg = scene.pdt_pg
self.layout.label(text=pg.error)
"""Sets Active Axes for View Orientation.
Sets indices of axes for locational vectors
Args:
mode_pl: Plane Selector variable as input
Returns:
3 Integer indices.
"""
if mode_pl == "XY":
# a1 = x a2 = y a3 = z
return 0, 1, 2
if mode_pl == "XZ":
# a1 = x a2 = z a3 = y
return 0, 2, 1
if mode_pl == "YZ":
# a1 = y a2 = z a3 = x
return 1, 2, 0
#FIXME: This needs a proper specification and a default
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""Sets Active Axes for View Orientation.
Sets indices for axes from taper vectors
Args:
mode_pl: Taper Axis Selector variable as input
Note:
Axis order: Rotate Axis, Move Axis, Height Axis
Returns:
3 Integer Indicies.
"""
if mode_pl == "RX-MY":
return 0, 1, 2
if mode_pl == "RX-MZ":
return 0, 2, 1
if mode_pl == "RY-MX":
return 1, 0, 2
if mode_pl == "RY-MZ":
return 1, 2, 0
if mode_pl == "RZ-MX":
return 2, 0, 1
if mode_pl == "RZ-MY":
return 2, 1, 0
#FIXME: This needs a proper specification and a default
"""Check that the Object's select_history has sufficient entries.
If selection history is not Verts, clears selection and history.
Args:
num: The number of entries required for each operation
bm: The Bmesh from the Object
obj: The Object
Returns:
list of 3D points as Vectors.
"""
if len(bm.select_history) < num:
return None
else:
actE = bm.select_history[-1]
if isinstance(actE, bmesh.types.BMVert):
vector_b = bm.select_history[-2].co
return vector_a, vector_b
vector_b = bm.select_history[-2].co
vector_c = bm.select_history[-3].co
vector_b = bm.select_history[-2].co
vector_c = bm.select_history[-3].co
vector_d = bm.select_history[-4].co
else:
for f in bm.faces:
f.select_set(False)
for e in bm.edges:
e.select_set(False)
for v in bm.verts:
v.select_set(False)
bmesh.update_edit_mesh(obj.data)
bm.select_history.clear()
return None
def update_sel(bm, verts, edges, faces):
"""Updates Vertex, Edge and Face Selections following a function.
Args:
bm: Object Bmesh
verts: New Selection for Vertices
edges: The Edges on which to operate
faces: The Faces on which to operate
Returns:
Nothing.
"""
for f in bm.faces:
f.select_set(False)
for e in bm.edges:
e.select_set(False)
for v in bm.verts:
v.select_set(False)
for v in verts:
v.select_set(True)
for e in edges:
e.select_set(True)
for f in faces:
f.select_set(True)
"""Converts input Vector values to new Screen Oriented Vector.
Args:
x_loc: X coordinate from vector
y_loc: Y coordinate from vector
z_loc: Z coordinate from vector
Returns:
Vector adjusted to View's Inverted Tranformation Matrix.
"""
areas = [a for a in bpy.context.screen.areas if a.type == "VIEW_3D"]
if len(areas) > 0:
vm = areas[0].spaces.active.region_3d.view_matrix
vm = vm.to_3x3().normalized().inverted()
vl = Vector((x_loc, y_loc, z_loc))
vw = vm @ vl
return vw
else:
return Vector((0, 0, 0))
def view_coords_i(x_loc, y_loc, z_loc):
"""Converts Screen Oriented input Vector values to new World Vector.
Converts View tranformation Matrix to Rotational Matrix
Args:
x_loc: X coordinate from vector
y_loc: Y coordinate from vector
z_loc: Z coordinate from vector
Returns:
Vector adjusted to View's Transformation Matrix.
"""
areas = [a for a in bpy.context.screen.areas if a.type == "VIEW_3D"]
if len(areas) > 0:
vm = areas[0].spaces.active.region_3d.view_matrix
vm = vm.to_3x3().normalized()
vl = Vector((x_loc, y_loc, z_loc))
vw = vm @ vl
return vw
else:
return Vector((0, 0, 0))
"""Converts Distance and Angle to View Oriented Vector.
Converts View Transformation Matrix to Rotational Matrix (3x3)
Angles are Converts to Radians from degrees.
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
Args:
dis_v: Scene distance
ang_v: Scene angle
Returns:
World Vector.
"""
areas = [a for a in bpy.context.screen.areas if a.type == "VIEW_3D"]
if len(areas) > 0:
vm = areas[0].spaces.active.region_3d.view_matrix
vm = vm.to_3x3().normalized().inverted()
vl = Vector((0, 0, 0))
vl.x = dis_v * cos(ang_v * pi / 180)
vl.y = dis_v * sin(ang_v * pi / 180)
vw = vm @ vl
return vw
else:
return Vector((0, 0, 0))
def euler_to_quaternion(roll, pitch, yaw):
"""Converts Euler Rotation to Quaternion Rotation.
Args:
roll: Roll in Euler rotation
pitch: Pitch in Euler rotation
yaw: Yaw in Euler rotation
Returns:
Quaternion Rotation.
"""
# fmt: off
qx = (np.sin(roll/2) * np.cos(pitch/2) * np.cos(yaw/2)
- np.cos(roll/2) * np.sin(pitch/2) * np.sin(yaw/2))
qy = (np.cos(roll/2) * np.sin(pitch/2) * np.cos(yaw/2)
+ np.sin(roll/2) * np.cos(pitch/2) * np.sin(yaw/2))
qz = (np.cos(roll/2) * np.cos(pitch/2) * np.sin(yaw/2)
- np.sin(roll/2) * np.sin(pitch/2) * np.cos(yaw/2))
qw = (np.cos(roll/2) * np.cos(pitch/2) * np.cos(yaw/2)
+ np.sin(roll/2) * np.sin(pitch/2) * np.sin(yaw/2))
# fmt: on
return Quaternion((qw, qx, qy, qz))
"""Calculates Centre of Arc from 3 Vector Locations using standard Numpy routine
Args:
vector_a: Active vector location
vector_b: Other vector location
vector_d: Last vector location
Returns:
Vector representing Arc Centre and Float representing Arc Radius.
"""
A = np.array([vector_a.x, vector_a.y, vector_a.z])
B = np.array([vector_b.x, vector_b.y, vector_b.z])
a = np.linalg.norm(C - B)
b = np.linalg.norm(C - A)
c = np.linalg.norm(B - A)
# fmt: off
s = (a+b+c) / 2
R = a*b*c/4 / np.sqrt(s * (s-a) * (s-b) * (s-c))
b1 = a*a * (b*b + c*c - a*a)
b2 = b*b * (a*a + c*c - b*b)
b3 = c*c * (a*a + b*b - c*c)
# fmt: on
P = np.column_stack((A, B, C)).dot(np.hstack((b1, b2, b3)))
P /= b1 + b2 + b3
return Vector((P[0], P[1], P[2])), R
def intersection(vertex_a, vertex_b, vertex_c, vertex_d, plane):
"""Calculates Intersection Point of 2 Imagined Lines from 4 Vectors.
Calculates Converging Intersect Location and indication of
whether the lines are convergent using standard Numpy Routines
Args:
vertex_a: Active vector location of first line
vertex_b: Other vector location of first line
vertex_d: Last vector location of 2nd line
vertex_c: First vector location of 2nd line
plane: Working Plane 4 Vector Locations representing 2 lines and Working Plane
Returns:
Intersection Vector and Boolean for convergent state.
"""
if plane == "LO":
vertex_offset = vertex_b - vertex_a
vertex_b = view_coords_i(vertex_offset.x, vertex_offset.y, vertex_offset.z)
vertex_offset = vertex_d - vertex_a
vertex_d = view_coords_i(vertex_offset.x, vertex_offset.y, vertex_offset.z)
vertex_offset = vertex_c - vertex_a
vertex_c = view_coords_i(vertex_offset.x, vertex_offset.y, vertex_offset.z)
ap1 = (vertex_c.x, vertex_c.y)
ap2 = (vertex_d.x, vertex_d.y)
bp1 = (vertex_b.x, vertex_b.y)
ap1 = (vertex_c[a1], vertex_c[a2])
ap2 = (vertex_d[a1], vertex_d[a2])
bp1 = (vertex_a[a1], vertex_a[a2])
bp2 = (vertex_b[a1], vertex_b[a2])
s = np.vstack([ap1, ap2, bp1, bp2])
h = np.hstack((s, np.ones((4, 1))))
l1 = np.cross(h[0], h[1])
l2 = np.cross(h[2], h[3])
x, y, z = np.cross(l1, l2)
if z == 0:
return Vector((0, 0, 0)), False
nx = x / z
nz = y / z
if plane == "LO":
ly = 0
else:
# Order Vector Delta
if plane == "XZ":
vector_delta = Vector((nx, ly, nz))
elif plane == "XY":
vector_delta = Vector((nx, nz, ly))
elif plane == "YZ":
vector_delta = Vector((ly, nx, nz))
elif plane == "LO":
vector_delta = view_coords(nx, nz, ly) + vertex_a
return vector_delta, True
def get_percent(obj, flip_p, per_v, data, scene):
"""Calculates a Percentage Distance between 2 Vectors.
Calculates a point that lies a set percentage between two given points
using standard Numpy Routines.
Works for either 2 vertices for an object in Edit mode
or 2 selected objects in Object mode.
Args:
obj: The Object under consideration
flip_p: Setting this to True measures the percentage starting from the second vector
per_v: Percentage Input Value
data: pg.flip, pg.percent scene variables & Operational Mode
scene: Context Scene
Returns:
World Vector.
"""
pg = scene.pdt_pg
if obj.mode == "EDIT":
bm = bmesh.from_edit_mesh(obj.data)
verts = [v for v in bm.verts if v.select]
if len(verts) == 2:
vector_a = verts[0].co
vector_b = verts[1].co
if vector_a is None:
pg.error = PDT_ERR_VERT_MODE
bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
return None
else:
pg.error = PDT_ERR_SEL_2_V_1_E + str(len(verts)) + " Vertices"
bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
return None
p1 = np.array([vector_a.x, vector_a.y, vector_a.z])
p2 = np.array([vector_b.x, vector_b.y, vector_b.z])
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
if obj.mode == "OBJECT":
objs = bpy.context.view_layer.objects.selected
if len(objs) != 2:
pg.error = PDT_ERR_SEL_2_OBJS + str(len(objs)) + ")"
bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
return None
p1 = np.array(
[
objs[-1].matrix_world.decompose()[0].x,
objs[-1].matrix_world.decompose()[0].y,
objs[-1].matrix_world.decompose()[0].z,
]
)
p2 = np.array(
[
objs[-2].matrix_world.decompose()[0].x,
objs[-2].matrix_world.decompose()[0].y,
objs[-2].matrix_world.decompose()[0].z,
]
)
p4 = np.array([0, 0, 0])
p3 = p2 - p1
_per_v = per_v
if (flip_p and data != "MV") or data == "MV":
_per_v = 100 - per_v
V = (p4+p3) * (_per_v / 100) + p1
return Vector((V[0], V[1], V[2]))
"""Check Object & Selection Validity.
Args:
obj: Active Object
scene: Active Scene
Returns:
Object Bmesh and Validity Boolean.
"""
pg = scene.pdt_pg
if obj is None:
pg.error = PDT_ERR_NO_ACT_OBJ
bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
return None, False
if obj.mode == "EDIT":
bm = bmesh.from_edit_mesh(obj.data)
if len(bm.edges) < 1:
pg.error = f"{PDT_ERR_SEL_1_EDGEM} {len(bm.edges)})"
bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
return None, False
else:
return bm, True
if len(bm.select_history) >= 1:
if _operator not in {"D", "E", "F", "G", "N", "S"}:
vector_a = check_selection(1, bm, obj)
else:
verts = [v for v in bm.verts if v.select]
if len(verts) > 0:
vector_a = None
if vector_a is None:
pg.error = PDT_ERR_VERT_MODE
bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
return None, False
return bm, True
return None, True
def dis_ang(vals, flip_a, plane, scene):
"""Set Working Axes when using Direction command.
Args:
vals: Input Arguments (Values)
flip_a: Whether to flip the angle
plane: Working Plane
scene: Current Scene
Returns:
Directional Offset as a Vector.
"""
pg = scene.pdt_pg
dis_v = float(vals[0])
ang_v = float(vals[1])
if flip_a:
if ang_v > 0:
ang_v = ang_v - 180
else:
ang_v = ang_v + 180
pg.angle = ang_v
if plane == "LO":
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
vector_delta = Vector((0, 0, 0))
# fmt: off
vector_delta[a1] = vector_delta[a1] + (dis_v * cos(ang_v * pi/180))
vector_delta[a2] = vector_delta[a2] + (dis_v * sin(ang_v * pi/180))
# fmt: on
return vector_delta
# Shader for displaying the Pivot Point as Graphics.
#
shader = gpu.shader.from_builtin("3D_UNIFORM_COLOR") if not bpy.app.background else None
def draw3D(coords, gtype, rgba, context):
"""Draw Pivot Point Graphics.
Draws either Lines Points, or Tris using defined shader
Args:
coords: Input Coordinates List
gtype: Graphic Type
rgba: Colour in RGBA format
context: Blender bpy.context instance.
Returns:
Nothing.
"""
batch = batch_for_shader(shader, gtype, {"pos": coords})
try:
if coords is not None:
bgl.glEnable(bgl.GL_BLEND)
shader.bind()
shader.uniform_float("color", rgba)
batch.draw(shader)
except:
pass
def drawCallback3D(self, context):
"""Create Coordinate List for Pivot Point Graphic.
Creates coordinates for Pivot Point Graphic consisting of 6 Tris
and one Point colour coded Red; X axis, Green; Y axis, Blue; Z axis
and a yellow point based upon screen scale
Args:
context: Blender bpy.context instance.
Returns:
Nothing.
"""
scene = context.scene
pg = scene.pdt_pg
w = context.region.width
x = pg.pivot_loc.x
y = pg.pivot_loc.y
z = pg.pivot_loc.z
# Scale it from view
areas = [a for a in context.screen.areas if a.type == "VIEW_3D"]
if len(areas) > 0:
sf = abs(areas[0].spaces.active.region_3d.window_matrix.decompose()[2][1])
# Check for orhtographic view and resize
#if areas[0].spaces.active.region_3d.is_orthographic_side_view:
# a = w / sf / 60000 * pg.pivot_size
#else:
# a = w / sf / 5000 * pg.pivot_size
a = w / sf / 50000 * pg.pivot_size
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
b = a * 0.65
c = a * 0.05 + (pg.pivot_width * a * 0.02)
o = c / 3
# fmt: off
# X Axis
coords = [
(x, y, z),
(x+b, y-o, z),
(x+b, y+o, z),
(x+a, y, z),
(x+b, y+c, z),
(x+b, y-c, z),
]
# fmt: on
colour = (1.0, 0.0, 0.0, pg.pivot_alpha)
draw3D(coords, "TRIS", colour, context)
coords = [(x, y, z), (x+a, y, z)]
draw3D(coords, "LINES", colour, context)
# fmt: off
# Y Axis
coords = [
(x, y, z),
(x-o, y+b, z),
(x+o, y+b, z),
(x, y+a, z),
(x+c, y+b, z),
(x-c, y+b, z),
]
# fmt: on
colour = (0.0, 1.0, 0.0, pg.pivot_alpha)
draw3D(coords, "TRIS", colour, context)
coords = [(x, y, z), (x, y + a, z)]
draw3D(coords, "LINES", colour, context)
# fmt: off
# Z Axis
coords = [
(x, y, z),
(x-o, y, z+b),
(x+o, y, z+b),
(x, y, z+a),
(x+c, y, z+b),
(x-c, y, z+b),
]
# fmt: on
colour = (0.2, 0.5, 1.0, pg.pivot_alpha)
draw3D(coords, "TRIS", colour, context)
coords = [(x, y, z), (x, y, z + a)]
draw3D(coords, "LINES", colour, context)
# Centre
coords = [(x, y, z)]
colour = (1.0, 1.0, 0.0, pg.pivot_alpha)
draw3D(coords, "POINTS", colour, context)
def scale_set(self, context):
"""Sets Scale by dividing Pivot Distance by System Distance.
Sets Pivot Point Scale Factors by Measurement
Args:
context: Blender bpy.context instance.
Note:
Uses pg.pivotdis & pg.distance scene variables
Returns:
Status Set.
"""
scene = context.scene
pg = scene.pdt_pg
sys_dis = pg.distance
scale_dis = pg.pivot_dis
if scale_dis > 0:
scale_fac = scale_dis / sys_dis
pg.pivot_scale = Vector((scale_fac, scale_fac, scale_fac))