Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
file.write(' "vt ", UVArr[I].u," ", UVArr[I].v,"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' //do nothing\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile UVArr[I])\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local I=I+1; \n')
file.write(' #if(Write=1 | Write=4)\n')
file.write(' #if(mod(I,3)=0)\n')
file.write(' #write(MeshFile,"\\n ")\n')
file.write(' #end \n')
file.write(' #end\n')
file.write(' #end \n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile,"\\n }\\n")\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(MeshFile,"\\n")\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' //do nothing\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile,"\\n}\\n")\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' }\n')
file.write('\n')
file.write(' #debug concat(" - face_indices\\n") \n')
file.write(' #declare NumFaces=U*V*2;\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' " face_indices {\\n"\n')
file.write(' " ", str(NumFaces,0,0),"\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write (\n')
file.write(' MeshFile,\n')
file.write(' "# faces: ",str(NumFaces,0,0),"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write (\n')
file.write(' MeshFile,\n')
file.write(' "0,",str(NumFaces,0,0),",\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "#declare FaceIndices= array[",str(NumFaces,0,0),"] {\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' face_indices {\n')
file.write(' NumFaces\n')
file.write(' #local I=0;\n')
file.write(' #local H=0;\n')
file.write(' #local NumVertices=dimension_size(VecArr,1);\n')
file.write(' #while (I<V)\n')
file.write(' #local J=0;\n')
file.write(' #while (J<U)\n')
file.write(' #local Ind=(I*U)+I+J;\n')
file.write(' <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "f ",Ind+1,"/",Ind+1,"/",Ind+1," ",Ind+1+1,"/",Ind+1+1,"/",Ind+1+1," ",Ind+U+2+1,"/",Ind+U+2+1,"/",Ind+U+2+1,"\\n",\n')
file.write(' "f ",Ind+U+1+1,"/",Ind+U+1+1,"/",Ind+U+1+1," ",Ind+1,"/",Ind+1,"/",Ind+1," ",Ind+U+2+1,"/",Ind+U+2+1,"/",Ind+U+2+1,"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' Ind,",",Ind+NumVertices,",",Ind+1,",",Ind+1+NumVertices,",",Ind+U+2,",",Ind+U+2+NumVertices,",\\n"\n')
file.write(' Ind+U+1,",",Ind+U+1+NumVertices,",",Ind,",",Ind+NumVertices,",",Ind+U+2,",",Ind+U+2+NumVertices,",\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local J=J+1;\n')
file.write(' #local H=H+1;\n')
file.write(' #if(Write=1 | Write=4)\n')
file.write(' #if(mod(H,3)=0)\n')
file.write(' #write(MeshFile,"\\n ")\n')
file.write(' #end \n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(' }\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile, "\\n }\\n}")\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile, "\\n}\\n}")\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' }\n')
file.write('#end\n')
file.write('#macro MSM(SplineArray, SplRes, Interp_type, InterpRes, FileName)\n')
file.write(' #declare Build=CheckFileName(FileName);\n')
file.write(' #if(Build=0)\n')
file.write(' #debug concat("\\n Parsing mesh2 from file: ", FileName, "\\n")\n')
file.write(' #include FileName\n')
file.write(' object{Surface}\n')
file.write(' #else\n')
file.write(' #local NumVertices=(SplRes+1)*(InterpRes+1);\n')
file.write(' #local NumFaces=SplRes*InterpRes*2;\n')
file.write(' #debug concat("\\n Calculating ",str(NumVertices,0,0)," vertices for ", str(NumFaces,0,0)," triangles\\n\\n")\n')
file.write(' #local VecArr=array[NumVertices]\n')
file.write(' #local NormArr=array[NumVertices]\n')
file.write(' #local UVArr=array[NumVertices]\n')
file.write(' #local N=dimension_size(SplineArray,1);\n')
file.write(' #local TempSplArr0=array[N];\n')
file.write(' #local TempSplArr1=array[N];\n')
file.write(' #local TempSplArr2=array[N];\n')
file.write(' #local PosStep=1/SplRes;\n')
file.write(' #local InterpStep=1/InterpRes;\n')
file.write(' #local Count=0;\n')
file.write(' #local Pos=0;\n')
file.write(' #while(Pos<=1)\n')
file.write(' #local I=0;\n')
file.write(' #if (Pos=0)\n')
file.write(' #while (I<N)\n')
file.write(' #local Spl=spline{SplineArray[I]}\n')
file.write(' #local TempSplArr0[I]=<0,0,0>+Spl(Pos);\n')
file.write(' #local TempSplArr1[I]=<0,0,0>+Spl(Pos+PosStep);\n')
file.write(' #local TempSplArr2[I]=<0,0,0>+Spl(Pos-PosStep);\n')
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(' #local S0=BuildSpline(TempSplArr0, Interp_type)\n')
file.write(' #local S1=BuildSpline(TempSplArr1, Interp_type)\n')
file.write(' #local S2=BuildSpline(TempSplArr2, Interp_type)\n')
file.write(' #else\n')
file.write(' #while (I<N)\n')
file.write(' #local Spl=spline{SplineArray[I]}\n')
file.write(' #local TempSplArr1[I]=<0,0,0>+Spl(Pos+PosStep);\n')
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(' #local S1=BuildSpline(TempSplArr1, Interp_type)\n')
file.write(' #end\n')
file.write(' #local J=0;\n')
file.write(' #while (J<=1)\n')
file.write(' #local P0=<0,0,0>+S0(J);\n')
file.write(' #local P1=<0,0,0>+S1(J);\n')
file.write(' #local P2=<0,0,0>+S2(J);\n')
file.write(' #local P3=<0,0,0>+S0(J+InterpStep);\n')
file.write(' #local P4=<0,0,0>+S0(J-InterpStep);\n')
file.write(' #local B1=P4-P0;\n')
file.write(' #local B2=P2-P0;\n')
file.write(' #local B3=P3-P0;\n')
file.write(' #local B4=P1-P0;\n')
file.write(' #local N1=vcross(B1,B2);\n')
file.write(' #local N2=vcross(B2,B3);\n')
file.write(' #local N3=vcross(B3,B4);\n')
file.write(' #local N4=vcross(B4,B1);\n')
file.write(' #local Norm=vnormalize((N1+N2+N3+N4));\n')
file.write(' #local VecArr[Count]=P0;\n')
file.write(' #local NormArr[Count]=Norm;\n')
file.write(' #local UVArr[Count]=<J,Pos>;\n')
file.write(' #local J=J+InterpStep;\n')
file.write(' #local Count=Count+1;\n')
file.write(' #end\n')
file.write(' #local S2=spline{S0}\n')
file.write(' #local S0=spline{S1}\n')
file.write(' #debug concat("\\r Done ", str(Count,0,0)," vertices : ", str(100*Count/NumVertices,0,2)," %")\n')
file.write(' #local Pos=Pos+PosStep;\n')
file.write(' #end\n')
file.write(' BuildWriteMesh2(VecArr, NormArr, UVArr, InterpRes, SplRes, "")\n')
file.write(' #end\n')
file.write('#end\n\n')
file.write('#macro Coons(Spl1, Spl2, Spl3, Spl4, Iter_U, Iter_V, FileName)\n')
file.write(' #declare Build=CheckFileName(FileName);\n')
file.write(' #if(Build=0)\n')
file.write(' #debug concat("\\n Parsing mesh2 from file: ", FileName, "\\n")\n')
file.write(' #include FileName\n')
file.write(' object{Surface}\n')
file.write(' #else\n')
file.write(' #local NumVertices=(Iter_U+1)*(Iter_V+1);\n')
file.write(' #local NumFaces=Iter_U*Iter_V*2;\n')
file.write(' #debug concat("\\n Calculating ", str(NumVertices,0,0), " vertices for ",str(NumFaces,0,0), " triangles\\n\\n")\n')
file.write(' #declare VecArr=array[NumVertices] \n')
file.write(' #declare NormArr=array[NumVertices] \n')
file.write(' #local UVArr=array[NumVertices] \n')
file.write(' #local Spl1_0=Spl1(0);\n')
file.write(' #local Spl2_0=Spl2(0);\n')
file.write(' #local Spl3_0=Spl3(0);\n')
file.write(' #local Spl4_0=Spl4(0);\n')
file.write(' #local UStep=1/Iter_U;\n')
file.write(' #local VStep=1/Iter_V;\n')
file.write(' #local Count=0;\n')
file.write(' #local I=0;\n')
file.write(' #while (I<=1)\n')
file.write(' #local Im=1-I;\n')
file.write(' #local J=0;\n')
file.write(' #while (J<=1)\n')
file.write(' #local Jm=1-J;\n')
file.write(' #local C0=Im*Jm*(Spl1_0)+Im*J*(Spl2_0)+I*J*(Spl3_0)+I*Jm*(Spl4_0);\n')
file.write(' #local P0=LInterpolate(I, Spl1(J), Spl3(Jm)) + \n')
file.write(' LInterpolate(Jm, Spl2(I), Spl4(Im))-C0;\n')
file.write(' #declare VecArr[Count]=P0;\n')
file.write(' #local UVArr[Count]=<J,I>;\n')
file.write(' #local J=J+UStep;\n')
file.write(' #local Count=Count+1;\n')
file.write(' #end\n')
file.write(' #debug concat(\n')
file.write(' "\r Done ", str(Count,0,0)," vertices : ",\n')
file.write(' str(100*Count/NumVertices,0,2)," %"\n')
file.write(' )\n')
file.write(' #local I=I+VStep;\n')
file.write(' #end\n')
file.write(' #debug "\r Normals "\n')
file.write(' #local Count=0;\n')
file.write(' #local I=0;\n')
file.write(' #while (I<=Iter_V)\n')
file.write(' #local J=0;\n')
file.write(' #while (J<=Iter_U)\n')
file.write(' #local Ind=(I*Iter_U)+I+J;\n')
file.write(' #local P0=VecArr[Ind];\n')
file.write(' #if(J=0)\n')
file.write(' #local P1=P0+(P0-VecArr[Ind+1]);\n')
file.write(' #else\n')
file.write(' #local P1=VecArr[Ind-1];\n')
file.write(' #end\n')
file.write(' #if (J=Iter_U)\n')
file.write(' #local P2=P0+(P0-VecArr[Ind-1]);\n')
file.write(' #else\n')
file.write(' #local P2=VecArr[Ind+1];\n')
file.write(' #end\n')
file.write(' #if (I=0)\n')
file.write(' #local P3=P0+(P0-VecArr[Ind+Iter_U+1]);\n')
file.write(' #else\n')
file.write(' #local P3=VecArr[Ind-Iter_U-1];\n')
file.write(' #end\n')
file.write(' #if (I=Iter_V)\n')
file.write(' #local P4=P0+(P0-VecArr[Ind-Iter_U-1]);\n')
file.write(' #else\n')
file.write(' #local P4=VecArr[Ind+Iter_U+1];\n')
file.write(' #end\n')
file.write(' #local B1=P4-P0;\n')
file.write(' #local B2=P2-P0;\n')
file.write(' #local B3=P3-P0;\n')
file.write(' #local B4=P1-P0;\n')
file.write(' #local N1=vcross(B1,B2);\n')
file.write(' #local N2=vcross(B2,B3);\n')
file.write(' #local N3=vcross(B3,B4);\n')
file.write(' #local N4=vcross(B4,B1);\n')
file.write(' #local Norm=vnormalize((N1+N2+N3+N4));\n')
file.write(' #declare NormArr[Count]=Norm;\n')
file.write(' #local J=J+1;\n')
file.write(' #local Count=Count+1;\n')
file.write(' #end\n')
file.write(' #debug concat("\r Done ", str(Count,0,0)," normals : ",str(100*Count/NumVertices,0,2), " %")\n')
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(' BuildWriteMesh2(VecArr, NormArr, UVArr, Iter_U, Iter_V, FileName)\n')
file.write(' #end\n')
file.write('#end\n\n')
if bezier_sweep == False:
tabWrite("#declare %s =\n"%dataname)
if ob.pov.curveshape == 'sphere_sweep' and bezier_sweep == False:
tabWrite("union {\n")
for spl in ob.data.splines:
if spl.type != "BEZIER":
spl_type = "linear"
if spl.type == "NURBS":
spl_type = "cubic"
points=spl.points
numPoints=len(points)
if spl.use_cyclic_u:
numPoints+=3
tabWrite("sphere_sweep { %s_spline %s,\n"%(spl_type,numPoints))
if spl.use_cyclic_u:
pt1 = points[len(points)-1]
wpt1 = pt1.co
tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt1[0], wpt1[1], wpt1[2], pt1.radius*ob.data.bevel_depth))
for pt in points:
wpt = pt.co
tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt[0], wpt[1], wpt[2], pt.radius*ob.data.bevel_depth))
if spl.use_cyclic_u:
for i in range (0,2):
endPt=points[i]
wpt = endPt.co
tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt[0], wpt[1], wpt[2], endPt.radius*ob.data.bevel_depth))
tabWrite("}\n")
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
if ob.pov.curveshape == 'sor':
for spl in ob.data.splines:
if spl.type in {'POLY','NURBS'}:
points=spl.points
numPoints=len(points)
tabWrite("sor { %s,\n"%numPoints)
for pt in points:
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
else:
tabWrite("box { 0,0\n")
if ob.pov.curveshape in {'lathe','prism'}:
spl = ob.data.splines[0]
if spl.type == "BEZIER":
points=spl.bezier_points
lenCur=len(points)-1
lenPts=lenCur*4
ifprism = ''
if ob.pov.curveshape in {'prism'}:
height = ob.data.extrude
ifprism = '-%s, %s,'%(height, height)
lenCur+=1
lenPts+=4
tabWrite("%s { bezier_spline %s %s,\n"%(ob.pov.curveshape,ifprism,lenPts))
for i in range(0,lenCur):
p1=points[i].co
pR=points[i].handle_right
end = i+1
if i == lenCur-1 and ob.pov.curveshape in {'prism'}:
end = 0
pL=points[end].handle_left
p2=points[end].co
line="<%.4g,%.4g>"%(p1[0],p1[1])
line+="<%.4g,%.4g>"%(pR[0],pR[1])
line+="<%.4g,%.4g>"%(pL[0],pL[1])
line+="<%.4g,%.4g>"%(p2[0],p2[1])
tabWrite("%s\n" %line)
else:
points=spl.points
lenCur=len(points)
lenPts=lenCur
ifprism = ''
if ob.pov.curveshape in {'prism'}:
height = ob.data.extrude
ifprism = '-%s, %s,'%(height, height)
lenPts+=3
spl_type = 'quadratic'
if spl.type == 'POLY':
spl_type = 'linear'
tabWrite("%s { %s_spline %s %s,\n"%(ob.pov.curveshape,spl_type,ifprism,lenPts))
if ob.pov.curveshape in {'prism'}:
pt = points[len(points)-1]
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
for pt in points:
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
if ob.pov.curveshape in {'prism'}:
for i in range(2):
pt = points[i]
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
if bezier_sweep:
spl = ob.data.splines[0]
points=spl.bezier_points
lenCur = len(points)-1
numPoints = lenCur*4
if spl.use_cyclic_u:
lenCur += 1
numPoints += 4
tabWrite("#declare %s_bezier_points = array[%s]{\n"%(dataname,numPoints))
for i in range(lenCur):
p1=points[i].co
pR=points[i].handle_right
end = i+1
if spl.use_cyclic_u and i == (lenCur - 1):
end = 0
pL=points[end].handle_left
p2=points[end].co
line="<%.4g,%.4g,%.4f>"%(p1[0],p1[1],p1[2])
line+="<%.4g,%.4g,%.4f>"%(pR[0],pR[1],pR[2])
line+="<%.4g,%.4g,%.4f>"%(pL[0],pL[1],pL[2])
line+="<%.4g,%.4g,%.4f>"%(p2[0],p2[1],p2[2])
tabWrite("%s\n" %line)
tabWrite("}\n")
#tabWrite('#include "bezier_spheresweep.inc"\n') #now inlined
tabWrite('#declare %s = object{Shape_Bezierpoints_Sphere_Sweep(%s, %s_bezier_points, %.4f) \n'%(dataname,ob.data.resolution_u,dataname,ob.data.bevel_depth))
if ob.pov.curveshape in {'loft'}:
tabWrite('object {MSM(%s,%s,"c",%s,"")\n'%(dataname,ob.pov.res_u,ob.pov.res_v))
if ob.pov.curveshape in {'birail'}:
splines = '%s1,%s2,%s3,%s4'%(dataname,dataname,dataname,dataname)
tabWrite('object {Coons(%s, %s, %s, "")\n'%(splines,ob.pov.res_u,ob.pov.res_v))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
if ob.pov.curveshape in {'prism'}:
tabWrite("rotate <90,0,0>\n")
tabWrite("scale y*-1\n" )
tabWrite("}\n")
#################################################################
def exportMeta(metas):
# TODO - blenders 'motherball' naming is not supported.
if comments and len(metas) >= 1:
file.write("//--Blob objects--\n\n")
# important because no elements will break parsing.
elements = [elem for elem in meta.elements if elem.type in {'BALL', 'ELLIPSOID'}]
tabWrite("blob {\n")
tabWrite("threshold %.4g\n" % meta.threshold)
Bastien Montagne
committed
importance = ob.pov.importance_value
material = meta.materials[0] # lame! - blender cant do enything else.
except:
material = None
for elem in elements:
loc = elem.co
stiffness = elem.stiffness
if elem.use_negative:
stiffness = - stiffness
if elem.type == 'BALL':
Bastien Montagne
committed
tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g }\n" % \
(loc.x, loc.y, loc.z, elem.radius, stiffness))
# After this wecould do something simple like...
# "pigment {Blue} }"
# except we'll write the color
elif elem.type == 'ELLIPSOID':
# location is modified by scale
Bastien Montagne
committed
tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g }\n" % \
(loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z,
elem.radius, stiffness))
tabWrite("scale <%.6g, %.6g, %.6g> \n" % \
(elem.size_x, elem.size_y, elem.size_z))
if material:
diffuse_color = material.diffuse_color
trans = 1.0 - material.alpha
if material.use_transparency and material.transparency_method == 'RAYTRACE':
povFilter = material.raytrace_transparency.filter * (1.0 - material.alpha)
trans = (1.0 - material.alpha) - povFilter
material_finish = materialNames[material.name]
Bastien Montagne
committed
tabWrite("pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} \n" % \
(diffuse_color[0], diffuse_color[1], diffuse_color[2],
povFilter, trans))
tabWrite("finish {%s}\n" % safety(material_finish, Level=2))
tabWrite("pigment {rgb<1 1 1>} \n")
Bastien Montagne
committed
# Write the finish last.
tabWrite("finish {%s}\n" % (safety(DEF_MAT_NAME, Level=2)))
writeObjectMaterial(material, ob)
writeMatrix(global_matrix * ob.matrix_world)
Maurice Raybaud
committed
# Importance for radiosity sampling added here
tabWrite("radiosity { \n")
tabWrite("importance %3g \n" % importance)
tabWrite("}\n")
tabWrite("}\n") # End of Metaball block
if comments and len(metas) >= 1:
file.write("\n")
Bastien Montagne
committed
# objectNames = {}
DEF_OBJ_NAME = "Default"
Bastien Montagne
committed
def exportMeshes(scene, sel):
# obmatslist = []
# def hasUniqueMaterial():
# # Grab materials attached to object instances ...
# if hasattr(ob, 'material_slots'):
# for ms in ob.material_slots:
# if ms.material is not None and ms.link == 'OBJECT':
Bastien Montagne
committed
# if ms.material in obmatslist:
# return False
# else:
# obmatslist.append(ms.material)
# return True
# def hasObjectMaterial(ob):
# # Grab materials attached to object instances ...
# if hasattr(ob, 'material_slots'):
# for ms in ob.material_slots:
# if ms.material is not None and ms.link == 'OBJECT':
Bastien Montagne
committed
# # If there is at least one material slot linked to the object
Bastien Montagne
committed
# # and not the data (mesh), always create a new, "private" data instance.
Bastien Montagne
committed
# return True
# return False
# For objects using local material(s) only!
# This is a mapping between a tuple (dataname, materialnames, ...), and the POV dataname.
Bastien Montagne
committed
# As only objects using:
# * The same data.
# * EXACTLY the same materials, in EXACTLY the same sockets.
# ... can share a same instance in POV export.
Bastien Montagne
committed
obmats2data = {}
Bastien Montagne
committed
def checkObjectMaterials(ob, name, dataname):
if hasattr(ob, 'material_slots'):
has_local_mats = False
key = [dataname]
for ms in ob.material_slots:
Bastien Montagne
committed
key.append(ms.material.name)
if ms.link == 'OBJECT' and not has_local_mats:
has_local_mats = True
else:
# Even if the slot is empty, it is important to grab it...
Bastien Montagne
committed
key.append("")
if has_local_mats:
# If this object uses local material(s), lets find if another object
# using the same data and exactly the same list of materials
# (in the same slots) has already been processed...
Bastien Montagne
committed
# Note that here also, we use object name as new, unique dataname for Pov.
key = tuple(key) # Lists are not hashable...
Bastien Montagne
committed
if key not in obmats2data:
obmats2data[key] = name
return obmats2data[key]
return None
data_ref = {}
Bastien Montagne
committed
def store(scene, ob, name, dataname, matrix):
# The Object needs to be written at least once but if its data is
# already in data_ref this has already been done.
Bastien Montagne
committed
# This func returns the "povray" name of the data, or None
Bastien Montagne
committed
# if no writing is needed.
if ob.is_modified(scene, 'RENDER'):
# Data modified.
# Create unique entry in data_ref by using object name
# (always unique in Blender) as data name.
data_ref[name] = [(name, MatrixAsPovString(matrix))]
return name
# Here, we replace dataname by the value returned by checkObjectMaterials, only if
# it is not evaluated to False (i.e. only if the object uses some local material(s)).
dataname = checkObjectMaterials(ob, name, dataname) or dataname
if dataname in data_ref:
# Data already known, just add the object instance.
data_ref[dataname].append((name, MatrixAsPovString(matrix)))
# No need to write data
return None
else:
# Data not yet processed, create a new entry in data_ref.
data_ref[dataname] = [(name, MatrixAsPovString(matrix))]
return dataname
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
def exportSmoke(smoke_obj_name):
#if LuxManager.CurrentScene.name == 'preview':
#return 1, 1, 1, 1.0
#else:
flowtype = -1
smoke_obj = bpy.data.objects[smoke_obj_name]
domain = None
# Search smoke domain target for smoke modifiers
for mod in smoke_obj.modifiers:
if mod.name == 'Smoke':
if mod.smoke_type == 'FLOW':
if mod.flow_settings.smoke_flow_type == 'BOTH':
flowtype = 2
else:
if mod.flow_settings.smoke_flow_type == 'SMOKE':
flowtype = 0
else:
if mod.flow_settings.smoke_flow_type == 'FIRE':
flowtype = 1
if mod.smoke_type == 'DOMAIN':
domain = smoke_obj
smoke_modifier = mod
eps = 0.000001
if domain is not None:
#if bpy.app.version[0] >= 2 and bpy.app.version[1] >= 71:
# Blender version 2.71 supports direct access to smoke data structure
set = mod.domain_settings
channeldata = []
for v in set.density_grid:
channeldata.append(v.real)
print(v.real)
## Usage en voxel texture:
# channeldata = []
# if channel == 'density':
# for v in set.density_grid:
# channeldata.append(v.real)
# if channel == 'fire':
# for v in set.flame_grid:
# channeldata.append(v.real)
resolution = set.resolution_max
big_res = []
big_res.append(set.domain_resolution[0])
big_res.append(set.domain_resolution[1])
big_res.append(set.domain_resolution[2])
if set.use_high_resolution:
big_res[0] = big_res[0] * (set.amplify + 1)
big_res[1] = big_res[1] * (set.amplify + 1)
big_res[2] = big_res[2] * (set.amplify + 1)
# else:
# p = []
##gather smoke domain settings
# BBox = domain.bound_box
# p.append([BBox[0][0], BBox[0][1], BBox[0][2]])
# p.append([BBox[6][0], BBox[6][1], BBox[6][2]])
# set = mod.domain_settings
# resolution = set.resolution_max
# smokecache = set.point_cache
# ret = read_cache(smokecache, set.use_high_resolution, set.amplify + 1, flowtype)
# res_x = ret[0]
# res_y = ret[1]
# res_z = ret[2]
# density = ret[3]
# fire = ret[4]
# if res_x * res_y * res_z > 0:
##new cache format
# big_res = []
# big_res.append(res_x)
# big_res.append(res_y)
# big_res.append(res_z)
# else:
# max = domain.dimensions[0]
# if (max - domain.dimensions[1]) < -eps:
# max = domain.dimensions[1]
# if (max - domain.dimensions[2]) < -eps:
# max = domain.dimensions[2]
# big_res = [int(round(resolution * domain.dimensions[0] / max, 0)),
# int(round(resolution * domain.dimensions[1] / max, 0)),
# int(round(resolution * domain.dimensions[2] / max, 0))]
# if set.use_high_resolution:
# big_res = [big_res[0] * (set.amplify + 1), big_res[1] * (set.amplify + 1),
# big_res[2] * (set.amplify + 1)]
# if channel == 'density':
# channeldata = density
# if channel == 'fire':
# channeldata = fire
# sc_fr = '%s/%s/%s/%05d' % (efutil.export_path, efutil.scene_filename(), bpy.context.scene.name, bpy.context.scene.frame_current)
# if not os.path.exists( sc_fr ):
# os.makedirs(sc_fr)
# smoke_filename = '%s.smoke' % bpy.path.clean_name(domain.name)
# smoke_path = '/'.join([sc_fr, smoke_filename])
# with open(smoke_path, 'wb') as smoke_file:
# # Binary densitygrid file format
# #
# # File header
# smoke_file.write(b'SMOKE') #magic number
# smoke_file.write(struct.pack('<I', big_res[0]))
# smoke_file.write(struct.pack('<I', big_res[1]))
# smoke_file.write(struct.pack('<I', big_res[2]))
# smoke_file.write(struct.pack('<%df'%len(channeldata), *channeldata))
# LuxLog('Binary SMOKE file written: %s' % (smoke_path))
#return big_res[0], big_res[1], big_res[2], channeldata
mydf3 = df3.df3(big_res[0],big_res[1],big_res[2])
sim_sizeX, sim_sizeY, sim_sizeZ = mydf3.size()
for x in range(sim_sizeX):
for y in range(sim_sizeY):
for z in range(sim_sizeZ):
mydf3.set(x, y, z, channeldata[((z * sim_sizeY + y) * sim_sizeX + x)])
mydf3.exportDF3(smokePath)
print('Binary smoke.df3 file written in preview directory')
if comments:
file.write("\n//--Smoke--\n\n")
# Note: We start with a default unit cube.
# This is mandatory to read correctly df3 data - otherwise we could just directly use bbox
# coordinates from the start, and avoid scale/translate operations at the end...
file.write("box{<0,0,0>, <1,1,1>\n")
file.write(" pigment{ rgbt 1 }\n")
file.write(" hollow\n")
file.write(" interior{ //---------------------\n")
file.write(" media{ method 3\n")
file.write(" emission <1,1,1>*1\n")# 0>1 for dark smoke to white vapour
file.write(" scattering{ 1, // Type\n")
file.write(" <1,1,1>*0.1\n")
file.write(" density{density_file df3 \"%s\"\n" % (smokePath))
file.write(" color_map {\n")
file.write(" [0.00 rgb 0]\n")
file.write(" [0.05 rgb 0]\n")
file.write(" [0.20 rgb 0.2]\n")
file.write(" [0.30 rgb 0.6]\n")
file.write(" [0.40 rgb 1]\n")
file.write(" [1.00 rgb 1]\n")
file.write(" } // end color_map\n")
file.write(" } // end of density\n")
file.write(" samples %i // higher = more precise\n" % resolution)
file.write(" } // end of media --------------------------\n")
file.write(" } // end of interior\n")
# START OF TRANSFORMATIONS
# Size to consider here are bbox dimensions (i.e. still in object space, *before* applying
# loc/rot/scale and other transformations (like parent stuff), aka matrix_world).
bbox = smoke_obj.bound_box
dim = [abs(bbox[6][0] - bbox[0][0]), abs(bbox[6][1] - bbox[0][1]), abs(bbox[6][2] - bbox[0][2])]
# We scale our cube to get its final size and shapes but still in *object* space (same as Blender's bbox).
file.write("scale<%.6g,%.6g,%.6g>\n" % (dim[0], dim[1], dim[2]))
# We offset our cube such that (0,0,0) coordinate matches Blender's object center.
file.write("translate<%.6g,%.6g,%.6g>\n" % (bbox[0][0], bbox[0][1], bbox[0][2]))
# We apply object's transformations to get final loc/rot/size in world space!
# Note: we could combine the two previous transformations with this matrix directly...
writeMatrix(global_matrix * smoke_obj.matrix_world)
# END OF TRANSFORMATIONS
#file.write(" interpolate 1\n")
#file.write(" frequency 0\n")
#file.write(" }\n")
Bastien Montagne
committed
ob_num = 0
Bastien Montagne
committed
# XXX I moved all those checks here, as there is no need to compute names
Bastien Montagne
committed
# for object we won't export here!
if (ob.type in {'LAMP', 'CAMERA', 'EMPTY',
'META', 'ARMATURE', 'LATTICE'}):
for mod in ob.modifiers:
if mod and hasattr(mod, 'smoke_type'):
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
smokeFlag=True
if (mod.smoke_type == 'DOMAIN'):
exportSmoke(ob.name)
break # don't render domain mesh or flow emitter mesh, skip to next object.
if not smokeFlag:
# Export Hair
renderEmitter = True
if hasattr(ob, 'particle_systems'):
renderEmitter = False
for pSys in ob.particle_systems:
if pSys.settings.use_render_emitter:
renderEmitter = True
for mod in [m for m in ob.modifiers if (m is not None) and (m.type == 'PARTICLE_SYSTEM')]:
if (pSys.settings.render_type == 'PATH') and mod.show_render and (pSys.name == mod.particle_system.name):
tstart = time.time()
texturedHair=0
if ob.active_material is not None:
pmaterial = ob.material_slots[pSys.settings.material - 1].material
for th in pmaterial.texture_slots:
if th and th.use:
if (th.texture.type == 'IMAGE' and th.texture.image) or th.texture.type != 'IMAGE':
if th.use_map_color_diffuse:
texturedHair=1
if pmaterial.strand.use_blender_units:
strandStart = pmaterial.strand.root_size
strandEnd = pmaterial.strand.tip_size
strandShape = pmaterial.strand.shape
else: # Blender unit conversion
strandStart = pmaterial.strand.root_size / 200.0
strandEnd = pmaterial.strand.tip_size / 200.0
strandShape = pmaterial.strand.shape
else:
pmaterial = "default" # No material assigned in blender, use default one
strandStart = 0.01
strandEnd = 0.01
strandShape = 0.0
# Set the number of particles to render count rather than 3d view display
pSys.set_resolution(scene, ob, 'RENDER')
steps = pSys.settings.draw_step
steps = 3 ** steps # or (power of 2 rather than 3) + 1 # Formerly : len(particle.hair_keys)
totalNumberOfHairs = ( len(pSys.particles) + len(pSys.child_particles) )
#hairCounter = 0
file.write('#declare HairArray = array[%i] {\n' % totalNumberOfHairs)
for pindex in range(0, totalNumberOfHairs):
#if particle.is_exist and particle.is_visible:
#hairCounter += 1
#controlPointCounter = 0
# Each hair is represented as a separate sphere_sweep in POV-Ray.
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
file.write('sphere_sweep{')
if pSys.settings.use_hair_bspline:
file.write('b_spline ')
file.write('%i,\n' % (steps + 2)) # +2 because the first point needs tripling to be more than a handle in POV
else:
file.write('linear_spline ')
file.write('%i,\n' % (steps))
#changing world coordinates to object local coordinates by multiplying with inverted matrix
initCo = ob.matrix_world.inverted()*(pSys.co_hair(ob, pindex, 0))
if ob.active_material is not None:
pmaterial = ob.material_slots[pSys.settings.material-1].material
for th in pmaterial.texture_slots:
if th and th.use and th.use_map_color_diffuse:
#treat POV textures as bitmaps
if (th.texture.type == 'IMAGE' and th.texture.image and th.texture_coords == 'UV' and ob.data.uv_textures != None): # or (th.texture.pov.tex_pattern_type != 'emulator' and th.texture_coords == 'UV' and ob.data.uv_textures != None):
image=th.texture.image
image_width = image.size[0]
image_height = image.size[1]
image_pixels = image.pixels[:]
uv_co = pSys.uv_on_emitter(mod, pSys.particles[pindex], pindex, 0)
x_co = round(uv_co[0] * (image_width - 1))
y_co = round(uv_co[1] * (image_height - 1))
pixelnumber = (image_width * y_co) + x_co
r = image_pixels[pixelnumber*4]
g = image_pixels[pixelnumber*4+1]
b = image_pixels[pixelnumber*4+2]
a = image_pixels[pixelnumber*4+3]
initColor=(r,g,b,a)
else:
#only overwrite variable for each competing texture for now
initColor=th.texture.evaluate((initCo[0],initCo[1],initCo[2]))
for step in range(0, steps):
co = pSys.co_hair(ob, pindex, step)
#for controlPoint in particle.hair_keys:
if pSys.settings.clump_factor != 0:
hDiameter = pSys.settings.clump_factor / 200.0 * random.uniform(0.5, 1)
elif step == 0:
hDiameter = strandStart
else:
hDiameter += (strandEnd-strandStart)/(pSys.settings.draw_step+1) #XXX +1 or not?
if step == 0 and pSys.settings.use_hair_bspline:
# Write three times the first point to compensate pov Bezier handling
file.write('<%.6g,%.6g,%.6g>,%.7g,\n' % (co[0], co[1], co[2], abs(hDiameter)))
file.write('<%.6g,%.6g,%.6g>,%.7g,\n' % (co[0], co[1], co[2], abs(hDiameter)))
#file.write('<%.6g,%.6g,%.6g>,%.7g' % (particle.location[0], particle.location[1], particle.location[2], abs(hDiameter))) # Useless because particle location is the tip, not the root.
#file.write(',\n')
#controlPointCounter += 1
#totalNumberOfHairs += len(pSys.particles)# len(particle.hair_keys)
# Each control point is written out, along with the radius of the
# hair at that point.
file.write('<%.6g,%.6g,%.6g>,%.7g' % (co[0], co[1], co[2], abs(hDiameter)))
# All coordinates except the last need a following comma.
if step != steps - 1:
file.write(',\n')
else:
if texturedHair:
# Write pigment and alpha (between Pov and Blender alpha 0 and 1 are reversed)
file.write('\npigment{ color rgbf < %.3g, %.3g, %.3g, %.3g> }\n' %(initColor[0], initColor[1], initColor[2], 1.0-initColor[3]))
# End the sphere_sweep declaration for this hair
file.write('}\n')
# All but the final sphere_sweep (each array element) needs a terminating comma.
if pindex != totalNumberOfHairs:
file.write(',\n')
else:
file.write('\n')
# End the array declaration.
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
if not texturedHair:
# Pick up the hair material diffuse color and create a default POV-Ray hair texture.
file.write('#ifndef (HairTexture)\n')
file.write(' #declare HairTexture = texture {\n')
file.write(' pigment {rgbt <%s,%s,%s,%s>}\n' % (pmaterial.diffuse_color[0], pmaterial.diffuse_color[1], pmaterial.diffuse_color[2], (pmaterial.strand.width_fade + 0.05)))
file.write(' }\n')
file.write('#end\n')
file.write('\n')
# Dynamically create a union of the hairstrands (or a subset of them).
# By default use every hairstrand, commented line is for hand tweaking test renders.
file.write('//Increasing HairStep divides the amount of hair for test renders.\n')
file.write('#ifndef(HairStep) #declare HairStep = 1; #end\n')
file.write('union{\n')
file.write(' #local I = 0;\n')
file.write(' #while (I < %i)\n' % totalNumberOfHairs)
file.write(' object {HairArray[I]')
if not texturedHair:
file.write(' texture{HairTexture}\n')
else:
file.write('\n')
# Translucency of the hair:
file.write(' hollow\n')
file.write(' double_illuminate\n')
file.write(' interior {\n')
file.write(' ior 1.45\n')
file.write(' media {\n')
file.write(' scattering { 1, 10*<0.73, 0.35, 0.15> /*extinction 0*/ }\n')
file.write(' absorption 10/<0.83, 0.75, 0.15>\n')
file.write(' samples 1\n')
file.write(' method 2\n')
file.write(' density {\n')
file.write(' color_map {\n')
file.write(' [0.0 rgb <0.83, 0.45, 0.35>]\n')
file.write(' [0.5 rgb <0.8, 0.8, 0.4>]\n')
file.write(' [1.0 rgb <1,1,1>]\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' #local I = I + HairStep;\n')
file.write(' #end\n')
writeMatrix(global_matrix * ob.matrix_world)
Bastien Montagne
committed
file.write('}')
print('Totals hairstrands written: %i' % totalNumberOfHairs)
print('Number of tufts (particle systems)', len(ob.particle_systems))
# Set back the displayed number of particles to preview count
pSys.set_resolution(scene, ob, 'PREVIEW')
if renderEmitter == False:
continue #don't render mesh, skip to next object.
#############################################
# Generating a name for object just like materials to be able to use it
# (baking for now or anything else).
# XXX I don't understand that: if we are here, sel if a non-empty iterable,
# so this condition is always True, IMO -- mont29
if sel:
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.data.name
name_orig = DEF_OBJ_NAME
dataname_orig = DEF_OBJ_NAME
name = string_strip_hyphen(bpy.path.clean_name(name_orig))
dataname = string_strip_hyphen(bpy.path.clean_name(dataname_orig))
## for slot in ob.material_slots:
## if slot.material is not None and slot.link == 'OBJECT':
## obmaterial = slot.material
#############################################