Skip to content
Snippets Groups Projects
render.py 188 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
                file.write('                    "vt ", UVArr[I].u," ", UVArr[I].v,"\\n"\n')
                file.write('                 )\n')
                file.write('              #break\n')
                file.write('              #case(3)\n')
                file.write('                 //do nothing\n')
                file.write('              #break\n')
                file.write('              #case(4)\n')
                file.write('                 #write(MeshFile UVArr[I])\n')
                file.write('              #break\n')
                file.write('           #end\n')
                file.write('           #local I=I+1; \n')
                file.write('           #if(Write=1 | Write=4)\n')
                file.write('              #if(mod(I,3)=0)\n')
                file.write('                 #write(MeshFile,"\\n    ")\n')
                file.write('              #end \n')
                file.write('           #end\n')
                file.write('        #end \n')
                file.write('        #switch(Write)\n')
                file.write('           #case(1)\n')
                file.write('              #write(MeshFile,"\\n  }\\n")\n')
                file.write('           #break\n')
                file.write('           #case(2)\n')
                file.write('              #write(MeshFile,"\\n")\n')
                file.write('           #break\n')
                file.write('           #case(3)\n')
                file.write('              //do nothing\n')
                file.write('           #break\n')
                file.write('           #case(4)\n')
                file.write('              #write(MeshFile,"\\n}\\n")\n')
                file.write('           #break\n')
                file.write('        #end\n')
                file.write('     }\n')
                file.write('\n')
                file.write('     #debug concat("   - face_indices\\n")   \n')
                file.write('     #declare NumFaces=U*V*2;\n')
                file.write('     #switch(Write)\n')
                file.write('        #case(1)\n')
                file.write('           #write(\n')
                file.write('              MeshFile,\n')
                file.write('              "  face_indices {\\n"\n')
                file.write('              "    ", str(NumFaces,0,0),"\\n    "\n')
                file.write('           )\n')
                file.write('        #break\n')
                file.write('        #case(2)\n')
                file.write('           #write (\n')
                file.write('              MeshFile,\n')
                file.write('              "# faces: ",str(NumFaces,0,0),"\\n"\n')
                file.write('           )\n')
                file.write('        #break\n')
                file.write('        #case(3)\n')
                file.write('           #write (\n')
                file.write('              MeshFile,\n')
                file.write('              "0,",str(NumFaces,0,0),",\\n"\n')
                file.write('           )\n')
                file.write('        #break\n')
                file.write('        #case(4)\n')
                file.write('           #write(\n')
                file.write('              MeshFile,\n')
                file.write('              "#declare FaceIndices= array[",str(NumFaces,0,0),"] {\\n  "\n')
                file.write('           )\n')
                file.write('        #break\n')
                file.write('     #end\n')
                file.write('     face_indices {\n')
                file.write('        NumFaces\n')
                file.write('        #local I=0;\n')
                file.write('        #local H=0;\n')
                file.write('        #local NumVertices=dimension_size(VecArr,1);\n')
                file.write('        #while (I<V)\n')
                file.write('           #local J=0;\n')
                file.write('           #while (J<U)\n')
                file.write('              #local Ind=(I*U)+I+J;\n')
                file.write('              <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
                file.write('              #switch(Write)\n')
                file.write('                 #case(1)\n')
                file.write('                    #write(\n')
                file.write('                       MeshFile,\n')
                file.write('                       <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
                file.write('                    )\n')
                file.write('                 #break\n')
                file.write('                 #case(2)\n')
                file.write('                    #write(\n')
                file.write('                       MeshFile,\n')
                file.write('                       "f ",Ind+1,"/",Ind+1,"/",Ind+1," ",Ind+1+1,"/",Ind+1+1,"/",Ind+1+1," ",Ind+U+2+1,"/",Ind+U+2+1,"/",Ind+U+2+1,"\\n",\n')
                file.write('                       "f ",Ind+U+1+1,"/",Ind+U+1+1,"/",Ind+U+1+1," ",Ind+1,"/",Ind+1,"/",Ind+1," ",Ind+U+2+1,"/",Ind+U+2+1,"/",Ind+U+2+1,"\\n"\n')
                file.write('                    )\n')
                file.write('                 #break\n')
                file.write('                 #case(3)\n')
                file.write('                    #write(\n')
                file.write('                       MeshFile,\n')
                file.write('                       Ind,",",Ind+NumVertices,",",Ind+1,",",Ind+1+NumVertices,",",Ind+U+2,",",Ind+U+2+NumVertices,",\\n"\n')
                file.write('                       Ind+U+1,",",Ind+U+1+NumVertices,",",Ind,",",Ind+NumVertices,",",Ind+U+2,",",Ind+U+2+NumVertices,",\\n"\n')
                file.write('                    )\n')
                file.write('                 #break\n')
                file.write('                 #case(4)\n')
                file.write('                    #write(\n')
                file.write('                       MeshFile,\n')
                file.write('                       <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
                file.write('                    )\n')
                file.write('                 #break\n')
                file.write('              #end\n')
                file.write('              #local J=J+1;\n')
                file.write('              #local H=H+1;\n')
                file.write('              #if(Write=1 | Write=4)\n')
                file.write('                 #if(mod(H,3)=0)\n')
                file.write('                    #write(MeshFile,"\\n    ")\n')
                file.write('                 #end \n')
                file.write('              #end\n')
                file.write('           #end\n')
                file.write('           #local I=I+1;\n')
                file.write('        #end\n')
                file.write('     }\n')
                file.write('     #switch(Write)\n')
                file.write('        #case(1)\n')
                file.write('           #write(MeshFile, "\\n  }\\n}")\n')
                file.write('           #fclose MeshFile\n')
                file.write('           #debug concat(" Done writing\\n")\n')
                file.write('        #break\n')
                file.write('        #case(2)\n')
                file.write('           #fclose MeshFile\n')
                file.write('           #debug concat(" Done writing\\n")\n')
                file.write('        #break\n')
                file.write('        #case(3)\n')
                file.write('           #fclose MeshFile\n')
                file.write('           #debug concat(" Done writing\\n")\n')
                file.write('        #break\n')
                file.write('        #case(4)\n')
                file.write('           #write(MeshFile, "\\n}\\n}")\n')
                file.write('           #fclose MeshFile\n')
                file.write('           #debug concat(" Done writing\\n")\n')
                file.write('        #break\n')
                file.write('     #end\n')
                file.write('  }\n')
                file.write('#end\n')
                
                file.write('#macro MSM(SplineArray, SplRes, Interp_type,  InterpRes, FileName)\n')
                file.write('    #declare Build=CheckFileName(FileName);\n')
                file.write('    #if(Build=0)\n')
                file.write('        #debug concat("\\n Parsing mesh2 from file: ", FileName, "\\n")\n')
                file.write('        #include FileName\n')
                file.write('        object{Surface}\n')
                file.write('    #else\n')
                file.write('        #local NumVertices=(SplRes+1)*(InterpRes+1);\n')
                file.write('        #local NumFaces=SplRes*InterpRes*2;\n')
                file.write('        #debug concat("\\n Calculating ",str(NumVertices,0,0)," vertices for ", str(NumFaces,0,0)," triangles\\n\\n")\n')
                file.write('        #local VecArr=array[NumVertices]\n')
                file.write('        #local NormArr=array[NumVertices]\n')
                file.write('        #local UVArr=array[NumVertices]\n')
                file.write('        #local N=dimension_size(SplineArray,1);\n')
                file.write('        #local TempSplArr0=array[N];\n')
                file.write('        #local TempSplArr1=array[N];\n')
                file.write('        #local TempSplArr2=array[N];\n')
                file.write('        #local PosStep=1/SplRes;\n')
                file.write('        #local InterpStep=1/InterpRes;\n')
                file.write('        #local Count=0;\n')
                file.write('        #local Pos=0;\n')
                file.write('        #while(Pos<=1)\n')
                file.write('            #local I=0;\n')
                file.write('            #if (Pos=0)\n')
                file.write('                #while (I<N)\n')
                file.write('                    #local Spl=spline{SplineArray[I]}\n')
                file.write('                    #local TempSplArr0[I]=<0,0,0>+Spl(Pos);\n')
                file.write('                    #local TempSplArr1[I]=<0,0,0>+Spl(Pos+PosStep);\n')
                file.write('                    #local TempSplArr2[I]=<0,0,0>+Spl(Pos-PosStep);\n')
                file.write('                    #local I=I+1;\n')
                file.write('                #end\n')
                file.write('                #local S0=BuildSpline(TempSplArr0, Interp_type)\n')
                file.write('                #local S1=BuildSpline(TempSplArr1, Interp_type)\n')
                file.write('                #local S2=BuildSpline(TempSplArr2, Interp_type)\n')
                file.write('            #else\n')
                file.write('                #while (I<N)\n')
                file.write('                    #local Spl=spline{SplineArray[I]}\n')
                file.write('                    #local TempSplArr1[I]=<0,0,0>+Spl(Pos+PosStep);\n')
                file.write('                    #local I=I+1;\n')
                file.write('                #end\n')
                file.write('                #local S1=BuildSpline(TempSplArr1, Interp_type)\n')
                file.write('            #end\n')
                file.write('            #local J=0;\n')
                file.write('            #while (J<=1)\n')
                file.write('                #local P0=<0,0,0>+S0(J);\n')
                file.write('                #local P1=<0,0,0>+S1(J);\n')
                file.write('                #local P2=<0,0,0>+S2(J);\n')
                file.write('                #local P3=<0,0,0>+S0(J+InterpStep);\n')
                file.write('                #local P4=<0,0,0>+S0(J-InterpStep);\n')
                file.write('                #local B1=P4-P0;\n')
                file.write('                #local B2=P2-P0;\n')
                file.write('                #local B3=P3-P0;\n')
                file.write('                #local B4=P1-P0;\n')
                file.write('                #local N1=vcross(B1,B2);\n')
                file.write('                #local N2=vcross(B2,B3);\n')
                file.write('                #local N3=vcross(B3,B4);\n')
                file.write('                #local N4=vcross(B4,B1);\n')
                file.write('                #local Norm=vnormalize((N1+N2+N3+N4));\n')
                file.write('                #local VecArr[Count]=P0;\n')
                file.write('                #local NormArr[Count]=Norm;\n')
                file.write('                #local UVArr[Count]=<J,Pos>;\n')
                file.write('                #local J=J+InterpStep;\n')
                file.write('                #local Count=Count+1;\n')
                file.write('            #end\n')
                file.write('            #local S2=spline{S0}\n')
                file.write('            #local S0=spline{S1}\n')
                file.write('            #debug concat("\\r Done ", str(Count,0,0)," vertices : ", str(100*Count/NumVertices,0,2)," %")\n')
                file.write('            #local Pos=Pos+PosStep;\n')
                file.write('        #end\n')
                file.write('        BuildWriteMesh2(VecArr, NormArr, UVArr, InterpRes, SplRes, "")\n')
                file.write('    #end\n')
                file.write('#end\n\n')
    
                file.write('#macro Coons(Spl1, Spl2, Spl3, Spl4, Iter_U, Iter_V, FileName)\n')
                file.write('   #declare Build=CheckFileName(FileName);\n')
                file.write('   #if(Build=0)\n')
                file.write('      #debug concat("\\n Parsing mesh2 from file: ", FileName, "\\n")\n')
                file.write('      #include FileName\n')
                file.write('      object{Surface}\n')
                file.write('   #else\n')
                file.write('      #local NumVertices=(Iter_U+1)*(Iter_V+1);\n')
                file.write('      #local NumFaces=Iter_U*Iter_V*2;\n')
                file.write('      #debug concat("\\n Calculating ", str(NumVertices,0,0), " vertices for ",str(NumFaces,0,0), " triangles\\n\\n")\n')
                file.write('      #declare VecArr=array[NumVertices]   \n')
                file.write('      #declare NormArr=array[NumVertices]   \n')
                file.write('      #local UVArr=array[NumVertices]      \n')
                file.write('      #local Spl1_0=Spl1(0);\n')
                file.write('      #local Spl2_0=Spl2(0);\n')
                file.write('      #local Spl3_0=Spl3(0);\n')
                file.write('      #local Spl4_0=Spl4(0);\n')
                file.write('      #local UStep=1/Iter_U;\n')
                file.write('      #local VStep=1/Iter_V;\n')
                file.write('      #local Count=0;\n')
                file.write('      #local I=0;\n')
                file.write('      #while (I<=1)\n')
                file.write('         #local Im=1-I;\n')
                file.write('         #local J=0;\n')
                file.write('         #while (J<=1)\n')
                file.write('            #local Jm=1-J;\n')
                file.write('            #local C0=Im*Jm*(Spl1_0)+Im*J*(Spl2_0)+I*J*(Spl3_0)+I*Jm*(Spl4_0);\n')
                file.write('            #local P0=LInterpolate(I, Spl1(J), Spl3(Jm)) + \n')
                file.write('               LInterpolate(Jm, Spl2(I), Spl4(Im))-C0;\n')
                file.write('            #declare VecArr[Count]=P0;\n')
                file.write('            #local UVArr[Count]=<J,I>;\n')
                file.write('            #local J=J+UStep;\n')
                file.write('            #local Count=Count+1;\n')
                file.write('         #end\n')
                file.write('         #debug concat(\n')
                file.write('            "\r Done ", str(Count,0,0)," vertices :         ",\n')
                file.write('            str(100*Count/NumVertices,0,2)," %"\n')
                file.write('         )\n')
                file.write('         #local I=I+VStep;\n')
                file.write('      #end\n')
                file.write('      #debug "\r Normals                                  "\n')
                file.write('      #local Count=0;\n')
                file.write('      #local I=0;\n')
                file.write('      #while (I<=Iter_V)\n')
                file.write('         #local J=0;\n')
                file.write('         #while (J<=Iter_U)\n')
                file.write('            #local Ind=(I*Iter_U)+I+J;\n')
                file.write('            #local P0=VecArr[Ind];\n')
                file.write('            #if(J=0)\n')
                file.write('               #local P1=P0+(P0-VecArr[Ind+1]);\n')
                file.write('            #else\n')
                file.write('               #local P1=VecArr[Ind-1];\n')
                file.write('            #end\n')
                file.write('            #if (J=Iter_U)\n')
                file.write('               #local P2=P0+(P0-VecArr[Ind-1]);\n')
                file.write('            #else\n')
                file.write('               #local P2=VecArr[Ind+1];\n')
                file.write('            #end\n')
                file.write('            #if (I=0)\n')
                file.write('               #local P3=P0+(P0-VecArr[Ind+Iter_U+1]);\n')
                file.write('            #else\n')
                file.write('               #local P3=VecArr[Ind-Iter_U-1];\n')
                file.write('            #end\n')
                file.write('            #if (I=Iter_V)\n')
                file.write('               #local P4=P0+(P0-VecArr[Ind-Iter_U-1]);\n')
                file.write('            #else\n')
                file.write('               #local P4=VecArr[Ind+Iter_U+1];\n')
                file.write('            #end\n')
                file.write('            #local B1=P4-P0;\n')
                file.write('            #local B2=P2-P0;\n')
                file.write('            #local B3=P3-P0;\n')
                file.write('            #local B4=P1-P0;\n')
                file.write('            #local N1=vcross(B1,B2);\n')
                file.write('            #local N2=vcross(B2,B3);\n')
                file.write('            #local N3=vcross(B3,B4);\n')
                file.write('            #local N4=vcross(B4,B1);\n')
                file.write('            #local Norm=vnormalize((N1+N2+N3+N4));\n')
                file.write('            #declare NormArr[Count]=Norm;\n')
                file.write('            #local J=J+1;\n')
                file.write('            #local Count=Count+1;\n')
                file.write('         #end\n')
                file.write('         #debug concat("\r Done ", str(Count,0,0)," normals : ",str(100*Count/NumVertices,0,2), " %")\n')
                file.write('         #local I=I+1;\n')
                file.write('      #end\n')
                file.write('      BuildWriteMesh2(VecArr, NormArr, UVArr, Iter_U, Iter_V, FileName)\n')
                file.write('   #end\n')
                file.write('#end\n\n')
                
            if bezier_sweep == False:
                tabWrite("#declare %s =\n"%dataname)
            if ob.pov.curveshape == 'sphere_sweep' and bezier_sweep == False:
                tabWrite("union {\n")
                for spl in ob.data.splines:
                    if spl.type != "BEZIER":
                        spl_type = "linear"
                        if spl.type == "NURBS":
                            spl_type = "cubic"
                        points=spl.points
                        numPoints=len(points)
                        if spl.use_cyclic_u:
                            numPoints+=3
    
                        tabWrite("sphere_sweep { %s_spline %s,\n"%(spl_type,numPoints))
                        if spl.use_cyclic_u:
                            pt1 = points[len(points)-1]
                            wpt1 = pt1.co
                            tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt1[0], wpt1[1], wpt1[2], pt1.radius*ob.data.bevel_depth))
                        for pt in points:
                            wpt = pt.co
                            tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt[0], wpt[1], wpt[2], pt.radius*ob.data.bevel_depth))
                        if spl.use_cyclic_u:
                            for i in range (0,2):
                                endPt=points[i]
                                wpt = endPt.co
                                tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt[0], wpt[1], wpt[2], endPt.radius*ob.data.bevel_depth))
    
                        
                    tabWrite("}\n")
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
            if ob.pov.curveshape == 'sor':
                for spl in ob.data.splines:
                    if spl.type in {'POLY','NURBS'}:
                        points=spl.points
                        numPoints=len(points)
                        tabWrite("sor { %s,\n"%numPoints)
                        for pt in points:
                            wpt = pt.co
                            tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
                    else:
                        tabWrite("box { 0,0\n")
            if ob.pov.curveshape in {'lathe','prism'}:
                spl = ob.data.splines[0]
                if spl.type == "BEZIER":
                    points=spl.bezier_points
                    lenCur=len(points)-1
                    lenPts=lenCur*4
                    ifprism = ''
                    if ob.pov.curveshape in {'prism'}:
                        height = ob.data.extrude
                        ifprism = '-%s, %s,'%(height, height)
                        lenCur+=1
                        lenPts+=4
                    tabWrite("%s { bezier_spline %s %s,\n"%(ob.pov.curveshape,ifprism,lenPts))
                    for i in range(0,lenCur):
                        p1=points[i].co
                        pR=points[i].handle_right
                        end = i+1
                        if i == lenCur-1 and ob.pov.curveshape in {'prism'}:
                            end = 0
                        pL=points[end].handle_left
                        p2=points[end].co
                        line="<%.4g,%.4g>"%(p1[0],p1[1])
                        line+="<%.4g,%.4g>"%(pR[0],pR[1])
                        line+="<%.4g,%.4g>"%(pL[0],pL[1])
                        line+="<%.4g,%.4g>"%(p2[0],p2[1])
                        tabWrite("%s\n" %line)
                else:
                    points=spl.points
                    lenCur=len(points)
                    lenPts=lenCur
                    ifprism = ''
                    if ob.pov.curveshape in {'prism'}:
                        height = ob.data.extrude
                        ifprism = '-%s, %s,'%(height, height)
                        lenPts+=3
                    spl_type = 'quadratic'
                    if spl.type == 'POLY':
                        spl_type = 'linear'
                    tabWrite("%s { %s_spline %s %s,\n"%(ob.pov.curveshape,spl_type,ifprism,lenPts))
                    if ob.pov.curveshape in {'prism'}:
                        pt = points[len(points)-1]
                        wpt = pt.co
                        tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
                    for pt in points:
                        wpt = pt.co
                        tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
                    if ob.pov.curveshape in {'prism'}:
                        for i in range(2):
                            pt = points[i]
                            wpt = pt.co
                            tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
            if bezier_sweep:
                spl = ob.data.splines[0]
                points=spl.bezier_points
                lenCur = len(points)-1
                numPoints = lenCur*4
                if spl.use_cyclic_u:
                    lenCur += 1
                    numPoints += 4
                tabWrite("#declare %s_bezier_points = array[%s]{\n"%(dataname,numPoints))
                for i in range(lenCur):
                    p1=points[i].co
                    pR=points[i].handle_right
                    end = i+1
                    if spl.use_cyclic_u and i == (lenCur - 1):
                        end = 0
                    pL=points[end].handle_left
                    p2=points[end].co
                    line="<%.4g,%.4g,%.4f>"%(p1[0],p1[1],p1[2])
                    line+="<%.4g,%.4g,%.4f>"%(pR[0],pR[1],pR[2])
                    line+="<%.4g,%.4g,%.4f>"%(pL[0],pL[1],pL[2])
                    line+="<%.4g,%.4g,%.4f>"%(p2[0],p2[1],p2[2])
                    tabWrite("%s\n" %line)
                tabWrite("}\n")
                #tabWrite('#include "bezier_spheresweep.inc"\n') #now inlined
                tabWrite('#declare %s = object{Shape_Bezierpoints_Sphere_Sweep(%s, %s_bezier_points, %.4f) \n'%(dataname,ob.data.resolution_u,dataname,ob.data.bevel_depth))
            if ob.pov.curveshape in {'loft'}:
                tabWrite('object {MSM(%s,%s,"c",%s,"")\n'%(dataname,ob.pov.res_u,ob.pov.res_v))
            if ob.pov.curveshape in {'birail'}:
                splines = '%s1,%s2,%s3,%s4'%(dataname,dataname,dataname,dataname)
                tabWrite('object {Coons(%s, %s, %s, "")\n'%(splines,ob.pov.res_u,ob.pov.res_v))
            povMatName = "Default_texture"
            if ob.active_material:
                #povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
                try:
                    material = ob.active_material
                    writeObjectMaterial(material, ob)
                except IndexError:
                    print(me)
            #tabWrite("texture {%s}\n"%povMatName)
            if ob.pov.curveshape in {'prism'}:
                tabWrite("rotate <90,0,0>\n")
                tabWrite("scale y*-1\n" )
            tabWrite("}\n")
            
    #################################################################        
            
                
    
    Luca Bonavita's avatar
    Luca Bonavita committed
        def exportMeta(metas):
    
            # TODO - blenders 'motherball' naming is not supported.
    
            if comments and len(metas) >= 1:
    
                file.write("//--Blob objects--\n\n")
    
    Luca Bonavita's avatar
    Luca Bonavita committed
            for ob in metas:
                meta = ob.data
    
    
                # important because no elements will break parsing.
    
                elements = [elem for elem in meta.elements if elem.type in {'BALL', 'ELLIPSOID'}]
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                    tabWrite("blob {\n")
                    tabWrite("threshold %.4g\n" % meta.threshold)
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                        material = meta.materials[0]  # lame! - blender cant do enything else.
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                    for elem in elements:
                        loc = elem.co
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                        stiffness = elem.stiffness
                        if elem.use_negative:
                            stiffness = - stiffness
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                        if elem.type == 'BALL':
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                            tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g }\n" % \
                                     (loc.x, loc.y, loc.z, elem.radius, stiffness))
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                            # After this wecould do something simple like...
    
                            # except we'll write the color
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                        elif elem.type == 'ELLIPSOID':
                            # location is modified by scale
    
                            tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g }\n" % \
                                     (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z,
                                      elem.radius, stiffness))
                            tabWrite("scale <%.6g, %.6g, %.6g> \n" % \
                                     (elem.size_x, elem.size_y, elem.size_z))
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                    if material:
                        diffuse_color = material.diffuse_color
    
                        if material.use_transparency and material.transparency_method == 'RAYTRACE':
    
                            povFilter = material.raytrace_transparency.filter * (1.0 - material.alpha)
                            trans = (1.0 - material.alpha) - povFilter
    
                            povFilter = 0.0
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                        material_finish = materialNames[material.name]
    
                        tabWrite("pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} \n" % \
                                 (diffuse_color[0], diffuse_color[1], diffuse_color[2],
                                  povFilter, trans))
    
                        tabWrite("finish {%s}\n" % safety(material_finish, Level=2))
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                        tabWrite("pigment {rgb<1 1 1>} \n")
    
                        # Write the finish last.
                        tabWrite("finish {%s}\n" % (safety(DEF_MAT_NAME, Level=2)))
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                    writeObjectMaterial(material, ob)
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                    writeMatrix(global_matrix * ob.matrix_world)
    
                    # Importance for radiosity sampling added here
    
                    tabWrite("radiosity { \n")
                    tabWrite("importance %3g \n" % importance)
                    tabWrite("}\n")
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
                    tabWrite("}\n")  # End of Metaball block
    
                    if comments and len(metas) >= 1:
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
        def exportMeshes(scene, sel):
    #        obmatslist = []
    #        def hasUniqueMaterial():
    #            # Grab materials attached to object instances ...
    #            if hasattr(ob, 'material_slots'):
    #                for ms in ob.material_slots:
    
    #                    if ms.material is not None and ms.link == 'OBJECT':
    
    #                        if ms.material in obmatslist:
    #                            return False
    #                        else:
    #                            obmatslist.append(ms.material)
    #                            return True
    #        def hasObjectMaterial(ob):
    #            # Grab materials attached to object instances ...
    #            if hasattr(ob, 'material_slots'):
    #                for ms in ob.material_slots:
    
    #                    if ms.material is not None and ms.link == 'OBJECT':
    
    #                        # If there is at least one material slot linked to the object
    
    #                        # and not the data (mesh), always create a new, "private" data instance.
    
    #                        return True
    #            return False
            # For objects using local material(s) only!
    
            # This is a mapping between a tuple (dataname, materialnames, ...), and the POV dataname.
    
            # As only objects using:
            #     * The same data.
            #     * EXACTLY the same materials, in EXACTLY the same sockets.
    
            # ... can share a same instance in POV export.
    
            def checkObjectMaterials(ob, name, dataname):
                if hasattr(ob, 'material_slots'):
                    has_local_mats = False
                    key = [dataname]
                    for ms in ob.material_slots:
    
                        if ms.material is not None:
    
                            key.append(ms.material.name)
                            if ms.link == 'OBJECT' and not has_local_mats:
                                has_local_mats = True
                        else:
    
                            # Even if the slot is empty, it is important to grab it...
    
                            key.append("")
                    if has_local_mats:
                        # If this object uses local material(s), lets find if another object
                        # using the same data and exactly the same list of materials
    
                        # (in the same slots) has already been processed...
    
                        # Note that here also, we use object name as new, unique dataname for Pov.
    
                        key = tuple(key)  # Lists are not hashable...
    
                        if key not in obmats2data:
                            obmats2data[key] = name
                        return obmats2data[key]
                return None
    
            data_ref = {}
    
            def store(scene, ob, name, dataname, matrix):
                # The Object needs to be written at least once but if its data is
                # already in data_ref this has already been done.
    
                # This func returns the "povray" name of the data, or None
    
                # if no writing is needed.
                if ob.is_modified(scene, 'RENDER'):
                    # Data modified.
                    # Create unique entry in data_ref by using object name
                    # (always unique in Blender) as data name.
                    data_ref[name] = [(name, MatrixAsPovString(matrix))]
                    return name
                # Here, we replace dataname by the value returned by checkObjectMaterials, only if
                # it is not evaluated to False (i.e. only if the object uses some local material(s)).
                dataname = checkObjectMaterials(ob, name, dataname) or dataname
                if dataname in data_ref:
                    # Data already known, just add the object instance.
                    data_ref[dataname].append((name, MatrixAsPovString(matrix)))
                    # No need to write data
                    return None
                else:
                    # Data not yet processed, create a new entry in data_ref.
                    data_ref[dataname] = [(name, MatrixAsPovString(matrix))]
                    return dataname
    
               
                 
            def exportSmoke(smoke_obj_name):
                #if LuxManager.CurrentScene.name == 'preview':
                    #return 1, 1, 1, 1.0
                #else:
                flowtype = -1
                smoke_obj = bpy.data.objects[smoke_obj_name]
                domain = None
    
                # Search smoke domain target for smoke modifiers
                for mod in smoke_obj.modifiers:
                    if mod.name == 'Smoke':
                        if mod.smoke_type == 'FLOW':
                            if mod.flow_settings.smoke_flow_type == 'BOTH':
                                flowtype = 2
                            else:
                                if mod.flow_settings.smoke_flow_type == 'SMOKE':
                                    flowtype = 0
                                else:
                                    if mod.flow_settings.smoke_flow_type == 'FIRE':
                                        flowtype = 1
    
                        if mod.smoke_type == 'DOMAIN':
                            domain = smoke_obj
                            smoke_modifier = mod
    
                eps = 0.000001
                if domain is not None:
                    #if bpy.app.version[0] >= 2 and bpy.app.version[1] >= 71:
                    # Blender version 2.71 supports direct access to smoke data structure
                    set = mod.domain_settings
                    channeldata = []
                    for v in set.density_grid:
                        channeldata.append(v.real)
                        print(v.real)
                    ## Usage en voxel texture:
                    # channeldata = []
                    # if channel == 'density':
                        # for v in set.density_grid:
                            # channeldata.append(v.real)
    
                    # if channel == 'fire':
                        # for v in set.flame_grid:
                            # channeldata.append(v.real)
    
                    resolution = set.resolution_max
                    big_res = []
                    big_res.append(set.domain_resolution[0])
                    big_res.append(set.domain_resolution[1])
                    big_res.append(set.domain_resolution[2])
    
                    if set.use_high_resolution:
                        big_res[0] = big_res[0] * (set.amplify + 1)
                        big_res[1] = big_res[1] * (set.amplify + 1)
                        big_res[2] = big_res[2] * (set.amplify + 1)
                    # else:
                        # p = []
                        ##gather smoke domain settings
                        # BBox = domain.bound_box
                        # p.append([BBox[0][0], BBox[0][1], BBox[0][2]])
                        # p.append([BBox[6][0], BBox[6][1], BBox[6][2]])
                        # set = mod.domain_settings
                        # resolution = set.resolution_max
                        # smokecache = set.point_cache
                        # ret = read_cache(smokecache, set.use_high_resolution, set.amplify + 1, flowtype)
                        # res_x = ret[0]
                        # res_y = ret[1]
                        # res_z = ret[2]
                        # density = ret[3]
                        # fire = ret[4]
    
                        # if res_x * res_y * res_z > 0:
                            ##new cache format
                            # big_res = []
                            # big_res.append(res_x)
                            # big_res.append(res_y)
                            # big_res.append(res_z)
                        # else:
                            # max = domain.dimensions[0]
                            # if (max - domain.dimensions[1]) < -eps:
                                # max = domain.dimensions[1]
    
                            # if (max - domain.dimensions[2]) < -eps:
                                # max = domain.dimensions[2]
    
                            # big_res = [int(round(resolution * domain.dimensions[0] / max, 0)),
                                       # int(round(resolution * domain.dimensions[1] / max, 0)),
                                       # int(round(resolution * domain.dimensions[2] / max, 0))]
    
                        # if set.use_high_resolution:
                            # big_res = [big_res[0] * (set.amplify + 1), big_res[1] * (set.amplify + 1),
                                       # big_res[2] * (set.amplify + 1)]
    
                        # if channel == 'density':
                            # channeldata = density
    
                        # if channel == 'fire':
                            # channeldata = fire
    
                            # sc_fr = '%s/%s/%s/%05d' % (efutil.export_path, efutil.scene_filename(), bpy.context.scene.name, bpy.context.scene.frame_current)
    
                            #               if not os.path.exists( sc_fr ):
                            #                   os.makedirs(sc_fr)
    
                            #               smoke_filename = '%s.smoke' % bpy.path.clean_name(domain.name)
                            #               smoke_path = '/'.join([sc_fr, smoke_filename])
    
                            #               with open(smoke_path, 'wb') as smoke_file:
                            #                   # Binary densitygrid file format
                            #                   #
                            #                   # File header
                            #                   smoke_file.write(b'SMOKE')        #magic number
                            #                   smoke_file.write(struct.pack('<I', big_res[0]))
                            #                   smoke_file.write(struct.pack('<I', big_res[1]))
                            #                   smoke_file.write(struct.pack('<I', big_res[2]))
    
                            # Density data
    
                            #                   smoke_file.write(struct.pack('<%df'%len(channeldata), *channeldata))
    
                            #               LuxLog('Binary SMOKE file written: %s' % (smoke_path))
    
    
            #return big_res[0], big_res[1], big_res[2], channeldata
    
                    mydf3 = df3.df3(big_res[0],big_res[1],big_res[2])
    
                    sim_sizeX, sim_sizeY, sim_sizeZ = mydf3.size()
                    for x in range(sim_sizeX):
                        for y in range(sim_sizeY):
                            for z in range(sim_sizeZ):
                                mydf3.set(x, y, z, channeldata[((z * sim_sizeY + y) * sim_sizeX + x)])
    
    
                    mydf3.exportDF3(smokePath)
                    print('Binary smoke.df3 file written in preview directory')
                    if comments:
                        file.write("\n//--Smoke--\n\n")
    
    
                    # Note: We start with a default unit cube.
                    #       This is mandatory to read correctly df3 data - otherwise we could just directly use bbox
                    #       coordinates from the start, and avoid scale/translate operations at the end...
                    file.write("box{<0,0,0>, <1,1,1>\n")
    
                    file.write("    pigment{ rgbt 1 }\n")
                    file.write("    hollow\n")
                    file.write("    interior{ //---------------------\n")
                    file.write("        media{ method 3\n")
                    file.write("               emission <1,1,1>*1\n")# 0>1 for dark smoke to white vapour
                    file.write("               scattering{ 1, // Type\n")
    
                    file.write("                  <1,1,1>*0.1\n")
    
                    file.write("                } // end scattering\n")
    
                    file.write("                density{density_file df3 \"%s\"\n" % (smokePath))
                    file.write("                        color_map {\n")
                    file.write("                        [0.00 rgb 0]\n")
                    file.write("                        [0.05 rgb 0]\n")
                    file.write("                        [0.20 rgb 0.2]\n")
                    file.write("                        [0.30 rgb 0.6]\n")
                    file.write("                        [0.40 rgb 1]\n")
                    file.write("                        [1.00 rgb 1]\n")
                    file.write("                       } // end color_map\n")
                    file.write("               } // end of density\n")
                    file.write("               samples %i // higher = more precise\n" % resolution)
    
                    file.write("         } // end of media --------------------------\n")
                    file.write("    } // end of interior\n")
    
    
                    # START OF TRANSFORMATIONS
    
                    # Size to consider here are bbox dimensions (i.e. still in object space, *before* applying
                    # loc/rot/scale and other transformations (like parent stuff), aka matrix_world).
                    bbox = smoke_obj.bound_box
                    dim = [abs(bbox[6][0] - bbox[0][0]), abs(bbox[6][1] - bbox[0][1]), abs(bbox[6][2] - bbox[0][2])]
    
                    # We scale our cube to get its final size and shapes but still in *object* space (same as Blender's bbox).
                    file.write("scale<%.6g,%.6g,%.6g>\n" % (dim[0], dim[1], dim[2]))
    
                    # We offset our cube such that (0,0,0) coordinate matches Blender's object center.
                    file.write("translate<%.6g,%.6g,%.6g>\n" % (bbox[0][0], bbox[0][1], bbox[0][2]))
    
                    # We apply object's transformations to get final loc/rot/size in world space!
                    # Note: we could combine the two previous transformations with this matrix directly...
    
                    writeMatrix(global_matrix * smoke_obj.matrix_world)
    
    
                    # END OF TRANSFORMATIONS
    
    
                    file.write("}\n")
    
                    #file.write("               interpolate 1\n")
                    #file.write("               frequency 0\n")
                    #file.write("   }\n")
    
                    #file.write("}\n")                            
                    
    
    Luca Bonavita's avatar
    Luca Bonavita committed
            for ob in sel:
                ob_num += 1
    
    
                # XXX I moved all those checks here, as there is no need to compute names
    
                if (ob.type in {'LAMP', 'CAMERA', 'EMPTY',
                                'META', 'ARMATURE', 'LATTICE'}):
    
    Luca Bonavita's avatar
    Luca Bonavita committed
                    continue
    
                for mod in ob.modifiers:
                    if mod and hasattr(mod, 'smoke_type'):
    
                        smokeFlag=True
                        if (mod.smoke_type == 'DOMAIN'):
                            exportSmoke(ob.name)
                        break # don't render domain mesh or flow emitter mesh, skip to next object.
                if not smokeFlag:    
                    # Export Hair
                    renderEmitter = True
                    if hasattr(ob, 'particle_systems'):
                        renderEmitter = False
                        for pSys in ob.particle_systems:
                            if pSys.settings.use_render_emitter:
                                renderEmitter = True
                            for mod in [m for m in ob.modifiers if (m is not None) and (m.type == 'PARTICLE_SYSTEM')]:
                                if (pSys.settings.render_type == 'PATH') and mod.show_render and (pSys.name == mod.particle_system.name):
                                    tstart = time.time()
                                    texturedHair=0
                                    if ob.active_material is not None:
                                        pmaterial = ob.material_slots[pSys.settings.material - 1].material
                                        for th in pmaterial.texture_slots:
                                            if th and th.use:
                                                if (th.texture.type == 'IMAGE' and th.texture.image) or th.texture.type != 'IMAGE':
                                                    if th.use_map_color_diffuse:
                                                        texturedHair=1
                                        if pmaterial.strand.use_blender_units:
                                            strandStart = pmaterial.strand.root_size
                                            strandEnd = pmaterial.strand.tip_size
                                            strandShape = pmaterial.strand.shape 
                                        else:  # Blender unit conversion
                                            strandStart = pmaterial.strand.root_size / 200.0
                                            strandEnd = pmaterial.strand.tip_size / 200.0
                                            strandShape = pmaterial.strand.shape
                                    else:
                                        pmaterial = "default"  # No material assigned in blender, use default one
                                        strandStart = 0.01
                                        strandEnd = 0.01
                                        strandShape = 0.0
                                    # Set the number of particles to render count rather than 3d view display    
                                    pSys.set_resolution(scene, ob, 'RENDER')    
                                    steps = pSys.settings.draw_step
                                    steps = 3 ** steps # or (power of 2 rather than 3) + 1 # Formerly : len(particle.hair_keys)
                                    
                                    totalNumberOfHairs = ( len(pSys.particles) + len(pSys.child_particles) )
                                    #hairCounter = 0
                                    file.write('#declare HairArray = array[%i] {\n' % totalNumberOfHairs)
                                    for pindex in range(0, totalNumberOfHairs):
    
                                        #if particle.is_exist and particle.is_visible:
                                            #hairCounter += 1
                                            #controlPointCounter = 0
                                            # Each hair is represented as a separate sphere_sweep in POV-Ray.
    
                                            file.write('sphere_sweep{')
                                            if pSys.settings.use_hair_bspline:
                                                file.write('b_spline ')
                                                file.write('%i,\n' % (steps + 2))  # +2 because the first point needs tripling to be more than a handle in POV
                                            else:
                                                file.write('linear_spline ')
                                                file.write('%i,\n' % (steps))
                                            #changing world coordinates to object local coordinates by multiplying with inverted matrix    
                                            initCo = ob.matrix_world.inverted()*(pSys.co_hair(ob, pindex, 0))
                                            if ob.active_material is not None:
                                                pmaterial = ob.material_slots[pSys.settings.material-1].material
                                                for th in pmaterial.texture_slots:
                                                    if th and th.use and th.use_map_color_diffuse:
                                                        #treat POV textures as bitmaps
                                                        if (th.texture.type == 'IMAGE' and th.texture.image and th.texture_coords == 'UV' and ob.data.uv_textures != None): # or (th.texture.pov.tex_pattern_type != 'emulator' and th.texture_coords == 'UV' and ob.data.uv_textures != None):
                                                            image=th.texture.image
                                                            image_width = image.size[0]
                                                            image_height = image.size[1]
                                                            image_pixels = image.pixels[:]
                                                            uv_co = pSys.uv_on_emitter(mod, pSys.particles[pindex], pindex, 0)
                                                            x_co = round(uv_co[0] * (image_width - 1))
                                                            y_co = round(uv_co[1] * (image_height - 1))
                                                            pixelnumber = (image_width * y_co) + x_co
                                                            r = image_pixels[pixelnumber*4]
                                                            g = image_pixels[pixelnumber*4+1]
                                                            b = image_pixels[pixelnumber*4+2]
                                                            a = image_pixels[pixelnumber*4+3]
                                                            initColor=(r,g,b,a)                                              
                                                        else:
                                                            #only overwrite variable for each competing texture for now
                                                            initColor=th.texture.evaluate((initCo[0],initCo[1],initCo[2]))
                                            for step in range(0, steps):
                                                co = pSys.co_hair(ob, pindex, step)
                                            #for controlPoint in particle.hair_keys:
                                                if pSys.settings.clump_factor != 0:
                                                    hDiameter = pSys.settings.clump_factor / 200.0 * random.uniform(0.5, 1)
                                                elif step == 0:
                                                    hDiameter = strandStart
                                                else:
                                                    hDiameter += (strandEnd-strandStart)/(pSys.settings.draw_step+1) #XXX +1 or not?
                                                if step == 0 and pSys.settings.use_hair_bspline:
                                                    # Write three times the first point to compensate pov Bezier handling
                                                    file.write('<%.6g,%.6g,%.6g>,%.7g,\n' % (co[0], co[1], co[2], abs(hDiameter)))
                                                    file.write('<%.6g,%.6g,%.6g>,%.7g,\n' % (co[0], co[1], co[2], abs(hDiameter)))                                          
                                                    #file.write('<%.6g,%.6g,%.6g>,%.7g' % (particle.location[0], particle.location[1], particle.location[2], abs(hDiameter))) # Useless because particle location is the tip, not the root.
                                                    #file.write(',\n')
                                                #controlPointCounter += 1
                                                #totalNumberOfHairs += len(pSys.particles)# len(particle.hair_keys)
                                                     
                                              # Each control point is written out, along with the radius of the
                                              # hair at that point.
                                                file.write('<%.6g,%.6g,%.6g>,%.7g' % (co[0], co[1], co[2], abs(hDiameter)))
    
                                              # All coordinates except the last need a following comma.
    
                                                if step != steps - 1:
                                                    file.write(',\n')
                                                else:
                                                    if texturedHair:
                                                        # Write pigment and alpha (between Pov and Blender alpha 0 and 1 are reversed)
                                                        file.write('\npigment{ color rgbf < %.3g, %.3g, %.3g, %.3g> }\n' %(initColor[0], initColor[1], initColor[2], 1.0-initColor[3]))
                                                    # End the sphere_sweep declaration for this hair
                                                    file.write('}\n')
                                                
                                              # All but the final sphere_sweep (each array element) needs a terminating comma.
    
                                            if pindex != totalNumberOfHairs:
                                                file.write(',\n')
                                            else:
                                                file.write('\n')
    
                                    # End the array declaration.
    
                                    file.write('}\n')
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
                                    file.write('\n')
    
                                    
                                    if not texturedHair:
                                        # Pick up the hair material diffuse color and create a default POV-Ray hair texture.
    
                                        file.write('#ifndef (HairTexture)\n')
                                        file.write('  #declare HairTexture = texture {\n')
                                        file.write('    pigment {rgbt <%s,%s,%s,%s>}\n' % (pmaterial.diffuse_color[0], pmaterial.diffuse_color[1], pmaterial.diffuse_color[2], (pmaterial.strand.width_fade + 0.05)))
                                        file.write('  }\n')
                                        file.write('#end\n')
                                        file.write('\n')
    
                                    # Dynamically create a union of the hairstrands (or a subset of them).
                                    # By default use every hairstrand, commented line is for hand tweaking test renders.
                                    file.write('//Increasing HairStep divides the amount of hair for test renders.\n')
                                    file.write('#ifndef(HairStep) #declare HairStep = 1; #end\n')
                                    file.write('union{\n')
                                    file.write('  #local I = 0;\n')
                                    file.write('  #while (I < %i)\n' % totalNumberOfHairs)
                                    file.write('    object {HairArray[I]')
                                    if not texturedHair:
                                        file.write(' texture{HairTexture}\n')
                                    else:
                                        file.write('\n')
                                    # Translucency of the hair:
                                    file.write('        hollow\n')
                                    file.write('        double_illuminate\n')
                                    file.write('        interior {\n')
                                    file.write('            ior 1.45\n')
                                    file.write('            media {\n')
                                    file.write('                scattering { 1, 10*<0.73, 0.35, 0.15> /*extinction 0*/ }\n')
                                    file.write('                absorption 10/<0.83, 0.75, 0.15>\n')
                                    file.write('                samples 1\n')
                                    file.write('                method 2\n')
                                    file.write('                density {\n')
                                    file.write('                    color_map {\n')
                                    file.write('                        [0.0 rgb <0.83, 0.45, 0.35>]\n')
                                    file.write('                        [0.5 rgb <0.8, 0.8, 0.4>]\n')
                                    file.write('                        [1.0 rgb <1,1,1>]\n')
                                    file.write('                    }\n')
                                    file.write('                }\n')
                                    file.write('            }\n')
                                    file.write('        }\n')
                                    file.write('    }\n')
                                    
                                    file.write('    #local I = I + HairStep;\n')
                                    file.write('  #end\n')
                                    
                                    writeMatrix(global_matrix * ob.matrix_world)
    
                                    
                                    file.write('}')
                                    print('Totals hairstrands written: %i' % totalNumberOfHairs)
                                    print('Number of tufts (particle systems)', len(ob.particle_systems))
                                    
                                    # Set back the displayed number of particles to preview count
                                    pSys.set_resolution(scene, ob, 'PREVIEW')
                                    
                                    if renderEmitter == False:
                                        continue #don't render mesh, skip to next object.
    
        #############################################
                    # Generating a name for object just like materials to be able to use it
                    # (baking for now or anything else).
                    # XXX I don't understand that:&nbsp;if we are here, sel if a non-empty iterable,
                    #     so this condition is always True, IMO -- mont29
                    if sel:
                        name_orig = "OB" + ob.name
                        dataname_orig = "DATA" + ob.data.name
    
                        name_orig = DEF_OBJ_NAME
                        dataname_orig = DEF_OBJ_NAME
                    name = string_strip_hyphen(bpy.path.clean_name(name_orig))
                    dataname = string_strip_hyphen(bpy.path.clean_name(dataname_orig))
        ##            for slot in ob.material_slots:
        ##                if slot.material is not None and slot.link == 'OBJECT':
        ##                    obmaterial = slot.material
    
        #############################################