Newer
Older
if info_callback:
info_callback("Object %2.d of %2.d (%s)" % (ob_num, len(sel), ob.name))
#if ob.type != 'MESH':
# continue
# me = ob.data
matrix = global_matrix * ob.matrix_world
povdataname = store(scene, ob, name, dataname, matrix)
if povdataname is None:
print("This is an instance")
continue
print("Writing Down First Occurence")
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
############################################Povray Primitives
# special exportCurves() function takes care of writing
# lathe, sphere_sweep, birail, and loft
if ob.type == 'CURVE' and (ob.pov.curveshape in
{'lathe', 'sphere_sweep', 'loft'}):
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'ISOSURFACE':
tabWrite("#declare %s = isosurface{ \n"% povdataname)
tabWrite("function{ \n")
textName = ob.pov.iso_function_text
if textName:
node_tree = bpy.context.scene.node_tree
for node in node_tree.nodes:
if node.bl_idname == "IsoPropsNode" and node.label == ob.name:
for inp in node.inputs:
if inp:
tabWrite("#declare %s = %.6g;\n"%(inp.name,inp.default_value))
text = bpy.data.texts[textName]
for line in text.lines:
split = line.body.split()
if split[0] != "#declare":
tabWrite("%s\n"%line.body)
else:
tabWrite("abs(x) - 2 + y")
tabWrite("}\n")
tabWrite("threshold %.6g\n"%ob.pov.threshold)
tabWrite("max_gradient %.6g\n"%ob.pov.max_gradient)
tabWrite("accuracy %.6g\n"%ob.pov.accuracy)
tabWrite("contained_by { ")
if ob.pov.contained_by == "sphere":
tabWrite("sphere {0,%.6g}}\n"%ob.pov.container_scale)
else:
tabWrite("box {-%.6g,%.6g}}\n"%(ob.pov.container_scale,ob.pov.container_scale))
if ob.pov.all_intersections:
tabWrite("all_intersections\n")
else:
if ob.pov.max_trace > 1:
tabWrite("max_trace %.6g\n"%ob.pov.max_trace)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
tabWrite("scale %.6g\n"%(1/ob.pov.container_scale))
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
if ob.pov.object_as == 'SUPERELLIPSOID':
tabWrite("#declare %s = superellipsoid{ <%.4f,%.4f>\n"%(povdataname,ob.pov.se_n2,ob.pov.se_n1))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SUPERTORUS':
rMajor = ob.pov.st_major_radius
rMinor = ob.pov.st_minor_radius
ring = ob.pov.st_ring
cross = ob.pov.st_cross
accuracy=ob.pov.st_accuracy
gradient=ob.pov.st_max_gradient
############Inline Supertorus macro
file.write("#macro Supertorus(RMj, RMn, MajorControl, MinorControl, Accuracy, MaxGradient)\n")
file.write(" #local CP = 2/MinorControl;\n")
file.write(" #local RP = 2/MajorControl;\n")
file.write(" isosurface {\n")
file.write(" function { pow( pow(abs(pow(pow(abs(x),RP) + pow(abs(z),RP), 1/RP) - RMj),CP) + pow(abs(y),CP) ,1/CP) - RMn }\n")
file.write(" threshold 0\n")
file.write(" contained_by {box {<-RMj-RMn,-RMn,-RMj-RMn>, < RMj+RMn, RMn, RMj+RMn>}}\n")
file.write(" #if(MaxGradient >= 1)\n")
file.write(" max_gradient MaxGradient\n")
file.write(" #else\n")
file.write(" evaluate 1, 10, 0.1\n")
file.write(" #end\n")
file.write(" accuracy Accuracy\n")
file.write(" }\n")
file.write("#end\n")
############
tabWrite("#declare %s = object{ Supertorus( %.4g,%.4g,%.4g,%.4g,%.4g,%.4g)\n"%(povdataname,rMajor,rMinor,ring,cross,accuracy,gradient))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PLANE':
tabWrite("#declare %s = plane{ <0,0,1>,1\n"%povdataname)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
if ob.pov.object_as == 'BOX':
tabWrite("#declare %s = box { -1,1\n"%povdataname)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CONE':
br = ob.pov.cone_base_radius
cr = ob.pov.cone_cap_radius
bz = ob.pov.cone_base_z
cz = ob.pov.cone_cap_z
tabWrite("#declare %s = cone { <0,0,%.4f>,%.4f,<0,0,%.4f>,%.4f\n"%(povdataname,bz,br,cz,cr))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CYLINDER':
Maurice Raybaud
committed
r = ob.pov.cylinder_radius
x2 = ob.pov.cylinder_location_cap[0]
y2 = ob.pov.cylinder_location_cap[1]
z2 = ob.pov.cylinder_location_cap[2]
tabWrite("#declare %s = cylinder { <0,0,0>,<%6f,%6f,%6f>,%6f\n"%(
povdataname,
x2,
y2,
z2,
r))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
Maurice Raybaud
committed
#cylinders written at origin, translated below
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'HEIGHT_FIELD':
data = ""
filename = ob.pov.hf_filename
data += '"%s"'%filename
gamma = ' gamma %.4f'%ob.pov.hf_gamma
data += gamma
if ob.pov.hf_premultiplied:
data += ' premultiplied on'
if ob.pov.hf_smooth:
data += ' smooth'
if ob.pov.hf_water > 0:
data += ' water_level %.4f'%ob.pov.hf_water
#hierarchy = ob.pov.hf_hierarchy
tabWrite('#declare %s = height_field { %s\n'%(povdataname,data))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("translate <-0.5,0.5,0>\n")
tabWrite("scale <0,-1,0>\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
if ob.pov.object_as == 'SPHERE':
tabWrite("#declare %s = sphere { 0,%6f\n"%(povdataname,ob.pov.sphere_radius))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'TORUS':
tabWrite("#declare %s = torus { %.4f,%.4f\n"%(povdataname,ob.pov.torus_major_radius,ob.pov.torus_minor_radius))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PARAMETRIC':
tabWrite("#declare %s = parametric {\n"%povdataname)
tabWrite("function { %s }\n"%ob.pov.x_eq)
tabWrite("function { %s }\n"%ob.pov.y_eq)
tabWrite("function { %s }\n"%ob.pov.z_eq)
tabWrite("<%.4f,%.4f>, <%.4f,%.4f>\n"%(ob.pov.u_min,ob.pov.v_min,ob.pov.u_max,ob.pov.v_max))
if ob.pov.contained_by == "sphere":
tabWrite("contained_by { sphere{0, 2} }\n")
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
tabWrite("contained_by { box{-2, 2} }\n")
tabWrite("max_gradient %.6f\n"%ob.pov.max_gradient)
tabWrite("accuracy %.6f\n"%ob.pov.accuracy)
tabWrite("precompute 10 x,y,z\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'POLYCIRCLE':
#TODO write below macro Once:
#if write_polytocircle_macro_once == 0:
file.write("/****************************\n")
file.write("This macro was written by 'And'.\n")
file.write("Link:(http://news.povray.org/povray.binaries.scene-files/)\n")
file.write("****************************/\n")
file.write("//from math.inc:\n")
file.write("#macro VPerp_Adjust(V, Axis)\n")
file.write(" vnormalize(vcross(vcross(Axis, V), Axis))\n")
file.write("#end\n")
file.write("//Then for the actual macro\n")
file.write("#macro Shape_Slice_Plane_2P_1V(point1, point2, clip_direct)\n")
file.write("#local p1 = point1 + <0,0,0>;\n")
file.write("#local p2 = point2 + <0,0,0>;\n")
file.write("#local clip_v = vnormalize(clip_direct + <0,0,0>);\n")
file.write("#local direct_v1 = vnormalize(p2 - p1);\n")
file.write("#if(vdot(direct_v1, clip_v) = 1)\n")
file.write(' #error "Shape_Slice_Plane_2P_1V error: Can\'t decide plane"\n')
file.write("#end\n\n")
file.write("#local norm = -vnormalize(clip_v - direct_v1*vdot(direct_v1,clip_v));\n")
file.write("#local d = vdot(norm, p1);\n")
file.write("plane{\n")
file.write("norm, d\n")
file.write("}\n")
file.write("#end\n\n")
file.write("//polygon to circle\n")
file.write("#macro Shape_Polygon_To_Circle_Blending(_polygon_n, _side_face, _polygon_circumscribed_radius, _circle_radius, _height)\n")
file.write("#local n = int(_polygon_n);\n")
file.write("#if(n < 3)\n")
file.write(" #error ""\n")
file.write("#end\n\n")
file.write("#local front_v = VPerp_Adjust(_side_face, z);\n")
file.write("#if(vdot(front_v, x) >= 0)\n")
file.write(" #local face_ang = acos(vdot(-y, front_v));\n")
file.write("#else\n")
file.write(" #local face_ang = -acos(vdot(-y, front_v));\n")
file.write("#end\n")
file.write("#local polyg_ext_ang = 2*pi/n;\n")
file.write("#local polyg_outer_r = _polygon_circumscribed_radius;\n")
file.write("#local polyg_inner_r = polyg_outer_r*cos(polyg_ext_ang/2);\n")
file.write("#local cycle_r = _circle_radius;\n")
file.write("#local h = _height;\n")
file.write("#if(polyg_outer_r < 0 | cycle_r < 0 | h <= 0)\n")
file.write(' #error "error: each side length must be positive"\n')
file.write("#end\n\n")
file.write("#local multi = 1000;\n")
file.write("#local poly_obj =\n")
file.write("polynomial{\n")
file.write("4,\n")
file.write("xyz(0,2,2): multi*1,\n")
file.write("xyz(2,0,1): multi*2*h,\n")
file.write("xyz(1,0,2): multi*2*(polyg_inner_r-cycle_r),\n")
file.write("xyz(2,0,0): multi*(-h*h),\n")
file.write("xyz(0,0,2): multi*(-pow(cycle_r - polyg_inner_r, 2)),\n")
file.write("xyz(1,0,1): multi*2*h*(-2*polyg_inner_r + cycle_r),\n")
file.write("xyz(1,0,0): multi*2*h*h*polyg_inner_r,\n")
file.write("xyz(0,0,1): multi*2*h*polyg_inner_r*(polyg_inner_r - cycle_r),\n")
file.write("xyz(0,0,0): multi*(-pow(polyg_inner_r*h, 2))\n")
file.write("sturm\n")
file.write("}\n\n")
file.write("#local mockup1 =\n")
file.write("difference{\n")
file.write(" cylinder{\n")
file.write(" <0,0,0.0>,<0,0,h>, max(polyg_outer_r, cycle_r)\n")
file.write(" }\n\n")
file.write(" #for(i, 0, n-1)\n")
file.write(" object{\n")
file.write(" poly_obj\n")
file.write(" inverse\n")
file.write(" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n")
file.write(" }\n")
file.write(" object{\n")
file.write(" Shape_Slice_Plane_2P_1V(<polyg_inner_r,0,0>,<cycle_r,0,h>,x)\n")
file.write(" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n")
file.write(" }\n")
file.write(" #end\n")
file.write("}\n\n")
file.write("object{\n")
file.write("mockup1\n")
file.write("rotate <0, 0, degrees(face_ang)>\n")
file.write("}\n")
file.write("#end\n")
#Use the macro
ngon = ob.pov.polytocircle_ngon
ngonR = ob.pov.polytocircle_ngonR
circleR = ob.pov.polytocircle_circleR
tabWrite("#declare %s = object { Shape_Polygon_To_Circle_Blending(%s, z, %.4f, %.4f, 2) rotate x*180 translate z*1\n"%(povdataname,ngon,ngonR,circleR))
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
############################################else try to export mesh
else:
try:
me = ob.to_mesh(scene, True, 'RENDER')
except:
# happens when curves cant be made into meshes because of no-data
continue
importance = ob.pov.importance_value
me_materials = me.materials
me_faces = me.tessfaces[:]
if not me or not me_faces:
continue
uv_textures = me.tessface_uv_textures
if len(uv_textures) > 0:
if me.uv_textures.active and uv_textures.active.data:
uv_layer = uv_textures.active.data
uv_layer = None
try:
#vcol_layer = me.vertex_colors.active.data
vcol_layer = me.tessface_vertex_colors.active.data
except AttributeError:
vcol_layer = None
faces_verts = [f.vertices[:] for f in me_faces]
faces_normals = [f.normal[:] for f in me_faces]
verts_normals = [v.normal[:] for v in me.vertices]
# quads incur an extra face
quadCount = sum(1 for f in faces_verts if len(f) == 4)
# Use named declaration to allow reference e.g. for baking. MR
file.write("\n")
tabWrite("#declare %s =\n" % povdataname)
tabWrite("mesh2 {\n")
tabWrite("vertex_vectors {\n")
tabWrite("%d" % len(me.vertices)) # vert count
tabStr = tab * tabLevel
for v in me.vertices:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
file.write(", ")
file.write("<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
#tabWrite("<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
file.write("\n")
tabWrite("}\n")
# Build unique Normal list
uniqueNormals = {}
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
# [-1] is a dummy index, use a list so we can modify in place
if f.use_smooth: # Use vertex normals
for v in fv:
key = verts_normals[v]
uniqueNormals[key] = [-1]
else: # Use face normal
key = faces_normals[fi]
uniqueNormals[key] = [-1]
tabWrite("normal_vectors {\n")
tabWrite("%d" % len(uniqueNormals)) # vert count
idx = 0
tabStr = tab * tabLevel
for no, index in uniqueNormals.items():
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f, %.6f>" % no) # vert count
file.write("<%.6f, %.6f, %.6f>" % no) # vert count
index[0] = idx
idx += 1
file.write("\n")
tabWrite("}\n")
# Vertex colors
vertCols = {} # Use for material colors also.
if uv_layer:
# Generate unique UV's
uniqueUVs = {}
#n = 0
for fi, uv in enumerate(uv_layer):
if len(faces_verts[fi]) == 4:
uvs = uv_layer[fi].uv[0], uv_layer[fi].uv[1], uv_layer[fi].uv[2], uv_layer[fi].uv[3]
uvs = uv_layer[fi].uv[0], uv_layer[fi].uv[1], uv_layer[fi].uv[2]
for uv in uvs:
uniqueUVs[uv[:]] = [-1]
tabWrite("uv_vectors {\n")
#print unique_uvs
tabWrite("%d" % len(uniqueUVs)) # vert count
idx = 0
tabStr = tab * tabLevel
for uv, index in uniqueUVs.items():
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f>" % uv)
file.write(", ")
file.write("<%.6f, %.6f>" % uv)
index[0] = idx
idx += 1
'''
# Just add 1 dummy vector, no real UV's
tabWrite('1') # vert count
file.write(',\n\t\t<0.0, 0.0>')
'''
file.write("\n")
tabWrite("}\n")
if me.vertex_colors:
#Write down vertex colors as a texture for each vertex
tabWrite("texture_list {\n")
tabWrite("%d\n" % (((len(me_faces)-quadCount) * 3 )+ quadCount * 4)) # works only with tris and quad mesh for now
VcolIdx=0
if comments:
file.write("\n //Vertex colors: one simple pigment texture per vertex\n")
for fi, f in enumerate(me_faces):
# annoying, index may be invalid
material_index = f.material_index
try:
material = me_materials[material_index]
except:
material = None
if material: #and material.use_vertex_color_paint: #Always use vertex color when there is some for now
col = vcol_layer[fi]
if len(faces_verts[fi]) == 4:
cols = col.color1, col.color2, col.color3, col.color4
cols = col.color1, col.color2, col.color3
for col in cols:
key = col[0], col[1], col[2], material_index # Material index!
VcolIdx+=1
vertCols[key] = [VcolIdx]
if linebreaksinlists:
tabWrite("texture {pigment{ color rgb <%6f,%6f,%6f> }}\n" % (col[0], col[1], col[2]))
else:
tabWrite("texture {pigment{ color rgb <%6f,%6f,%6f> }}" % (col[0], col[1], col[2]))
tabStr = tab * tabLevel
else:
if material:
# Multiply diffuse with SSS Color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in zip(material.subsurface_scattering.color[:], material.diffuse_color[:])]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], \
material_index
vertCols[key] = [-1]
else:
diffuse_color = material.diffuse_color[:]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], \
material_index
vertCols[key] = [-1]
tabWrite("\n}\n")
# Face indices
tabWrite("\nface_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
material_index = f.material_index
if len(fv) == 4:
indices = (0, 1, 2), (0, 2, 3)
else:
indices = ((0, 1, 2),)
if vcol_layer:
col = vcol_layer[fi]
if len(fv) == 4:
cols = col.color1, col.color2, col.color3, col.color4
cols = col.color1, col.color2, col.color3
if not me_materials or me_materials[material_index] is None: # No materials
for i1, i2, i3 in indices:
if linebreaksinlists:
file.write(",\n")
# vert count
file.write(tabStr + "<%d,%d,%d>" % (fv[i1], fv[i2], fv[i3]))
else:
file.write(", ")
file.write("<%d,%d,%d>" % (fv[i1], fv[i2], fv[i3])) # vert count
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
material = me_materials[material_index]
for i1, i2, i3 in indices:
if me.vertex_colors: #and material.use_vertex_color_paint:
# Color per vertex - vertex color
col1 = cols[i1]
col2 = cols[i2]
col3 = cols[i3]
ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
else:
# Color per material - flat material color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in zip(material.subsurface_scattering.color[:], material.diffuse_color[:])]
else:
diffuse_color = material.diffuse_color[:]
ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], \
diffuse_color[2], f.material_index][0]
# ci are zero based index so we'll subtract 1 from them
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>, %d,%d,%d" % \
(fv[i1], fv[i2], fv[i3], ci1-1, ci2-1, ci3-1)) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>, %d,%d,%d" % \
(fv[i1], fv[i2], fv[i3], ci1-1, ci2-1, ci3-1)) # vert count
file.write("\n")
tabWrite("}\n")
# normal_indices indices
tabWrite("normal_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):
if len(fv) == 4:
indices = (0, 1, 2), (0, 2, 3)
else:
indices = ((0, 1, 2),)
if me_faces[fi].use_smooth:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[i1]]][0],\
uniqueNormals[verts_normals[fv[i2]]][0],\
uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[i1]]][0],\
uniqueNormals[verts_normals[fv[i2]]][0],\
uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
Maurice Raybaud
committed
else:
idx = uniqueNormals[faces_normals[fi]][0]
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" % (idx, idx, idx)) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>" % (idx, idx, idx)) # vert count
file.write("\n")
tabWrite("}\n")
if uv_layer:
tabWrite("uv_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):
if len(fv) == 4:
indices = (0, 1, 2), (0, 2, 3)
else:
indices = ((0, 1, 2),)
Maurice Raybaud
committed
uv = uv_layer[fi]
if len(faces_verts[fi]) == 4:
uvs = uv.uv[0][:], uv.uv[1][:], uv.uv[2][:], uv.uv[3][:]
Maurice Raybaud
committed
else:
uvs = uv.uv[0][:], uv.uv[1][:], uv.uv[2][:]
for i1, i2, i3 in indices:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" % (
uniqueUVs[uvs[i1]][0],\
uniqueUVs[uvs[i2]][0],\
uniqueUVs[uvs[i3]][0]))
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
file.write(", ")
file.write("<%d,%d,%d>" % (
uniqueUVs[uvs[i1]][0],\
uniqueUVs[uvs[i2]][0],\
uniqueUVs[uvs[i3]][0]))
file.write("\n")
tabWrite("}\n")
if me.materials:
try:
material = me.materials[0] # dodgy
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#Importance for radiosity sampling added here:
tabWrite("radiosity { \n")
tabWrite("importance %3g \n" % importance)
tabWrite("}\n")
tabWrite("}\n") # End of mesh block
else:
# No vertex colors, so write material colors as vertex colors
for i, material in enumerate(me_materials):
if material:
# Multiply diffuse with SSS Color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in zip(material.subsurface_scattering.color[:], material.diffuse_color[:])]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
vertCols[key] = [-1]
else:
diffuse_color = material.diffuse_color[:]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
vertCols[key] = [-1]
idx = 0
LocalMaterialNames = []
for col, index in vertCols.items():
#if me_materials:
mater = me_materials[col[3]]
if me_materials is None: #XXX working?
material_finish = DEF_MAT_NAME # not working properly,
trans = 0.0
Maurice Raybaud
committed
shading.writeTextureInfluence(mater, materialNames,
LocalMaterialNames,
path_image, imageFormat,
imgMap, imgMapTransforms,
Maurice Raybaud
committed
tabWrite,
Maurice Raybaud
committed
safety, col, os, preview_dir, unpacked_images)
###################################################################
index[0] = idx
# Vert Colors
tabWrite("texture_list {\n")
# In case there's is no material slot, give at least one texture
#(an empty one so it uses pov default)
if len(vertCols)==0:
file.write(tabStr + "1")
file.write(tabStr + "%s" % (len(vertCols))) # vert count
# below "material" alias, changed to ob.active_material
# because variable referenced before assignment
if ob.active_material is not None:
if material.pov.replacement_text != "":
file.write("\n")
file.write(" texture{%s}\n" % material.pov.replacement_text)
Maurice Raybaud
committed
else:
# Loop through declared materials list
for cMN in LocalMaterialNames:
if material != "Default":
file.write("\n texture{MAT_%s}\n" % cMN)
#use string_strip_hyphen(materialNames[material]))
#or Something like that to clean up the above?
file.write(" texture{}\n")
tabWrite("}\n")
# Face indices
tabWrite("face_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
material_index = f.material_index
indices = (0, 1, 2), (0, 2, 3)
Maurice Raybaud
committed
else:
indices = ((0, 1, 2),)
if vcol_layer:
col = vcol_layer[fi]
if len(fv) == 4:
cols = col.color1, col.color2, col.color3, col.color4
cols = col.color1, col.color2, col.color3
if not me_materials or me_materials[material_index] is None: # No materials
for i1, i2, i3 in indices:
if linebreaksinlists:
file.write(",\n")
# vert count
file.write(tabStr + "<%d,%d,%d>" % (fv[i1], fv[i2], fv[i3]))
file.write(", ")
file.write("<%d,%d,%d>" % (fv[i1], fv[i2], fv[i3])) # vert count
Maurice Raybaud
committed
else:
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
material = me_materials[material_index]
for i1, i2, i3 in indices:
if me.vertex_colors: #and material.use_vertex_color_paint:
# Color per vertex - vertex color
col1 = cols[i1]
col2 = cols[i2]
col3 = cols[i3]
ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
else:
# Color per material - flat material color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in
zip(material.subsurface_scattering.color[:],
material.diffuse_color[:])]
else:
diffuse_color = material.diffuse_color[:]
ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], \
diffuse_color[2], f.material_index][0]
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>, %d,%d,%d" % \
(fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>, %d,%d,%d" % \
(fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
Maurice Raybaud
committed
file.write("\n")
tabWrite("}\n")
Maurice Raybaud
committed
# normal_indices indices
tabWrite("normal_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):
Maurice Raybaud
committed
if len(fv) == 4:
indices = (0, 1, 2), (0, 2, 3)
else:
indices = ((0, 1, 2),)
for i1, i2, i3 in indices:
if me_faces[fi].use_smooth:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[i1]]][0],\
uniqueNormals[verts_normals[fv[i2]]][0],\
uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[i1]]][0],\
uniqueNormals[verts_normals[fv[i2]]][0],\
uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
idx = uniqueNormals[faces_normals[fi]][0]
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" % (idx, idx, idx)) # vertcount
else:
file.write(", ")
file.write("<%d,%d,%d>" % (idx, idx, idx)) # vert count
file.write("\n")
tabWrite("}\n")
if uv_layer:
tabWrite("uv_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
if len(fv) == 4:
indices = (0, 1, 2), (0, 2, 3)
else:
indices = ((0, 1, 2),)
uv = uv_layer[fi]
if len(faces_verts[fi]) == 4:
uvs = uv.uv[0][:], uv.uv[1][:], uv.uv[2][:], uv.uv[3][:]
else:
uvs = uv.uv[0][:], uv.uv[1][:], uv.uv[2][:]
for i1, i2, i3 in indices:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" % (
uniqueUVs[uvs[i1]][0],\
uniqueUVs[uvs[i2]][0],\
uniqueUVs[uvs[i3]][0]))
else:
file.write(", ")
file.write("<%d,%d,%d>" % (
uniqueUVs[uvs[i1]][0],\
uniqueUVs[uvs[i2]][0],\
uniqueUVs[uvs[i3]][0]))
file.write("\n")
tabWrite("}\n")
if me.materials:
try:
material = me.materials[0] # dodgy
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#Importance for radiosity sampling added here:
tabWrite("radiosity { \n")
tabWrite("importance %3g \n" % importance)
tabWrite("}\n")
tabWrite("}\n") # End of mesh block
bpy.data.meshes.remove(me)
Bastien Montagne
committed
for data_name, inst in data_ref.items():
for ob_name, matrix_str in inst:
tabWrite("//----Blender Object Name:%s----\n" % ob_name)
tabWrite("object { \n")
tabWrite("%s\n" % data_name)
tabWrite("%s\n" % matrix_str)
tabWrite("}\n")
render = scene.render
matrix = global_matrix * camera.matrix_world
#############Maurice####################################
#These lines added to get sky gradient (visible with PNG output)
if world:
#For simple flat background:
if not world.use_sky_blend:
Bastien Montagne
committed
# Non fully transparent background could premultiply alpha and avoid anti-aliasing
# display issue:
if render.alpha_mode == 'TRANSPARENT':
Bastien Montagne
committed
tabWrite("background {rgbt<%.3g, %.3g, %.3g, 0.75>}\n" % \
(world.horizon_color[:]))
#Currently using no alpha with Sky option:
elif render.alpha_mode == 'SKY':
tabWrite("background {rgbt<%.3g, %.3g, %.3g, 0>}\n" % (world.horizon_color[:]))
# XXX Does not exists anymore
#else:
#tabWrite("background {rgbt<%.3g, %.3g, %.3g, 1>}\n" % (world.horizon_color[:]))
for t in world.texture_slots: # risk to write several sky_spheres but maybe ok.
if t and t.texture.type is not None:
Bastien Montagne
committed
# XXX No enable checkbox for world textures yet (report it?)
#if t and t.texture.type == 'IMAGE' and t.use:
if t and t.texture.type == 'IMAGE':
if t.texture.image.filepath != image_filename:
t.texture.image.filepath = image_filename
if image_filename != "" and t.use_map_blend:
texturesBlend = image_filename
#colvalue = t.default_value
t_blend = t
Bastien Montagne
committed
Bastien Montagne
committed
# Commented below was an idea to make the Background image oriented as camera
# taken here:
#http://news.pov.org/pov.newusers/thread/%3Cweb.4a5cddf4e9c9822ba2f93e20@news.pov.org%3E/
Bastien Montagne
committed
# Replace 4/3 by the ratio of each image found by some custom or existing
# function
#mappingBlend = (" translate <%.4g,%.4g,%.4g> rotate z*degrees" \
# "(atan((camLocation - camLookAt).x/(camLocation - " \
# "camLookAt).y)) rotate x*degrees(atan((camLocation - " \
# "camLookAt).y/(camLocation - camLookAt).z)) rotate y*" \
# "degrees(atan((camLocation - camLookAt).z/(camLocation - " \
# "camLookAt).x)) scale <%.4g,%.4g,%.4g>b" % \
# (t_blend.offset.x / 10 , t_blend.offset.y / 10 ,
# t_blend.offset.z / 10, t_blend.scale.x ,
# t_blend.scale.y , t_blend.scale.z))
#using camera rotation valuesdirectly from blender seems much easier
if t_blend.texture_coords == 'ANGMAP':
mappingBlend = ""
Maurice Raybaud
committed
else:
# POV-Ray "scale" is not a number of repetitions factor, but its
# inverse, a standard scale factor.
# 0.5 Offset is needed relatively to scale because center of the
# UV scale is 0.5,0.5 in blender and 0,0 in POV
# Further Scale by 2 and translate by -1 are
# required for the sky_sphere not to repeat
mappingBlend = "scale 2 scale <%.4g,%.4g,%.4g> translate -1 " \
"translate <%.4g,%.4g,%.4g> rotate<0,0,0> " % \
((1.0 / t_blend.scale.x),
(1.0 / t_blend.scale.y),
(1.0 / t_blend.scale.z),
0.5-(0.5/t_blend.scale.x)- t_blend.offset.x,
0.5-(0.5/t_blend.scale.y)- t_blend.offset.y,
t_blend.offset.z)
Bastien Montagne
committed
# The initial position and rotation of the pov camera is probably creating
# the rotation offset should look into it someday but at least background
# won't rotate with the camera now.
# Putting the map on a plane would not introduce the skysphere distortion and