Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
bl_info = {
'name': "LoopTools",
'author': "Bart Crouch",
'version': (4, 0, 0),
'blender': (2, 6, 3),
'location': "View3D > Toolbar and View3D > Specials (W-key)",
'warning': "",
'description': "Mesh modelling toolkit. Several tools to aid modelling",
'wiki_url': "http://wiki.blender.org/index.php/Extensions:2.6/Py/"\
"Scripts/Modeling/LoopTools",
'tracker_url': "http://projects.blender.org/tracker/index.php?"\
"func=detail&aid=26189",
'category': 'Mesh'}
import bmesh
import bpy
import collections
import mathutils
import math
##########################################
####### General functions ################
##########################################
# used by all tools to improve speed on reruns
looptools_cache = {}
# force a full recalculation next time
def cache_delete(tool):
if tool in looptools_cache:
del looptools_cache[tool]
# check cache for stored information
def cache_read(tool, object, bm, input_method, boundaries):
# current tool not cached yet
if tool not in looptools_cache:
return(False, False, False, False, False)
# check if selected object didn't change
if object.name != looptools_cache[tool]["object"]:
return(False, False, False, False, False)
# check if input didn't change
if input_method != looptools_cache[tool]["input_method"]:
return(False, False, False, False, False)
if boundaries != looptools_cache[tool]["boundaries"]:
return(False, False, False, False, False)
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
and mod.type == 'MIRROR']
if modifiers != looptools_cache[tool]["modifiers"]:
return(False, False, False, False, False)
input = [v.index for v in bm.verts if v.select and not v.hide]
if input != looptools_cache[tool]["input"]:
return(False, False, False, False, False)
# reading values
single_loops = looptools_cache[tool]["single_loops"]
loops = looptools_cache[tool]["loops"]
derived = looptools_cache[tool]["derived"]
mapping = looptools_cache[tool]["mapping"]
return(True, single_loops, loops, derived, mapping)
# store information in the cache
def cache_write(tool, object, bm, input_method, boundaries, single_loops,
loops, derived, mapping):
# clear cache of current tool
if tool in looptools_cache:
del looptools_cache[tool]
# prepare values to be saved to cache
input = [v.index for v in bm.verts if v.select and not v.hide]
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
and mod.type == 'MIRROR']
# update cache
looptools_cache[tool] = {"input": input, "object": object.name,
"input_method": input_method, "boundaries": boundaries,
"single_loops": single_loops, "loops": loops,
"derived": derived, "mapping": mapping, "modifiers": modifiers}
# calculates natural cubic splines through all given knots
def calculate_cubic_splines(bm_mod, tknots, knots):
# hack for circular loops
if knots[0] == knots[-1] and len(knots) > 1:
circular = True
k_new1 = []
for k in range(-1, -5, -1):
if k - 1 < -len(knots):
k += len(knots)
k_new1.append(knots[k-1])
k_new2 = []
for k in range(4):
if k + 1 > len(knots) - 1:
k -= len(knots)
k_new2.append(knots[k+1])
for k in k_new1:
knots.insert(0, k)
for k in k_new2:
knots.append(k)
t_new1 = []
total1 = 0
for t in range(-1, -5, -1):
if t - 1 < -len(tknots):
t += len(tknots)
total1 += tknots[t] - tknots[t-1]
t_new1.append(tknots[0] - total1)
t_new2 = []
total2 = 0
for t in range(4):
if t + 1 > len(tknots) - 1:
t -= len(tknots)
total2 += tknots[t+1] - tknots[t]
t_new2.append(tknots[-1] + total2)
for t in t_new1:
tknots.insert(0, t)
for t in t_new2:
tknots.append(t)
else:
circular = False
# end of hack
n = len(knots)
if n < 2:
return False
x = tknots[:]
locs = [bm_mod.verts[k].co[:] for k in knots]
result = []
for j in range(3):
a = []
for i in locs:
a.append(i[j])
h = []
for i in range(n-1):
if x[i+1] - x[i] == 0:
h.append(1e-8)
else:
h.append(x[i+1] - x[i])
q = [False]
for i in range(1, n-1):
q.append(3/h[i]*(a[i+1]-a[i]) - 3/h[i-1]*(a[i]-a[i-1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1, n-1):
l.append(2*(x[i+1]-x[i-1]) - h[i-1]*u[i-1])
if l[i] == 0:
l[i] = 1e-8
u.append(h[i] / l[i])
z.append((q[i] - h[i-1] * z[i-1]) / l[i])
l.append(1.0)
z.append(0.0)
b = [False for i in range(n-1)]
c = [False for i in range(n)]
d = [False for i in range(n-1)]
c[n-1] = 0.0
for i in range(n-2, -1, -1):
c[i] = z[i] - u[i]*c[i+1]
b[i] = (a[i+1]-a[i])/h[i] - h[i]*(c[i+1]+2*c[i])/3
d[i] = (c[i+1]-c[i]) / (3*h[i])
for i in range(n-1):
result.append([a[i], b[i], c[i], d[i], x[i]])
splines = []
for i in range(len(knots)-1):
splines.append([result[i], result[i+n-1], result[i+(n-1)*2]])
if circular: # cleaning up after hack
knots = knots[4:-4]
tknots = tknots[4:-4]
return(splines)
# calculates linear splines through all given knots
def calculate_linear_splines(bm_mod, tknots, knots):
splines = []
for i in range(len(knots)-1):
a = bm_mod.verts[knots[i]].co
b = bm_mod.verts[knots[i+1]].co
d = b-a
t = tknots[i]
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
u = tknots[i+1]-t
splines.append([a, d, t, u]) # [locStart, locDif, tStart, tDif]
return(splines)
# calculate a best-fit plane to the given vertices
def calculate_plane(bm_mod, loop, method="best_fit", object=False):
# getting the vertex locations
locs = [bm_mod.verts[v].co.copy() for v in loop[0]]
# calculating the center of masss
com = mathutils.Vector()
for loc in locs:
com += loc
com /= len(locs)
x, y, z = com
if method == 'best_fit':
# creating the covariance matrix
mat = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
))
for loc in locs:
mat[0][0] += (loc[0]-x)**2
mat[1][0] += (loc[0]-x)*(loc[1]-y)
mat[2][0] += (loc[0]-x)*(loc[2]-z)
mat[0][1] += (loc[1]-y)*(loc[0]-x)
mat[1][1] += (loc[1]-y)**2
mat[2][1] += (loc[1]-y)*(loc[2]-z)
mat[0][2] += (loc[2]-z)*(loc[0]-x)
mat[1][2] += (loc[2]-z)*(loc[1]-y)
mat[2][2] += (loc[2]-z)**2
# calculating the normal to the plane
normal = False
try:
mat.invert()
except:
if sum(mat[0]) == 0.0:
normal = mathutils.Vector((1.0, 0.0, 0.0))
elif sum(mat[1]) == 0.0:
normal = mathutils.Vector((0.0, 1.0, 0.0))
elif sum(mat[2]) == 0.0:
normal = mathutils.Vector((0.0, 0.0, 1.0))
if not normal:
# warning! this is different from .normalize()
itermax = 500
iter = 0
vec = mathutils.Vector((1.0, 1.0, 1.0))
vec2 = (mat * vec)/(mat * vec).length
while vec != vec2 and iter<itermax:
iter+=1
vec = vec2
vec2 = mat * vec
if vec2.length != 0:
vec2 /= vec2.length
if vec2.length == 0:
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
normal = vec2
elif method == 'normal':
# averaging the vertex normals
v_normals = [bm_mod.verts[v].normal for v in loop[0]]
normal = mathutils.Vector()
for v_normal in v_normals:
normal += v_normal
normal /= len(v_normals)
normal.normalize()
elif method == 'view':
# calculate view normal
rotation = bpy.context.space_data.region_3d.view_matrix.to_3x3().\
inverted()
normal = rotation * mathutils.Vector((0.0, 0.0, 1.0))
if object:
normal = object.matrix_world.inverted().to_euler().to_matrix() * \
normal
return(com, normal)
# calculate splines based on given interpolation method (controller function)
def calculate_splines(interpolation, bm_mod, tknots, knots):
if interpolation == 'cubic':
splines = calculate_cubic_splines(bm_mod, tknots, knots[:])
else: # interpolations == 'linear'
splines = calculate_linear_splines(bm_mod, tknots, knots[:])
return(splines)
# check loops and only return valid ones
def check_loops(loops, mapping, bm_mod):
valid_loops = []
for loop, circular in loops:
# loop needs to have at least 3 vertices
if len(loop) < 3:
continue
# loop needs at least 1 vertex in the original, non-mirrored mesh
if mapping:
all_virtual = True
for vert in loop:
if mapping[vert] > -1:
all_virtual = False
break
if all_virtual:
continue
# vertices can not all be at the same location
stacked = True
for i in range(len(loop) - 1):
if (bm_mod.verts[loop[i]].co - \
bm_mod.verts[loop[i+1]].co).length > 1e-6:
stacked = False
break
if stacked:
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
return(valid_loops)
# input: bmesh, output: dict with the edge-key as key and face-index as value
def dict_edge_faces(bm):
edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if \
not edge.hide])
for face in bm.faces:
if face.hide:
continue
for key in face_edgekeys(face):
edge_faces[key].append(face.index)
return(edge_faces)
# input: bmesh (edge-faces optional), output: dict with face-face connections
def dict_face_faces(bm, edge_faces=False):
if not edge_faces:
edge_faces = dict_edge_faces(bm)
connected_faces = dict([[face.index, []] for face in bm.faces if \
not face.hide])
for face in bm.faces:
if face.hide:
continue
for edge_key in face_edgekeys(face):
for connected_face in edge_faces[edge_key]:
if connected_face == face.index:
continue
connected_faces[face.index].append(connected_face)
return(connected_faces)
# input: bmesh, output: dict with the vert index as key and edge-keys as value
def dict_vert_edges(bm):
vert_edges = dict([[v.index, []] for v in bm.verts if not v.hide])
for edge in bm.edges:
if edge.hide:
continue
ek = edgekey(edge)
for vert in ek:
vert_edges[vert].append(ek)
return(vert_edges)
# input: bmesh, output: dict with the vert index as key and face index as value
def dict_vert_faces(bm):
vert_faces = dict([[v.index, []] for v in bm.verts if not v.hide])
for face in bm.faces:
if not face.hide:
for vert in face.verts:
vert_faces[vert.index].append(face.index)
return(vert_faces)
# input: list of edge-keys, output: dictionary with vertex-vertex connections
def dict_vert_verts(edge_keys):
# create connection data
vert_verts = {}
for ek in edge_keys:
for i in range(2):
if ek[i] in vert_verts:
vert_verts[ek[i]].append(ek[1-i])
else:
vert_verts[ek[i]] = [ek[1-i]]
return(vert_verts)
# return the edgekey ([v1.index, v2.index]) of a bmesh edge
def edgekey(edge):
return((edge.verts[0].index, edge.verts[1].index))
# returns the edgekeys of a bmesh face
def face_edgekeys(face):
return([(edge.verts[0].index, edge.verts[1].index) for \
edge in face.edges])
# calculate input loops
def get_connected_input(object, bm, scene, input):
# get mesh with modifiers applied
derived, bm_mod = get_derived_bmesh(object, bm, scene)
# calculate selected loops
edge_keys = [edgekey(edge) for edge in bm_mod.edges if \
edge.select and not edge.hide]
loops = get_connected_selections(edge_keys)
# if only selected loops are needed, we're done
if input == 'selected':
return(derived, bm_mod, loops)
# elif input == 'all':
loops = get_parallel_loops(bm_mod, loops)
return(derived, bm_mod, loops)
# sorts all edge-keys into a list of loops
def get_connected_selections(edge_keys):
# create connection data
vert_verts = dict_vert_verts(edge_keys)
# find loops consisting of connected selected edges
loops = []
while len(vert_verts) > 0:
loop = [iter(vert_verts.keys()).__next__()]
growing = True
flipped = False
# extend loop
while growing:
# no more connection data for current vertex
if loop[-1] not in vert_verts:
if not flipped:
loop.reverse()
flipped = True
else:
growing = False
else:
extended = False
for i, next_vert in enumerate(vert_verts[loop[-1]]):
if next_vert not in loop:
vert_verts[loop[-1]].pop(i)
if len(vert_verts[loop[-1]]) == 0:
del vert_verts[loop[-1]]
# remove connection both ways
if next_vert in vert_verts:
if len(vert_verts[next_vert]) == 1:
del vert_verts[next_vert]
else:
vert_verts[next_vert].remove(loop[-1])
loop.append(next_vert)
extended = True
break
if not extended:
# found one end of the loop, continue with next
if not flipped:
loop.reverse()
flipped = True
# found both ends of the loop, stop growing
else:
growing = False
# check if loop is circular
if loop[0] in vert_verts:
if loop[-1] in vert_verts[loop[0]]:
# is circular
if len(vert_verts[loop[0]]) == 1:
del vert_verts[loop[0]]
else:
vert_verts[loop[0]].remove(loop[-1])
if len(vert_verts[loop[-1]]) == 1:
del vert_verts[loop[-1]]
else:
vert_verts[loop[-1]].remove(loop[0])
loop = [loop, True]
else:
# not circular
loop = [loop, False]
else:
# not circular
loop = [loop, False]
loops.append(loop)
return(loops)
# get the derived mesh data, if there is a mirror modifier
def get_derived_bmesh(object, bm, scene):
# check for mirror modifiers
if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
derived = True
# disable other modifiers
show_viewport = [mod.name for mod in object.modifiers if \
mod.show_viewport]
for mod in object.modifiers:
if mod.type != 'MIRROR':
mod.show_viewport = False
# get derived mesh
bm_mod = bmesh.new()
mesh_mod = object.to_mesh(scene, True, 'PREVIEW')
bm_mod.from_mesh(mesh_mod)
bpy.context.blend_data.meshes.remove(mesh_mod)
# re-enable other modifiers
for mod_name in show_viewport:
object.modifiers[mod_name].show_viewport = True
# no mirror modifiers, so no derived mesh necessary
else:
derived = False
bm_mod = bm
return(derived, bm_mod)
# return a mapping of derived indices to indices
def get_mapping(derived, bm, bm_mod, single_vertices, full_search, loops):
if not derived:
return(False)
if full_search:
verts = [v for v in bm.verts if not v.hide]
else:
verts = [v for v in bm.verts if v.select and not v.hide]
# non-selected vertices around single vertices also need to be mapped
if single_vertices:
mapping = dict([[vert, -1] for vert in single_vertices])
verts_mod = [bm_mod.verts[vert] for vert in single_vertices]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
break
real_singles = [v_real for v_real in mapping.values() if v_real>-1]
verts_indices = [vert.index for vert in verts]
for face in [face for face in bm.faces if not face.select \
and not face.hide]:
for vert in face.verts:
if vert.index in real_singles:
for v in face.verts:
if not v.index in verts_indices:
if v not in verts:
verts.append(v)
break
# create mapping of derived indices to indices
mapping = dict([[vert, -1] for loop in loops for vert in loop[0]])
if single_vertices:
for single in single_vertices:
mapping[single] = -1
verts_mod = [bm_mod.verts[i] for i in mapping.keys()]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
verts_mod.remove(v_mod)
break
return(mapping)
# returns a list of all loops parallel to the input, input included
def get_parallel_loops(bm_mod, loops):
# get required dictionaries
edge_faces = dict_edge_faces(bm_mod)
connected_faces = dict_face_faces(bm_mod, edge_faces)
# turn vertex loops into edge loops
edgeloops = []
for loop in loops:
edgeloop = [[sorted([loop[0][i], loop[0][i+1]]) for i in \
range(len(loop[0])-1)], loop[1]]
if loop[1]: # circular
edgeloop[0].append(sorted([loop[0][-1], loop[0][0]]))
edgeloops.append(edgeloop[:])
# variables to keep track while iterating
all_edgeloops = []
has_branches = False
for loop in edgeloops:
# initialise with original loop
all_edgeloops.append(loop[0])
newloops = [loop[0]]
verts_used = []
for edge in loop[0]:
if edge[0] not in verts_used:
verts_used.append(edge[0])
if edge[1] not in verts_used:
verts_used.append(edge[1])
# find parallel loops
while len(newloops) > 0:
side_a = []
side_b = []
for i in newloops[-1]:
i = tuple(i)
forbidden_side = False
if not i in edge_faces:
# weird input with branches
has_branches = True
break
for face in edge_faces[i]:
if len(side_a) == 0 and forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
elif side_a[-1] in connected_faces[face] and \
forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
if len(side_b) == 0 and forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
elif side_b[-1] in connected_faces[face] and \
forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
if has_branches:
# weird input with branches
break
newloops.pop(-1)
sides = []
if side_a:
sides.append(side_a)
if side_b:
sides.append(side_b)
for side in sides:
extraloop = []
for fi in side:
for key in face_edgekeys(bm_mod.faces[fi]):
if key[0] not in verts_used and key[1] not in \
verts_used:
extraloop.append(key)
break
if extraloop:
for key in extraloop:
for new_vert in key:
if new_vert not in verts_used:
verts_used.append(new_vert)
newloops.append(extraloop)
all_edgeloops.append(extraloop)
# input contains branches, only return selected loop
if has_branches:
return(loops)
# change edgeloops into normal loops
loops = []
for edgeloop in all_edgeloops:
loop = []
# grow loop by comparing vertices between consecutive edge-keys
for i in range(len(edgeloop)-1):
for vert in range(2):
if edgeloop[i][vert] in edgeloop[i+1]:
loop.append(edgeloop[i][vert])
break
if loop:
# add starting vertex
for vert in range(2):
if edgeloop[0][vert] != loop[0]:
loop = [edgeloop[0][vert]] + loop
break
# add ending vertex
for vert in range(2):
if edgeloop[-1][vert] != loop[-1]:
loop.append(edgeloop[-1][vert])
break
# check if loop is circular
if loop[0] == loop[-1]:
circular = True
loop = loop[:-1]
else:
circular = False
loops.append([loop, circular])
return(loops)
# gather initial data
def initialise():
global_undo = bpy.context.user_preferences.edit.use_global_undo
bpy.context.user_preferences.edit.use_global_undo = False
object = bpy.context.active_object
bm = bmesh.from_edit_mesh(object.data)
return(global_undo, object, bm)
# move the vertices to their new locations
def move_verts(object, bm, mapping, move, influence):
for loop in move:
for index, loc in loop:
if mapping:
if mapping[index] == -1:
continue
else:
index = mapping[index]
if influence >= 0:
bm.verts[index].co = loc*(influence/100) + \
bm.verts[index].co*((100-influence)/100)
else:
bm.verts[index].co = loc
bm.normal_update()
object.data.update()
# load custom tool settings
def settings_load(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(self, key, getattr(lt, tool + "_" + key))
# store custom tool settings
def settings_write(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(lt, tool + "_" + key, getattr(self, key))
# clean up and set settings back to original state
def terminate(global_undo):
bpy.context.user_preferences.edit.use_global_undo = global_undo
##########################################
####### Bridge functions #################
##########################################
# calculate a cubic spline through the middle section of 4 given coordinates
def bridge_calculate_cubic_spline(bm, coordinates):
result = []
x = [0, 1, 2, 3]
for j in range(3):
a = []
for i in coordinates:
a.append(float(i[j]))
h = []
for i in range(3):
h.append(x[i+1]-x[i])
q = [False]
for i in range(1,3):
q.append(3.0/h[i]*(a[i+1]-a[i])-3.0/h[i-1]*(a[i]-a[i-1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1,3):
l.append(2.0*(x[i+1]-x[i-1])-h[i-1]*u[i-1])
u.append(h[i]/l[i])
z.append((q[i]-h[i-1]*z[i-1])/l[i])
l.append(1.0)
z.append(0.0)
b = [False for i in range(3)]
c = [False for i in range(4)]
d = [False for i in range(3)]
c[3] = 0.0
for i in range(2,-1,-1):
c[i] = z[i]-u[i]*c[i+1]
b[i] = (a[i+1]-a[i])/h[i]-h[i]*(c[i+1]+2.0*c[i])/3.0
d[i] = (c[i+1]-c[i])/(3.0*h[i])
for i in range(3):
result.append([a[i], b[i], c[i], d[i], x[i]])
spline = [result[1], result[4], result[7]]
return(spline)
# return a list with new vertex location vectors, a list with face vertex
# integers, and the highest vertex integer in the virtual mesh
def bridge_calculate_geometry(bm, lines, vertex_normals, segments,
interpolation, cubic_strength, min_width, max_vert_index):
new_verts = []
faces = []
# calculate location based on interpolation method
def get_location(line, segment, splines):
v1 = bm.verts[lines[line][0]].co
v2 = bm.verts[lines[line][1]].co
if interpolation == 'linear':
return v1 + (segment/segments) * (v2-v1)
else: # interpolation == 'cubic'
m = (segment/segments)
ax,bx,cx,dx,tx = splines[line][0]
x = ax+bx*m+cx*m**2+dx*m**3
ay,by,cy,dy,ty = splines[line][1]
y = ay+by*m+cy*m**2+dy*m**3
az,bz,cz,dz,tz = splines[line][2]
z = az+bz*m+cz*m**2+dz*m**3
return mathutils.Vector((x, y, z))
# no interpolation needed
if segments == 1:
for i, line in enumerate(lines):
if i < len(lines)-1:
faces.append([line[0], lines[i+1][0], lines[i+1][1], line[1]])
# more than 1 segment, interpolate
else:
# calculate splines (if necessary) once, so no recalculations needed
if interpolation == 'cubic':
splines = []
for line in lines:
v1 = bm.verts[line[0]].co
v2 = bm.verts[line[1]].co
size = (v2-v1).length * cubic_strength
splines.append(bridge_calculate_cubic_spline(bm,
[v1+size*vertex_normals[line[0]], v1, v2,
v2+size*vertex_normals[line[1]]]))
else:
splines = False
# create starting situation
virtual_width = [(bm.verts[lines[i][0]].co -
bm.verts[lines[i+1][0]].co).length for i
in range(len(lines)-1)]
new_verts = [get_location(0, seg, splines) for seg in range(1,
segments)]
first_line_indices = [i for i in range(max_vert_index+1,
max_vert_index+segments)]
prev_verts = new_verts[:] # vertex locations of verts on previous line
prev_vert_indices = first_line_indices[:]
max_vert_index += segments - 1 # highest vertex index in virtual mesh
next_verts = [] # vertex locations of verts on current line
next_vert_indices = []
for i, line in enumerate(lines):
if i < len(lines)-1:
v1 = line[0]
v2 = lines[i+1][0]
end_face = True
for seg in range(1, segments):
loc1 = prev_verts[seg-1]
loc2 = get_location(i+1, seg, splines)
if (loc1-loc2).length < (min_width/100)*virtual_width[i] \
and line[1]==lines[i+1][1]:
# triangle, no new vertex
faces.append([v1, v2, prev_vert_indices[seg-1],
prev_vert_indices[seg-1]])
next_verts += prev_verts[seg-1:]
next_vert_indices += prev_vert_indices[seg-1:]
end_face = False
break
else:
if i == len(lines)-2 and lines[0] == lines[-1]:
# quad with first line, no new vertex
faces.append([v1, v2, first_line_indices[seg-1],
prev_vert_indices[seg-1]])
v2 = first_line_indices[seg-1]
v1 = prev_vert_indices[seg-1]
else:
# quad, add new vertex
max_vert_index += 1
faces.append([v1, v2, max_vert_index,
prev_vert_indices[seg-1]])
v2 = max_vert_index
v1 = prev_vert_indices[seg-1]
new_verts.append(loc2)
next_verts.append(loc2)
next_vert_indices.append(max_vert_index)
if end_face:
faces.append([v1, v2, lines[i+1][1], line[1]])
prev_verts = next_verts[:]
prev_vert_indices = next_vert_indices[:]
next_verts = []
next_vert_indices = []
return(new_verts, faces, max_vert_index)
# calculate lines (list of lists, vertex indices) that are used for bridging
def bridge_calculate_lines(bm, loops, mode, twist, reverse):
lines = []
loop1, loop2 = [i[0] for i in loops]
loop1_circular, loop2_circular = [i[1] for i in loops]
circular = loop1_circular or loop2_circular
circle_full = False
# calculate loop centers
centers = []
for loop in [loop1, loop2]:
center = mathutils.Vector()
for vertex in loop:
center += bm.verts[vertex].co
center /= len(loop)
centers.append(center)
for i, loop in enumerate([loop1, loop2]):
for vertex in loop:
if bm.verts[vertex].co == centers[i]:
# prevent zero-length vectors in angle comparisons
centers[i] += mathutils.Vector((0.01, 0, 0))
break
center1, center2 = centers
# calculate the normals of the virtual planes that the loops are on
normals = []
normal_plurity = False
for i, loop in enumerate([loop1, loop2]):
# covariance matrix
mat = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0)))
x, y, z = centers[i]
for loc in [bm.verts[vertex].co for vertex in loop]:
mat[0][0] += (loc[0]-x)**2
mat[1][0] += (loc[0]-x)*(loc[1]-y)
mat[2][0] += (loc[0]-x)*(loc[2]-z)
mat[0][1] += (loc[1]-y)*(loc[0]-x)
mat[1][1] += (loc[1]-y)**2
mat[2][1] += (loc[1]-y)*(loc[2]-z)
mat[0][2] += (loc[2]-z)*(loc[0]-x)
mat[1][2] += (loc[2]-z)*(loc[1]-y)
mat[2][2] += (loc[2]-z)**2
# plane normal
normal = False
if sum(mat[0]) < 1e-6 or sum(mat[1]) < 1e-6 or sum(mat[2]) < 1e-6:
normal_plurity = True
try:
mat.invert()
except:
if sum(mat[0]) == 0:
normal = mathutils.Vector((1.0, 0.0, 0.0))
elif sum(mat[1]) == 0:
normal = mathutils.Vector((0.0, 1.0, 0.0))
elif sum(mat[2]) == 0:
normal = mathutils.Vector((0.0, 0.0, 1.0))
if not normal:
# warning! this is different from .normalize()
itermax = 500
iter = 0
vec = mathutils.Vector((1.0, 1.0, 1.0))
vec2 = (mat * vec)/(mat * vec).length
while vec != vec2 and iter<itermax:
iter+=1
vec = vec2
vec2 = mat * vec
if vec2.length != 0:
vec2 /= vec2.length
if vec2.length == 0:
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
normal = vec2
normals.append(normal)
# have plane normals face in the same direction (maximum angle: 90 degrees)
if ((center1 + normals[0]) - center2).length < \
((center1 - normals[0]) - center2).length:
normals[0].negate()
if ((center2 + normals[1]) - center1).length > \
((center2 - normals[1]) - center1).length:
normals[1].negate()
# rotation matrix, representing the difference between the plane normals
axis = normals[0].cross(normals[1])
axis = mathutils.Vector([loc if abs(loc) > 1e-8 else 0 for loc in axis])
if axis.angle(mathutils.Vector((0, 0, 1)), 0) > 1.5707964:
axis.negate()
angle = normals[0].dot(normals[1])
rotation_matrix = mathutils.Matrix.Rotation(angle, 4, axis)
# if circular, rotate loops so they are aligned
if circular:
# make sure loop1 is the circular one (or both are circular)
if loop2_circular and not loop1_circular:
loop1_circular, loop2_circular = True, False
loop1, loop2 = loop2, loop1
# match start vertex of loop1 with loop2
target_vector = bm.verts[loop2[0]].co - center2
dif_angles = [[(rotation_matrix * (bm.verts[vertex].co - center1)
).angle(target_vector, 0), False, i] for
i, vertex in enumerate(loop1)]
dif_angles.sort()
if len(loop1) != len(loop2):
angle_limit = dif_angles[0][0] * 1.2 # 20% margin
dif_angles = [[(bm.verts[loop2[0]].co - \
bm.verts[loop1[index]].co).length, angle, index] for \
angle, distance, index in dif_angles if angle <= angle_limit]
dif_angles.sort()
loop1 = loop1[dif_angles[0][2]:] + loop1[:dif_angles[0][2]]
# have both loops face the same way
if normal_plurity and not circular:
second_to_first, second_to_second, second_to_last = \
[(bm.verts[loop1[1]].co - center1).\
angle(bm.verts[loop2[i]].co - center2) for i in [0, 1, -1]]
last_to_first, last_to_second = [(bm.verts[loop1[-1]].co - \
center1).angle(bm.verts[loop2[i]].co - center2) for \
i in [0, 1]]
if (min(last_to_first, last_to_second)*1.1 < min(second_to_first, \
second_to_second)) or (loop2_circular and second_to_last*1.1 < \
min(second_to_first, second_to_second)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
else:
angle = (bm.verts[loop1[0]].co - center1).\
cross(bm.verts[loop1[1]].co - center1).angle(normals[0], 0)
target_angle = (bm.verts[loop2[0]].co - center2).\
cross(bm.verts[loop2[1]].co - center2).angle(normals[1], 0)
limit = 1.5707964 # 0.5*pi, 90 degrees
if not ((angle > limit and target_angle > limit) or \
(angle < limit and target_angle < limit)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
elif normals[0].angle(normals[1]) > limit:
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
# both loops have the same length
if len(loop1) == len(loop2):
# manual override
if twist:
if abs(twist) < len(loop1):
loop1 = loop1[twist:]+loop1[:twist]
if reverse:
loop1.reverse()
lines.append([loop1[0], loop2[0]])
for i in range(1, len(loop1)):
lines.append([loop1[i], loop2[i]])
# loops of different lengths
else:
# make loop1 longest loop
if len(loop2) > len(loop1):
loop1, loop2 = loop2, loop1
loop1_circular, loop2_circular = loop2_circular, loop1_circular
# manual override
if twist:
if abs(twist) < len(loop1):
loop1 = loop1[twist:]+loop1[:twist]
if reverse:
loop1.reverse()
# shortest angle difference doesn't always give correct start vertex
if loop1_circular and not loop2_circular:
shifting = 1
while shifting:
if len(loop1) - shifting < len(loop2):
shifting = False
break
to_last, to_first = [(rotation_matrix *
(bm.verts[loop1[-1]].co - center1)).angle((bm.\
verts[loop2[i]].co - center2), 0) for i in [-1, 0]]
if to_first < to_last:
loop1 = [loop1[-1]] + loop1[:-1]
shifting += 1
else:
shifting = False
break
# basic shortest side first
if mode == 'basic':
lines.append([loop1[0], loop2[0]])
for i in range(1, len(loop1)):
if i >= len(loop2) - 1:
# triangles
lines.append([loop1[i], loop2[-1]])
else:
# quads
lines.append([loop1[i], loop2[i]])
# shortest edge algorithm
else: # mode == 'shortest'
lines.append([loop1[0], loop2[0]])
prev_vert2 = 0
for i in range(len(loop1) -1):
if prev_vert2 == len(loop2) - 1 and not loop2_circular:
# force triangles, reached end of loop2
tri, quad = 0, 1
elif prev_vert2 == len(loop2) - 1 and loop2_circular:
# at end of loop2, but circular, so check with first vert
tri, quad = [(bm.verts[loop1[i+1]].co -
bm.verts[loop2[j]].co).length
for j in [prev_vert2, 0]]
circle_full = 2
elif len(loop1) - 1 - i == len(loop2) - 1 - prev_vert2 and \
not circle_full:
# force quads, otherwise won't make it to end of loop2
tri, quad = 1, 0
else:
# calculate if tri or quad gives shortest edge
tri, quad = [(bm.verts[loop1[i+1]].co -
bm.verts[loop2[j]].co).length
for j in range(prev_vert2, prev_vert2+2)]
# triangle
if tri < quad:
lines.append([loop1[i+1], loop2[prev_vert2]])
if circle_full == 2:
circle_full = False
# quad
elif not circle_full:
lines.append([loop1[i+1], loop2[prev_vert2+1]])
prev_vert2 += 1
# quad to first vertex of loop2
else:
lines.append([loop1[i+1], loop2[0]])
prev_vert2 = 0
circle_full = True
# final face for circular loops
if loop1_circular and loop2_circular:
lines.append([loop1[0], loop2[0]])
return(lines)
# calculate number of segments needed
def bridge_calculate_segments(bm, lines, loops, segments):
# return if amount of segments is set by user
if segments != 0:
return segments
# edge lengths
average_edge_length = [(bm.verts[vertex].co - \
bm.verts[loop[0][i+1]].co).length for loop in loops for \
i, vertex in enumerate(loop[0][:-1])]
# closing edges of circular loops
average_edge_length += [(bm.verts[loop[0][-1]].co - \
bm.verts[loop[0][0]].co).length for loop in loops if loop[1]]
# average lengths
average_edge_length = sum(average_edge_length) / len(average_edge_length)
average_bridge_length = sum([(bm.verts[v1].co - \
bm.verts[v2].co).length for v1, v2 in lines]) / len(lines)
segments = max(1, round(average_bridge_length / average_edge_length))
return(segments)
# return dictionary with vertex index as key, and the normal vector as value
def bridge_calculate_virtual_vertex_normals(bm, lines, loops, edge_faces,
edgekey_to_edge):
if not edge_faces: # interpolation isn't set to cubic
return False
# pity reduce() isn't one of the basic functions in python anymore
def average_vector_dictionary(dic):
for key, vectors in dic.items():
#if type(vectors) == type([]) and len(vectors) > 1:
if len(vectors) > 1:
average = mathutils.Vector()
for vector in vectors:
average += vector
average /= len(vectors)
dic[key] = [average]
return dic
# get all edges of the loop
edges = [[edgekey_to_edge[tuple(sorted([loops[j][0][i],
loops[j][0][i+1]]))] for i in range(len(loops[j][0])-1)] for \
j in [0,1]]
edges = edges[0] + edges[1]
for j in [0, 1]:
if loops[j][1]: # circular
edges.append(edgekey_to_edge[tuple(sorted([loops[j][0][0],
loops[j][0][-1]]))])
"""
calculation based on face topology (assign edge-normals to vertices)
edge_normal = face_normal x edge_vector
vertex_normal = average(edge_normals)
"""
vertex_normals = dict([(vertex, []) for vertex in loops[0][0]+loops[1][0]])
for edge in edges:
faces = edge_faces[edgekey(edge)] # valid faces connected to edge
if faces:
# get edge coordinates
v1, v2 = [bm.verts[edgekey(edge)[i]].co for i in [0,1]]
edge_vector = v1 - v2
if edge_vector.length < 1e-4:
# zero-length edge, vertices at same location
continue
edge_center = (v1 + v2) / 2
# average face coordinates, if connected to more than 1 valid face
if len(faces) > 1:
face_normal = mathutils.Vector()
face_center = mathutils.Vector()
for face in faces:
face_normal += face.normal
face_center += face.calc_center_median()
face_normal /= len(faces)
face_center /= len(faces)
else:
face_normal = faces[0].normal
face_center = faces[0].calc_center_median()
if face_normal.length < 1e-4:
# faces with a surface of 0 have no face normal
continue
# calculate virtual edge normal
edge_normal = edge_vector.cross(face_normal)
edge_normal.length = 0.01
if (face_center - (edge_center + edge_normal)).length > \
(face_center - (edge_center - edge_normal)).length:
# make normal face the correct way
edge_normal.negate()
edge_normal.normalize()
# add virtual edge normal as entry for both vertices it connects
for vertex in edgekey(edge):
vertex_normals[vertex].append(edge_normal)
"""
calculation based on connection with other loop (vertex focused method)
- used for vertices that aren't connected to any valid faces
plane_normal = edge_vector x connection_vector
vertex_normal = plane_normal x edge_vector
"""
vertices = [vertex for vertex, normal in vertex_normals.items() if not \
normal]
if vertices:
# edge vectors connected to vertices
edge_vectors = dict([[vertex, []] for vertex in vertices])
for edge in edges:
for v in edgekey(edge):
if v in edge_vectors:
edge_vector = bm.verts[edgekey(edge)[0]].co - \
bm.verts[edgekey(edge)[1]].co
if edge_vector.length < 1e-4:
# zero-length edge, vertices at same location
continue
edge_vectors[v].append(edge_vector)
# connection vectors between vertices of both loops
connection_vectors = dict([[vertex, []] for vertex in vertices])
connections = dict([[vertex, []] for vertex in vertices])
for v1, v2 in lines:
if v1 in connection_vectors or v2 in connection_vectors:
new_vector = bm.verts[v1].co - bm.verts[v2].co
if new_vector.length < 1e-4:
# zero-length connection vector,
# vertices in different loops at same location
continue
if v1 in connection_vectors:
connection_vectors[v1].append(new_vector)
connections[v1].append(v2)
if v2 in connection_vectors:
connection_vectors[v2].append(new_vector)
connections[v2].append(v1)
connection_vectors = average_vector_dictionary(connection_vectors)
connection_vectors = dict([[vertex, vector[0]] if vector else \
[vertex, []] for vertex, vector in connection_vectors.items()])
for vertex, values in edge_vectors.items():
# vertex normal doesn't matter, just assign a random vector to it
if not connection_vectors[vertex]:
vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))]
continue
# calculate to what location the vertex is connected,
# used to determine what way to flip the normal
connected_center = mathutils.Vector()
for v in connections[vertex]:
connected_center += bm.verts[v].co
if len(connections[vertex]) > 1:
connected_center /= len(connections[vertex])
if len(connections[vertex]) == 0:
# shouldn't be possible, but better safe than sorry
vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))]
continue
# can't do proper calculations, because of zero-length vector
if not values:
if (connected_center - (bm.verts[vertex].co + \
connection_vectors[vertex])).length < (connected_center - \
(bm.verts[vertex].co - connection_vectors[vertex])).\
length:
connection_vectors[vertex].negate()
vertex_normals[vertex] = [connection_vectors[vertex].\
normalized()]
continue
# calculate vertex normals using edge-vectors,
# connection-vectors and the derived plane normal
for edge_vector in values:
plane_normal = edge_vector.cross(connection_vectors[vertex])
vertex_normal = edge_vector.cross(plane_normal)
vertex_normal.length = 0.1
if (connected_center - (bm.verts[vertex].co + \
vertex_normal)).length < (connected_center - \
(bm.verts[vertex].co - vertex_normal)).length:
# make normal face the correct way
vertex_normal.negate()
vertex_normal.normalize()
vertex_normals[vertex].append(vertex_normal)
# average virtual vertex normals, based on all edges it's connected to
vertex_normals = average_vector_dictionary(vertex_normals)
vertex_normals = dict([[vertex, vector[0]] for vertex, vector in \
vertex_normals.items()])
return(vertex_normals)
# add vertices to mesh
def bridge_create_vertices(bm, vertices):
for i in range(len(vertices)):
bm.verts.new(vertices[i])
# add faces to mesh
def bridge_create_faces(object, bm, faces, twist):
# have the normal point the correct way
if twist < 0:
[face.reverse() for face in faces]
faces = [face[2:]+face[:2] if face[0]==face[1] else face for \
face in faces]
# eekadoodle prevention
for i in range(len(faces)):
if not faces[i][-1]:
if faces[i][0] == faces[i][-1]:
faces[i] = [faces[i][1], faces[i][2], faces[i][3], faces[i][1]]
else:
faces[i] = [faces[i][-1]] + faces[i][:-1]
# result of converting from pre-bmesh period
if faces[i][-1] == faces[i][-2]:
faces[i] = faces[i][:-1]
for i in range(len(faces)):
bm.faces.new([bm.verts[v] for v in faces[i]])
bm.normal_update()
object.data.update(calc_edges=True) # calc_edges prevents memory-corruption
# calculate input loops
def bridge_get_input(bm):
# create list of internal edges, which should be skipped
eks_of_selected_faces = [item for sublist in [face_edgekeys(face) for \
face in bm.faces if face.select and not face.hide] for item in sublist]
edge_count = {}
for ek in eks_of_selected_faces:
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
internal_edges = [ek for ek in edge_count if edge_count[ek] > 1]
# sort correct edges into loops
selected_edges = [edgekey(edge) for edge in bm.edges if edge.select \
and not edge.hide and edgekey(edge) not in internal_edges]
loops = get_connected_selections(selected_edges)
return(loops)
# return values needed by the bridge operator
def bridge_initialise(bm, interpolation):
if interpolation == 'cubic':
# dict with edge-key as key and list of connected valid faces as value
face_blacklist = [face.index for face in bm.faces if face.select or \
face.hide]
edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if not \
edge.hide])
for face in bm.faces:
if face.index in face_blacklist:
continue
for key in face_edgekeys(face):
edge_faces[key].append(face)
# dictionary with the edge-key as key and edge as value
edgekey_to_edge = dict([[edgekey(edge), edge] for edge in \
bm.edges if edge.select and not edge.hide])
else:
edge_faces = False
edgekey_to_edge = False
# selected faces input
old_selected_faces = [face.index for face in bm.faces if face.select \
and not face.hide]
# find out if faces created by bridging should be smoothed
smooth = False
if bm.faces:
if sum([face.smooth for face in bm.faces])/len(bm.faces) \
>= 0.5:
smooth = True
return(edge_faces, edgekey_to_edge, old_selected_faces, smooth)
# return a string with the input method
def bridge_input_method(loft, loft_loop):
method = ""
if loft:
if loft_loop:
method = "Loft loop"
else:
method = "Loft no-loop"
else:
method = "Bridge"
return(method)
# match up loops in pairs, used for multi-input bridging
def bridge_match_loops(bm, loops):
# calculate average loop normals and centers
normals = []
centers = []
for vertices, circular in loops:
normal = mathutils.Vector()
center = mathutils.Vector()
for vertex in vertices:
normal += bm.verts[vertex].normal
center += bm.verts[vertex].co
normals.append(normal / len(vertices) / 10)
centers.append(center / len(vertices))
# possible matches if loop normals are faced towards the center
# of the other loop
matches = dict([[i, []] for i in range(len(loops))])
matches_amount = 0
for i in range(len(loops) + 1):
for j in range(i+1, len(loops)):
if (centers[i] - centers[j]).length > (centers[i] - (centers[j] \
+ normals[j])).length and (centers[j] - centers[i]).length > \
(centers[j] - (centers[i] + normals[i])).length:
matches_amount += 1
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
# if no loops face each other, just make matches between all the loops
if matches_amount == 0:
for i in range(len(loops) + 1):
for j in range(i+1, len(loops)):
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
for key, value in matches.items():
value.sort()
# matches based on distance between centers and number of vertices in loops
new_order = []
for loop_index in range(len(loops)):
if loop_index in new_order:
continue
loop_matches = matches[loop_index]
if not loop_matches:
continue
shortest_distance = loop_matches[0][0]
shortest_distance *= 1.1
loop_matches = [[abs(len(loops[loop_index][0]) - \
len(loops[loop[2]][0])), loop[0], loop[1], loop[2]] for loop in \
loop_matches if loop[0] < shortest_distance]
loop_matches.sort()
for match in loop_matches:
if match[3] not in new_order:
new_order += [loop_index, match[3]]
break
# reorder loops based on matches
if len(new_order) >= 2:
loops = [loops[i] for i in new_order]
return(loops)
# remove old_selected_faces
def bridge_remove_internal_faces(bm, old_selected_faces):
# collect bmesh faces and internal bmesh edges
remove_faces = [bm.faces[face] for face in old_selected_faces]
edges = collections.Counter([edge.index for face in remove_faces for \
edge in face.edges])
remove_edges = [bm.edges[edge] for edge in edges if edges[edge] > 1]
# remove internal faces and edges
for face in remove_faces:
bm.faces.remove(face)
for edge in remove_edges:
bm.edges.remove(edge)
# update list of internal faces that are flagged for removal
def bridge_save_unused_faces(bm, old_selected_faces, loops):
# key: vertex index, value: lists of selected faces using it
vertex_to_face = dict([[i, []] for i in range(len(bm.verts))])
[[vertex_to_face[vertex.index].append(face) for vertex in \
bm.faces[face].verts] for face in old_selected_faces]
# group selected faces that are connected
groups = []
grouped_faces = []
for face in old_selected_faces:
if face in grouped_faces:
continue
grouped_faces.append(face)
group = [face]
new_faces = [face]
while new_faces:
grow_face = new_faces[0]
for vertex in bm.faces[grow_face].verts:
vertex_face_group = [face for face in vertex_to_face[\
vertex.index] if face not in grouped_faces]
new_faces += vertex_face_group
grouped_faces += vertex_face_group
group += vertex_face_group
new_faces.pop(0)
groups.append(group)
# key: vertex index, value: True/False (is it in a loop that is used)
used_vertices = dict([[i, 0] for i in range(len(bm.verts))])
for loop in loops:
for vertex in loop[0]:
used_vertices[vertex] = True
# check if group is bridged, if not remove faces from internal faces list
for group in groups:
used = False
for face in group:
if used:
break
for vertex in bm.faces[face].verts:
if used_vertices[vertex.index]:
used = True
break
if not used:
for face in group:
old_selected_faces.remove(face)
# add the newly created faces to the selection
def bridge_select_new_faces(bm, amount, smooth):
for i in range(amount):
bm.faces[-(i+1)].select_set(True)
bm.faces[-(i+1)].smooth = smooth
# sort loops, so they are connected in the correct order when lofting
def bridge_sort_loops(bm, loops, loft_loop):
# simplify loops to single points, and prepare for pathfinding
x, y, z = [[sum([bm.verts[i].co[j] for i in loop[0]]) / \
len(loop[0]) for loop in loops] for j in range(3)]
nodes = [mathutils.Vector((x[i], y[i], z[i])) for i in range(len(loops))]
active_node = 0
open = [i for i in range(1, len(loops))]
path = [[0,0]]
# connect node to path, that is shortest to active_node
while len(open) > 0:
distances = [(nodes[active_node] - nodes[i]).length for i in open]
active_node = open[distances.index(min(distances))]
open.remove(active_node)
path.append([active_node, min(distances)])
# check if we didn't start in the middle of the path
for i in range(2, len(path)):
if (nodes[path[i][0]]-nodes[0]).length < path[i][1]:
temp = path[:i]
path.reverse()
path = path[:-i] + temp
break
# reorder loops
loops = [loops[i[0]] for i in path]
# if requested, duplicate first loop at last position, so loft can loop
if loft_loop:
loops = loops + [loops[0]]
return(loops)
##########################################
####### Circle functions #################
##########################################
# convert 3d coordinates to 2d coordinates on plane
def circle_3d_to_2d(bm_mod, loop, com, normal):
# project vertices onto the plane
verts = [bm_mod.verts[v] for v in loop[0]]
verts_projected = [[v.co - (v.co - com).dot(normal) * normal, v.index]
for v in verts]
# calculate two vectors (p and q) along the plane
m = mathutils.Vector((normal[0] + 1.0, normal[1], normal[2]))
p = m - (m.dot(normal) * normal)
if p.dot(p) == 0.0:
m = mathutils.Vector((normal[0], normal[1] + 1.0, normal[2]))
p = m - (m.dot(normal) * normal)
q = p.cross(normal)
# change to 2d coordinates using perpendicular projection
locs_2d = []
for loc, vert in verts_projected:
vloc = loc - com
x = p.dot(vloc) / p.dot(p)
y = q.dot(vloc) / q.dot(q)
locs_2d.append([x, y, vert])
return(locs_2d, p, q)
# calculate a best-fit circle to the 2d locations on the plane
def circle_calculate_best_fit(locs_2d):
# initial guess
x0 = 0.0
y0 = 0.0
r = 1.0
# calculate center and radius (non-linear least squares solution)
for iter in range(500):
jmat = []
k = []
for v in locs_2d:
d = (v[0]**2-2.0*x0*v[0]+v[1]**2-2.0*y0*v[1]+x0**2+y0**2)**0.5
jmat.append([(x0-v[0])/d, (y0-v[1])/d, -1.0])
k.append(-(((v[0]-x0)**2+(v[1]-y0)**2)**0.5-r))
jmat2 = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
))
k2 = mathutils.Vector((0.0, 0.0, 0.0))
for i in range(len(jmat)):
k2 += mathutils.Vector(jmat[i])*k[i]
jmat2[0][0] += jmat[i][0]**2
jmat2[1][0] += jmat[i][0]*jmat[i][1]
jmat2[2][0] += jmat[i][0]*jmat[i][2]
jmat2[1][1] += jmat[i][1]**2
jmat2[2][1] += jmat[i][1]*jmat[i][2]
jmat2[2][2] += jmat[i][2]**2
jmat2[0][1] = jmat2[1][0]
jmat2[0][2] = jmat2[2][0]
jmat2[1][2] = jmat2[2][1]
try:
jmat2.invert()
except:
pass
dx0, dy0, dr = jmat2 * k2
x0 += dx0
y0 += dy0
r += dr
# stop iterating if we're close enough to optimal solution
if abs(dx0)<1e-6 and abs(dy0)<1e-6 and abs(dr)<1e-6:
break
# return center of circle and radius
return(x0, y0, r)
# calculate circle so no vertices have to be moved away from the center
def circle_calculate_min_fit(locs_2d):
# center of circle
x0 = (min([i[0] for i in locs_2d])+max([i[0] for i in locs_2d]))/2.0
y0 = (min([i[1] for i in locs_2d])+max([i[1] for i in locs_2d]))/2.0
center = mathutils.Vector([x0, y0])
# radius of circle
r = min([(mathutils.Vector([i[0], i[1]])-center).length for i in locs_2d])
# return center of circle and radius
return(x0, y0, r)
# calculate the new locations of the vertices that need to be moved
def circle_calculate_verts(flatten, bm_mod, locs_2d, com, p, q, normal):
# changing 2d coordinates back to 3d coordinates
locs_3d = []
for loc in locs_2d:
locs_3d.append([loc[2], loc[0]*p + loc[1]*q + com])
if flatten: # flat circle
return(locs_3d)
else: # project the locations on the existing mesh
vert_edges = dict_vert_edges(bm_mod)
vert_faces = dict_vert_faces(bm_mod)
faces = [f for f in bm_mod.faces if not f.hide]
rays = [normal, -normal]
new_locs = []
for loc in locs_3d:
projection = False
if bm_mod.verts[loc[0]].co == loc[1]: # vertex hasn't moved
projection = loc[1]
else:
dif = normal.angle(loc[1]-bm_mod.verts[loc[0]].co)
if -1e-6 < dif < 1e-6 or math.pi-1e-6 < dif < math.pi+1e-6:
# original location is already along projection normal
projection = bm_mod.verts[loc[0]].co
else:
# quick search through adjacent faces
for face in vert_faces[loc[0]]:
verts = [v.co for v in bm_mod.faces[face].verts]
if len(verts) == 3: # triangle
v1, v2, v3 = verts
v4 = False
else: # assume quad
v1, v2, v3, v4 = verts[:4]
for ray in rays:
intersect = mathutils.geometry.\
intersect_ray_tri(v1, v2, v3, ray, loc[1])
if intersect:
projection = intersect
break
elif v4:
intersect = mathutils.geometry.\
intersect_ray_tri(v1, v3, v4, ray, loc[1])
if intersect:
projection = intersect
break
if projection:
break
if not projection:
# check if projection is on adjacent edges
for edgekey in vert_edges[loc[0]]:
line1 = bm_mod.verts[edgekey[0]].co
line2 = bm_mod.verts[edgekey[1]].co
intersect, dist = mathutils.geometry.intersect_point_line(\
loc[1], line1, line2)
if 1e-6 < dist < 1 - 1e-6:
projection = intersect
break
if not projection:
# full search through the entire mesh
hits = []
for face in faces:
verts = [v.co for v in face.verts]
if len(verts) == 3: # triangle
v1, v2, v3 = verts
v4 = False
else: # assume quad
v1, v2, v3, v4 = verts[:4]
for ray in rays:
intersect = mathutils.geometry.intersect_ray_tri(\
v1, v2, v3, ray, loc[1])
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
break
elif v4:
intersect = mathutils.geometry.intersect_ray_tri(\
v1, v3, v4, ray, loc[1])
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
break
if len(hits) >= 1:
# if more than 1 hit with mesh, closest hit is new loc
hits.sort()
projection = hits[0][1]
if not projection:
# nothing to project on, remain at flat location
projection = loc[1]
new_locs.append([loc[0], projection])
# return new positions of projected circle
return(new_locs)
# check loops and only return valid ones
def circle_check_loops(single_loops, loops, mapping, bm_mod):
valid_single_loops = {}
valid_loops = []
for i, [loop, circular] in enumerate(loops):
# loop needs to have at least 3 vertices
if len(loop) < 3:
continue
# loop needs at least 1 vertex in the original, non-mirrored mesh
if mapping:
all_virtual = True
for vert in loop:
if mapping[vert] > -1:
all_virtual = False
break
if all_virtual:
continue
# loop has to be non-collinear
collinear = True
loc0 = mathutils.Vector(bm_mod.verts[loop[0]].co[:])
loc1 = mathutils.Vector(bm_mod.verts[loop[1]].co[:])
for v in loop[2:]:
locn = mathutils.Vector(bm_mod.verts[v].co[:])
if loc0 == loc1 or loc1 == locn:
loc0 = loc1
loc1 = locn
continue
d1 = loc1-loc0
d2 = locn-loc1
if -1e-6 < d1.angle(d2, 0) < 1e-6:
loc0 = loc1
loc1 = locn
continue
collinear = False
break
if collinear:
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
valid_single_loops[len(valid_loops)-1] = single_loops[i]
return(valid_single_loops, valid_loops)
# calculate the location of single input vertices that need to be flattened
def circle_flatten_singles(bm_mod, com, p, q, normal, single_loop):
new_locs = []
for vert in single_loop:
loc = mathutils.Vector(bm_mod.verts[vert].co[:])
new_locs.append([vert, loc - (loc-com).dot(normal)*normal])
return(new_locs)
# calculate input loops
def circle_get_input(object, bm, scene):
# get mesh with modifiers applied
derived, bm_mod = get_derived_bmesh(object, bm, scene)
# create list of edge-keys based on selection state
faces = False
for face in bm.faces:
if face.select and not face.hide:
faces = True
break
if faces:
# get selected, non-hidden , non-internal edge-keys
eks_selected = [key for keys in [face_edgekeys(face) for face in \
bm_mod.faces if face.select and not face.hide] for key in keys]
edge_count = {}
for ek in eks_selected:
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select \
and not edge.hide and edge_count.get(edgekey(edge), 1)==1]
else:
# no faces, so no internal edges either
edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select \
and not edge.hide]
# add edge-keys around single vertices
verts_connected = dict([[vert, 1] for edge in [edge for edge in \
bm_mod.edges if edge.select and not edge.hide] for vert in \
edgekey(edge)])
single_vertices = [vert.index for vert in bm_mod.verts if \
vert.select and not vert.hide and not \
verts_connected.get(vert.index, False)]
if single_vertices and len(bm.faces)>0:
vert_to_single = dict([[v.index, []] for v in bm_mod.verts \
if not v.hide])
for face in [face for face in bm_mod.faces if not face.select \
and not face.hide]:
for vert in face.verts:
vert = vert.index
if vert in single_vertices:
for ek in face_edgekeys(face):
if not vert in ek:
edge_keys.append(ek)
if vert not in vert_to_single[ek[0]]:
vert_to_single[ek[0]].append(vert)
if vert not in vert_to_single[ek[1]]:
vert_to_single[ek[1]].append(vert)
break
# sort edge-keys into loops
loops = get_connected_selections(edge_keys)
# find out to which loops the single vertices belong
single_loops = dict([[i, []] for i in range(len(loops))])
if single_vertices and len(bm.faces)>0:
for i, [loop, circular] in enumerate(loops):
for vert in loop:
if vert_to_single[vert]:
for single in vert_to_single[vert]:
if single not in single_loops[i]:
single_loops[i].append(single)
return(derived, bm_mod, single_vertices, single_loops, loops)
# recalculate positions based on the influence of the circle shape
def circle_influence_locs(locs_2d, new_locs_2d, influence):
for i in range(len(locs_2d)):
oldx, oldy, j = locs_2d[i]
newx, newy, k = new_locs_2d[i]
altx = newx*(influence/100)+ oldx*((100-influence)/100)
alty = newy*(influence/100)+ oldy*((100-influence)/100)
locs_2d[i] = [altx, alty, j]
return(locs_2d)
# project 2d locations on circle, respecting distance relations between verts
def circle_project_non_regular(locs_2d, x0, y0, r):
for i in range(len(locs_2d)):
x, y, j = locs_2d[i]
loc = mathutils.Vector([x-x0, y-y0])
loc.length = r
locs_2d[i] = [loc[0], loc[1], j]
return(locs_2d)
# project 2d locations on circle, with equal distance between all vertices
def circle_project_regular(locs_2d, x0, y0, r):
# find offset angle and circling direction
x, y, i = locs_2d[0]
loc = mathutils.Vector([x-x0, y-y0])
loc.length = r
offset_angle = loc.angle(mathutils.Vector([1.0, 0.0]), 0.0)
loca = mathutils.Vector([x-x0, y-y0, 0.0])
if loc[1] < -1e-6:
offset_angle *= -1
x, y, j = locs_2d[1]
locb = mathutils.Vector([x-x0, y-y0, 0.0])
if loca.cross(locb)[2] >= 0:
ccw = 1
else:
ccw = -1
# distribute vertices along the circle
for i in range(len(locs_2d)):
t = offset_angle + ccw * (i / len(locs_2d) * 2 * math.pi)
x = math.cos(t) * r
y = math.sin(t) * r
locs_2d[i] = [x, y, locs_2d[i][2]]
return(locs_2d)
# shift loop, so the first vertex is closest to the center
def circle_shift_loop(bm_mod, loop, com):
verts, circular = loop
distances = [[(bm_mod.verts[vert].co - com).length, i] \
for i, vert in enumerate(verts)]
distances.sort()
shift = distances[0][1]
loop = [verts[shift:] + verts[:shift], circular]
return(loop)
##########################################
####### Curve functions ##################
##########################################
# create lists with knots and points, all correctly sorted
def curve_calculate_knots(loop, verts_selected):
knots = [v for v in loop[0] if v in verts_selected]
points = loop[0][:]
# circular loop, potential for weird splines
if loop[1]:
offset = int(len(loop[0]) / 4)
kpos = []
for k in knots:
kpos.append(loop[0].index(k))
kdif = []
for i in range(len(kpos) - 1):
kdif.append(kpos[i+1] - kpos[i])
kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
kadd = []
for k in kdif:
if k > 2 * offset:
kadd.append([kdif.index(k), True])
# next 2 lines are optional, they insert
# an extra control point in small gaps
#elif k > offset:
# kadd.append([kdif.index(k), False])
kins = []
krot = False
for k in kadd: # extra knots to be added
if k[1]: # big gap (break circular spline)
kpos = loop[0].index(knots[k[0]]) + offset
if kpos > len(loop[0]) - 1:
kpos -= len(loop[0])
kins.append([knots[k[0]], loop[0][kpos]])
kpos2 = k[0] + 1
if kpos2 > len(knots)-1:
kpos2 -= len(knots)
kpos2 = loop[0].index(knots[kpos2]) - offset
if kpos2 < 0:
kpos2 += len(loop[0])
kins.append([loop[0][kpos], loop[0][kpos2]])
krot = loop[0][kpos2]
else: # small gap (keep circular spline)
k1 = loop[0].index(knots[k[0]])
k2 = k[0] + 1
if k2 > len(knots)-1:
k2 -= len(knots)
k2 = loop[0].index(knots[k2])
if k2 < k1:
dif = len(loop[0]) - 1 - k1 + k2
else:
dif = k2 - k1
kn = k1 + int(dif/2)
if kn > len(loop[0]) - 1:
kn -= len(loop[0])
kins.append([loop[0][k1], loop[0][kn]])
for j in kins: # insert new knots
knots.insert(knots.index(j[0]) + 1, j[1])
if not krot: # circular loop
knots.append(knots[0])
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[0]) + 1]
else: # non-circular loop (broken by script)
krot = knots.index(krot)
knots = knots[krot:] + knots[0:krot]
if loop[0].index(knots[0]) > loop[0].index(knots[-1]):
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[-1])+1]
else:
points = loop[0][loop[0].index(knots[0]):\
loop[0].index(knots[-1]) + 1]
# non-circular loop, add first and last point as knots
else:
if loop[0][0] not in knots:
knots.insert(0, loop[0][0])
if loop[0][-1] not in knots:
knots.append(loop[0][-1])
return(knots, points)
# calculate relative positions compared to first knot
def curve_calculate_t(bm_mod, knots, points, pknots, regular, circular):
tpoints = []
loc_prev = False
len_total = 0
for p in points:
if p in knots:
loc = pknots[knots.index(p)] # use projected knot location
else:
loc = mathutils.Vector(bm_mod.verts[p].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc-loc_prev).length
tpoints.append(len_total)
loc_prev = loc
tknots = []
for p in points:
if p in knots:
tknots.append(tpoints[points.index(p)])
if circular:
tknots[-1] = tpoints[-1]
# regular option
if regular:
tpoints_average = tpoints[-1] / (len(tpoints) - 1)
for i in range(1, len(tpoints) - 1):
tpoints[i] = i * tpoints_average
for i in range(len(knots)):
tknots[i] = tpoints[points.index(knots[i])]
if circular:
tknots[-1] = tpoints[-1]
return(tknots, tpoints)
# change the location of non-selected points to their place on the spline
def curve_calculate_vertices(bm_mod, knots, tknots, points, tpoints, splines,
interpolation, restriction):
newlocs = {}
move = []
for p in points:
if p in knots:
continue
m = tpoints[points.index(p)]
if m in tknots:
n = tknots.index(m)
else:
t = tknots[:]
t.append(m)
t.sort()
n = t.index(m) - 1
if n > len(splines) - 1:
n = len(splines) - 1
elif n < 0:
n = 0
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
ay, by, cy, dy, ty = splines[n][1]
y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
az, bz, cz, dz, tz = splines[n][2]
z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
newloc = mathutils.Vector([x,y,z])
else: # interpolation == 'linear'
a, d, t, u = splines[n]
newloc = ((m-t)/u)*d + a
if restriction != 'none': # vertex movement is restricted
newlocs[p] = newloc
else: # set the vertex to its new location
move.append([p, newloc])
if restriction != 'none': # vertex movement is restricted
for p in points:
if p in newlocs:
newloc = newlocs[p]
else:
move.append([p, bm_mod.verts[p].co])
continue
oldloc = bm_mod.verts[p].co
normal = bm_mod.verts[p].normal
dloc = newloc - oldloc
if dloc.length < 1e-6:
move.append([p, newloc])
elif restriction == 'extrude': # only extrusions
if dloc.angle(normal, 0) < 0.5 * math.pi + 1e-6:
move.append([p, newloc])
else: # restriction == 'indent' only indentations
if dloc.angle(normal) > 0.5 * math.pi - 1e-6:
move.append([p, newloc])
return(move)
# trim loops to part between first and last selected vertices (including)
def curve_cut_boundaries(bm_mod, loops):
cut_loops = []
for loop, circular in loops:
if circular:
# don't cut
cut_loops.append([loop, circular])
continue
selected = [bm_mod.verts[v].select for v in loop]
first = selected.index(True)
selected.reverse()
last = -selected.index(True)
if last == 0:
cut_loops.append([loop[first:], circular])
else:
cut_loops.append([loop[first:last], circular])
return(cut_loops)
# calculate input loops
def curve_get_input(object, bm, boundaries, scene):
# get mesh with modifiers applied
derived, bm_mod = get_derived_bmesh(object, bm, scene)
# vertices that still need a loop to run through it
verts_unsorted = [v.index for v in bm_mod.verts if \
v.select and not v.hide]
# necessary dictionaries
vert_edges = dict_vert_edges(bm_mod)
edge_faces = dict_edge_faces(bm_mod)
correct_loops = []
# find loops through each selected vertex
while len(verts_unsorted) > 0:
loops = curve_vertex_loops(bm_mod, verts_unsorted[0], vert_edges,
edge_faces)
verts_unsorted.pop(0)
# check if loop is fully selected
search_perpendicular = False
i = -1
for loop, circular in loops:
i += 1
selected = [v for v in loop if bm_mod.verts[v].select]
if len(selected) < 2:
# only one selected vertex on loop, don't use
loops.pop(i)
continue
elif len(selected) == len(loop):
search_perpendicular = loop
break
# entire loop is selected, find perpendicular loops
if search_perpendicular:
for vert in loop:
if vert in verts_unsorted:
verts_unsorted.remove(vert)
Loading
Loading full blame...