Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
# TODO: if is_merged_mine, it might make sense to create a similar list from island_a.boundary as well
incidence = {vertex.tup for vertex in phantoms.values()}.intersection(vertex.tup for vertex in island_a.vertices.values())
incidence = {position: list() for position in incidence} # from now on, 'incidence' is a dict
for uvedge in chain(boundary_other, island_a.boundary):
if uvedge.va.co == uvedge.vb.co:
continue
for vertex in (uvedge.va, uvedge.vb):
site = incidence.get(vertex.tup)
if site is not None:
site.append(uvedge)
for position, segments in incidence.items():
if len(segments) <= 2:
continue
segments.sort(key=slope_from(position))
for right, left in pairs(segments):
is_left_ccw = left.is_uvface_upwards() ^ (left.max.tup == position)
is_right_ccw = right.is_uvface_upwards() ^ (right.max.tup == position)
if is_right_ccw and not is_left_ccw and type(right) is not type(left) and right not in merged_uvedges and left not in merged_uvedges:
return False
if (not is_right_ccw and right not in merged_uvedges) ^ (is_left_ccw and left not in merged_uvedges):
return False
# check for self-intersections
try:
try:
sweepline = QuickSweepline() if island_a.has_safe_geometry and island_b.has_safe_geometry else BruteSweepline()
sweep(sweepline, (uvedge for uvedge in chain(boundary_other, island_a.boundary)))
island_a.has_safe_geometry &= island_b.has_safe_geometry
except GeometryError:
sweep(BruteSweepline(), (uvedge for uvedge in chain(boundary_other, island_a.boundary)))
island_a.has_safe_geometry = False
except Intersection:
return False
# mark all edges that connect the islands as not cut
for uvedge in merged_uvedges:
island_a.mesh.edges[uvedge.loop.edge].is_main_cut = False
# include all trasformed vertices as mine
island_a.vertices.update({loop: phantoms[uvvertex] for loop, uvvertex in island_b.vertices.items()})
# re-link uvedges and uvfaces to their transformed locations
for uvedge in island_b.edges.values():
uvedge.va = phantoms[uvedge.va]
uvedge.vb = phantoms[uvedge.vb]
uvedge.update()
if is_merged_mine:
for uvedge in island_a.edges.values():
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
uvedge.va = phantoms.get(uvedge.va, uvedge.va)
uvedge.vb = phantoms.get(uvedge.vb, uvedge.vb)
island_a.edges.update(island_b.edges)
for uvface in island_b.faces.values():
uvface.island = island_a
uvface.vertices = {loop: phantoms[uvvertex] for loop, uvvertex in uvface.vertices.items()}
uvface.flipped ^= flipped
if is_merged_mine:
# there may be own uvvertices that need to be replaced by phantoms
for uvface in island_a.faces.values():
if any(uvvertex in phantoms for uvvertex in uvface.vertices):
uvface.vertices = {loop: phantoms.get(uvvertex, uvvertex) for loop, uvvertex in uvface.vertices.items()}
island_a.faces.update(island_b.faces)
island_a.boundary = [
uvedge for uvedge in chain(island_a.boundary, island_b.boundary)
if uvedge not in merged_uvedges]
for uvedge, partner in merged_uvedge_pairs:
# make sure that main faces are the ones actually merged (this changes nothing in most cases)
edge = island_a.mesh.edges[uvedge.loop.edge]
edge.main_faces = uvedge.loop, partner.loop
# everything seems to be OK
return island_b
class Page:
"""Container for several Islands"""
__slots__ = ('islands', 'name', 'image_path')
def __init__(self, num=1):
self.islands = list()
self.name = "page{}".format(num) # TODO delete me
self.image_path = None
class UVVertex:
"""Vertex in 2D"""
__slots__ = ('co', 'tup')
def __init__(self, vector):
self.co = vector.xy
self.tup = tuple(self.co)
class UVEdge:
"""Edge in 2D"""
# Every UVEdge is attached to only one UVFace
# UVEdges are doubled as needed because they both have to point clockwise around their faces
__slots__ = ('va', 'vb', 'uvface', 'loop',
'min', 'max', 'bottom', 'top',
'neighbor_left', 'neighbor_right', 'sticker')
def __init__(self, vertex1: UVVertex, vertex2: UVVertex, uvface, loop):
self.va = vertex1
self.vb = vertex2
self.update()
self.uvface = uvface
self.sticker = None
self.loop = loop
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
def update(self):
"""Update data if UVVertices have moved"""
self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va)
y1, y2 = self.va.co.y, self.vb.co.y
self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1)
def is_uvface_upwards(self):
return (self.va.tup < self.vb.tup) ^ self.uvface.flipped
def __repr__(self):
return "({0.va} - {0.vb})".format(self)
class PhantomUVEdge:
"""Temporary 2D Segment for calculations"""
__slots__ = ('va', 'vb', 'min', 'max', 'bottom', 'top')
def __init__(self, vertex1: UVVertex, vertex2: UVVertex, flip):
self.va, self.vb = (vertex2, vertex1) if flip else (vertex1, vertex2)
self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va)
y1, y2 = self.va.co.y, self.vb.co.y
self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1)
def is_uvface_upwards(self):
return self.va.tup < self.vb.tup
def __repr__(self):
return "[{0.va} - {0.vb}]".format(self)
class UVFace:
"""Face in 2D"""
__slots__ = ('vertices', 'edges', 'face', 'island', 'flipped')
def __init__(self, face: bmesh.types.BMFace, island: Island, matrix=1, normal_matrix=1):
self.face = face
self.island = island
self.flipped = False # a flipped UVFace has edges clockwise
flatten = z_up_matrix(normal_matrix @ face.normal) @ matrix
self.vertices = {loop: UVVertex(flatten @ loop.vert.co) for loop in face.loops}
self.edges = {loop: UVEdge(self.vertices[loop], self.vertices[loop.link_loop_next], self, loop) for loop in face.loops}
class Arrow:
"""Mark in the document: an arrow denoting the number of the edge it points to"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'size')
def __init__(self, uvedge, size, index):
self.text = str(index)
edge = (uvedge.vb.co - uvedge.va.co) if not uvedge.uvface.flipped else (uvedge.va.co - uvedge.vb.co)
self.center = (uvedge.va.co + uvedge.vb.co) / 2
self.size = size
tangent = edge.normalized()
cos, sin = tangent
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
normal = M.Vector((sin, -cos))
self.bounds = [self.center, self.center + (1.2 * normal + tangent) * size, self.center + (1.2 * normal - tangent) * size]
class Sticker:
"""Mark in the document: sticker tab"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'width', 'vertices')
def __init__(self, uvedge, default_width, index, other: UVEdge):
"""Sticker is directly attached to the given UVEdge"""
first_vertex, second_vertex = (uvedge.va, uvedge.vb) if not uvedge.uvface.flipped else (uvedge.vb, uvedge.va)
edge = first_vertex.co - second_vertex.co
sticker_width = min(default_width, edge.length / 2)
other_first, other_second = (other.va, other.vb) if not other.uvface.flipped else (other.vb, other.va)
other_edge = other_second.co - other_first.co
# angle a is at vertex uvedge.va, b is at uvedge.vb
cos_a = cos_b = 0.5
sin_a = sin_b = 0.75**0.5
# len_a is length of the side adjacent to vertex a, len_b likewise
len_a = len_b = sticker_width / sin_a
# fix overlaps with the most often neighbour - its sticking target
if first_vertex == other_second:
cos_a = max(cos_a, edge.dot(other_edge) / (edge.length_squared)) # angles between pi/3 and 0
elif second_vertex == other_first:
cos_b = max(cos_b, edge.dot(other_edge) / (edge.length_squared)) # angles between pi/3 and 0
# Fix tabs for sticking targets with small angles
try:
other_face_neighbor_left = other.neighbor_left
other_face_neighbor_right = other.neighbor_right
other_edge_neighbor_a = other_face_neighbor_left.vb.co - other.vb.co
other_edge_neighbor_b = other_face_neighbor_right.va.co - other.va.co
# Adjacent angles in the face
cos_a = max(cos_a, -other_edge.dot(other_edge_neighbor_a) / (other_edge.length*other_edge_neighbor_a.length))
cos_b = max(cos_b, other_edge.dot(other_edge_neighbor_b) / (other_edge.length*other_edge_neighbor_b.length))
except AttributeError: # neighbor data may be missing for edges with 3+ faces
pass
except ZeroDivisionError:
pass
# Calculate the lengths of the glue tab edges using the possibly smaller angles
sin_a = abs(1 - cos_a**2)**0.5
len_b = min(len_a, (edge.length * sin_a) / (sin_a * cos_b + sin_b * cos_a))
len_a = 0 if sin_a == 0 else min(sticker_width / sin_a, (edge.length - len_b*cos_b) / cos_a)
sin_b = abs(1 - cos_b**2)**0.5
len_a = min(len_a, (edge.length * sin_b) / (sin_a * cos_b + sin_b * cos_a))
len_b = 0 if sin_b == 0 else min(sticker_width / sin_b, (edge.length - len_a * cos_a) / cos_b)
v3 = UVVertex(second_vertex.co + M.Matrix(((cos_b, -sin_b), (sin_b, cos_b))) @ edge * len_b / edge.length)
v4 = UVVertex(first_vertex.co + M.Matrix(((-cos_a, -sin_a), (sin_a, -cos_a))) @ edge * len_a / edge.length)
if v3.co != v4.co:
self.vertices = [second_vertex, v3, v4, first_vertex]
else:
self.vertices = [second_vertex, v3, first_vertex]
sin, cos = edge.y / edge.length, edge.x / edge.length
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
self.width = sticker_width * 0.9
if index and uvedge.uvface.island is not other.uvface.island:
self.text = "{}:{}".format(other.uvface.island.abbreviation, index)
else:
self.text = index
self.center = (uvedge.va.co + uvedge.vb.co) / 2 + self.rot @ M.Vector((0, self.width * 0.2))
self.bounds = [v3.co, v4.co, self.center] if v3.co != v4.co else [v3.co, self.center]
class NumberAlone:
"""Mark in the document: numbering inside the island denoting edges to be sticked"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'size')
def __init__(self, uvedge, index, default_size=0.005):
"""Sticker is directly attached to the given UVEdge"""
edge = (uvedge.va.co - uvedge.vb.co) if not uvedge.uvface.flipped else (uvedge.vb.co - uvedge.va.co)
self.size = default_size
sin, cos = edge.y / edge.length, edge.x / edge.length
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
self.text = index
self.center = (uvedge.va.co + uvedge.vb.co) / 2 - self.rot @ M.Vector((0, self.size * 1.2))
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
self.bounds = [self.center]
class SVG:
"""Simple SVG exporter"""
def __init__(self, page_size: M.Vector, style, margin, pure_net=True, angle_epsilon=0.01):
"""Initialize document settings.
page_size: document dimensions in meters
pure_net: if True, do not use image"""
self.page_size = page_size
self.pure_net = pure_net
self.style = style
self.margin = margin
self.text_size = 12
self.angle_epsilon = angle_epsilon
@classmethod
def encode_image(cls, bpy_image):
import tempfile
import base64
with tempfile.TemporaryDirectory() as directory:
filename = directory + "/i.png"
bpy_image.filepath_raw = filename
bpy_image.save()
return base64.encodebytes(open(filename, "rb").read()).decode('ascii')
def format_vertex(self, vector, pos=M.Vector((0, 0))):
"""Return a string with both coordinates of the given vertex."""
x, y = vector + pos
return "{:.6f} {:.6f}".format((x + self.margin) * 1000, (self.page_size.y - y - self.margin) * 1000)
def write(self, mesh, filename):
"""Write data to a file given by its name."""
line_through = " L ".join # used for formatting of SVG path data
rows = "\n".join
dl = ["{:.2f}".format(length * self.style.line_width * 1000) for length in (2, 5, 10)]
format_style = {
'SOLID': "none", 'DOT': "{0},{1}".format(*dl), 'DASH': "{1},{2}".format(*dl),
'LONGDASH': "{2},{1}".format(*dl), 'DASHDOT': "{2},{1},{0},{1}".format(*dl)}
def format_color(vec):
return "#{:02x}{:02x}{:02x}".format(round(vec[0] * 255), round(vec[1] * 255), round(vec[2] * 255))
def format_matrix(matrix):
return " ".join("{:.6f}".format(cell) for column in matrix for cell in column)
def path_convert(string, relto=os_path.dirname(filename)):
assert(os_path) # check the module was imported
string = os_path.relpath(string, relto)
if os_path.sep != '/':
string = string.replace(os_path.sep, '/')
return string
styleargs = {
name: format_color(getattr(self.style, name)) for name in (
"outer_color", "outbg_color", "convex_color", "concave_color", "freestyle_color",
"inbg_color", "sticker_fill", "text_color")}
styleargs.update({
name: format_style[getattr(self.style, name)] for name in
("outer_style", "convex_style", "concave_style", "freestyle_style")})
styleargs.update({
name: getattr(self.style, attr)[3] for name, attr in (
("outer_alpha", "outer_color"), ("outbg_alpha", "outbg_color"),
("convex_alpha", "convex_color"), ("concave_alpha", "concave_color"),
("freestyle_alpha", "freestyle_color"),
("inbg_alpha", "inbg_color"), ("sticker_alpha", "sticker_fill"),
("text_alpha", "text_color"))})
styleargs.update({
name: getattr(self.style, name) * self.style.line_width * 1000 for name in
("outer_width", "convex_width", "concave_width", "freestyle_width", "outbg_width", "inbg_width")})
for num, page in enumerate(mesh.pages):
page_filename = "{}_{}.svg".format(filename[:filename.rfind(".svg")], page.name) if len(mesh.pages) > 1 else filename
with open(page_filename, 'w') as f:
print(self.svg_base.format(width=self.page_size.x*1000, height=self.page_size.y*1000), file=f)
print(self.css_base.format(**styleargs), file=f)
if page.image_path:
print(
self.image_linked_tag.format(
pos="{0:.6f} {0:.6f}".format(self.margin*1000),
width=(self.page_size.x - 2 * self.margin)*1000,
height=(self.page_size.y - 2 * self.margin)*1000,
path=path_convert(page.image_path)),
file=f)
if len(page.islands) > 1:
print("<g>", file=f)
for island in page.islands:
print("<g>", file=f)
if island.image_path:
print(
self.image_linked_tag.format(
pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))),
width=island.bounding_box.x*1000,
height=island.bounding_box.y*1000,
path=path_convert(island.image_path)),
file=f)
elif island.embedded_image:
print(
self.image_embedded_tag.format(
pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))),
width=island.bounding_box.x*1000,
height=island.bounding_box.y*1000,
path=island.image_path),
island.embedded_image, "'/>",
file=f, sep="")
if island.title:
print(
self.text_tag.format(
size=1000 * self.text_size,
x=1000 * (island.bounding_box.x*0.5 + island.pos.x + self.margin),
y=1000 * (self.page_size.y - island.pos.y - self.margin - 0.2 * self.text_size),
label=island.title),
file=f)
data_markers, data_stickerfill, data_outer, data_convex, data_concave, data_freestyle = (list() for i in range(6))
for marker in island.markers:
if isinstance(marker, Sticker):
data_stickerfill.append("M {} Z".format(
line_through(self.format_vertex(vertex.co, island.pos) for vertex in marker.vertices)))
if marker.text:
data_markers.append(self.text_transformed_tag.format(
label=marker.text,
pos=self.format_vertex(marker.center, island.pos),
mat=format_matrix(marker.rot),
size=marker.width * 1000))
elif isinstance(marker, Arrow):
size = marker.size * 1000
position = marker.center + marker.size * marker.rot @ M.Vector((0, -0.9))
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
data_markers.append(self.arrow_marker_tag.format(
index=marker.text,
arrow_pos=self.format_vertex(marker.center, island.pos),
scale=size,
pos=self.format_vertex(position, island.pos - marker.size*M.Vector((0, 0.4))),
mat=format_matrix(size * marker.rot)))
elif isinstance(marker, NumberAlone):
data_markers.append(self.text_transformed_tag.format(
label=marker.text,
pos=self.format_vertex(marker.center, island.pos),
mat=format_matrix(marker.rot),
size=marker.size * 1000))
if data_stickerfill and self.style.sticker_fill[3] > 0:
print("<path class='sticker' d='", rows(data_stickerfill), "'/>", file=f)
outer_edges = set(island.boundary)
while outer_edges:
data_loop = list()
uvedge = outer_edges.pop()
while 1:
if uvedge.sticker:
data_loop.extend(self.format_vertex(vertex.co, island.pos) for vertex in uvedge.sticker.vertices[1:])
else:
vertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
data_loop.append(self.format_vertex(vertex.co, island.pos))
uvedge = uvedge.neighbor_right
try:
outer_edges.remove(uvedge)
except KeyError:
break
data_outer.append("M {} Z".format(line_through(data_loop)))
visited_edges = set()
for loop, uvedge in island.edges.items():
edge = mesh.edges[loop.edge]
if edge.is_cut(uvedge.uvface.face) and not uvedge.sticker:
continue
data_uvedge = "M {}".format(
line_through(self.format_vertex(vertex.co, island.pos) for vertex in (uvedge.va, uvedge.vb)))
if edge.freestyle:
data_freestyle.append(data_uvedge)
# each uvedge is in two opposite-oriented variants; we want to add each only once
vertex_pair = frozenset((uvedge.va, uvedge.vb))
if vertex_pair not in visited_edges:
visited_edges.add(vertex_pair)
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
if edge.angle > self.angle_epsilon:
data_convex.append(data_uvedge)
elif edge.angle < -self.angle_epsilon:
data_concave.append(data_uvedge)
if island.is_inside_out:
data_convex, data_concave = data_concave, data_convex
if data_freestyle:
print("<path class='freestyle' d='", rows(data_freestyle), "'/>", file=f)
if (data_convex or data_concave) and not self.pure_net and self.style.use_inbg:
print("<path class='inner_background' d='", rows(data_convex + data_concave), "'/>", file=f)
if data_convex:
print("<path class='convex' d='", rows(data_convex), "'/>", file=f)
if data_concave:
print("<path class='concave' d='", rows(data_concave), "'/>", file=f)
if data_outer:
if not self.pure_net and self.style.use_outbg:
print("<path class='outer_background' d='", rows(data_outer), "'/>", file=f)
print("<path class='outer' d='", rows(data_outer), "'/>", file=f)
if data_markers:
print(rows(data_markers), file=f)
print("</g>", file=f)
if len(page.islands) > 1:
print("</g>", file=f)
print("</svg>", file=f)
image_linked_tag = "<image transform='translate({pos})' width='{width:.6f}' height='{height:.6f}' xlink:href='{path}'/>"
image_embedded_tag = "<image transform='translate({pos})' width='{width:.6f}' height='{height:.6f}' xlink:href='data:image/png;base64,"
text_tag = "<text transform='translate({x} {y})' style='font-size:{size:.2f}'><tspan>{label}</tspan></text>"
text_transformed_tag = "<text transform='matrix({mat} {pos})' style='font-size:{size:.2f}'><tspan>{label}</tspan></text>"
arrow_marker_tag = "<g><path transform='matrix({mat} {arrow_pos})' class='arrow' d='M 0 0 L 1 1 L 0 0.25 L -1 1 Z'/>" \
"<text transform='translate({pos})' style='font-size:{scale:.2f}'><tspan>{index}</tspan></text></g>"
svg_base = """<?xml version='1.0' encoding='UTF-8' standalone='no'?>
<svg xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' version='1.1'
width='{width:.2f}mm' height='{height:.2f}mm' viewBox='0 0 {width:.2f} {height:.2f}'>"""
css_base = """<style type="text/css">
path {{
fill: none;
stroke-linecap: butt;
stroke-linejoin: bevel;
stroke-dasharray: none;
}}
path.outer {{
stroke: {outer_color};
stroke-dasharray: {outer_style};
stroke-dashoffset: 0;
stroke-width: {outer_width:.2};
stroke-opacity: {outer_alpha:.2};
}}
path.convex {{
stroke: {convex_color};
stroke-dasharray: {convex_style};
stroke-dashoffset:0;
stroke-width:{convex_width:.2};
stroke-opacity: {convex_alpha:.2}
}}
path.concave {{
stroke: {concave_color};
stroke-dasharray: {concave_style};
stroke-dashoffset: 0;
stroke-width: {concave_width:.2};
stroke-opacity: {concave_alpha:.2}
}}
path.freestyle {{
stroke: {freestyle_color};
stroke-dasharray: {freestyle_style};
stroke-dashoffset: 0;
stroke-width: {freestyle_width:.2};
stroke-opacity: {freestyle_alpha:.2}
}}
path.outer_background {{
stroke: {outbg_color};
stroke-opacity: {outbg_alpha};
stroke-width: {outbg_width:.2}
}}
path.inner_background {{
stroke: {inbg_color};
stroke-opacity: {inbg_alpha};
stroke-width: {inbg_width:.2}
}}
path.sticker {{
fill: {sticker_fill};
stroke: none;
fill-opacity: {sticker_alpha:.2};
}}
path.arrow {{
fill: {text_color};
}}
text {{
font-style: normal;
fill: {text_color};
fill-opacity: {text_alpha:.2};
stroke: none;
}}
text, tspan {{
text-anchor:middle;
}}
</style>"""
class PDF:
"""Simple PDF exporter"""
mm_to_pt = 72 / 25.4
character_width_packed = {
191: "'", 222: 'ijl\x82\x91\x92', 278: '|¦\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !,./:;I[\\]ft\xa0·ÌÍÎÏìíîï',
333: '()-`r\x84\x88\x8b\x93\x94\x98\x9b¡¨\xad¯²³´¸¹{}', 350: '\x7f\x81\x8d\x8f\x90\x95\x9d', 365: '"ºª*°', 469: '^', 500: 'Jcksvxyz\x9a\x9eçýÿ', 584: '¶+<=>~¬±×÷', 611: 'FTZ\x8e¿ßø',
667: '&ABEKPSVXY\x8a\x9fÀÁÂÃÄÅÈÉÊËÝÞ', 722: 'CDHNRUwÇÐÑÙÚÛÜ', 737: '©®', 778: 'GOQÒÓÔÕÖØ', 833: 'Mm¼½¾', 889: '%æ', 944: 'W\x9c', 1000: '\x85\x89\x8c\x97\x99Æ', 1015: '@', }
character_width = {c: value for (value, chars) in character_width_packed.items() for c in chars}
def __init__(self, page_size: M.Vector, style, margin, pure_net=True, angle_epsilon=0.01):
self.page_size = page_size
self.style = style
self.margin = M.Vector((margin, margin))
self.pure_net = pure_net
self.angle_epsilon = angle_epsilon
def text_width(self, text, scale=None):
return (scale or self.text_size) * sum(self.character_width.get(c, 556) for c in text) / 1000
@classmethod
def encode_image(cls, bpy_image):
data = bytes(int(255 * px) for (i, px) in enumerate(bpy_image.pixels) if i % 4 != 3)
image = {
"Type": "XObject", "Subtype": "Image", "Width": bpy_image.size[0], "Height": bpy_image.size[1],
"ColorSpace": "DeviceRGB", "BitsPerComponent": 8, "Interpolate": True,
"Filter": ["ASCII85Decode", "FlateDecode"], "stream": data}
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
return image
def write(self, mesh, filename):
def format_dict(obj, refs=tuple()):
return "<< " + "".join("/{} {}\n".format(key, format_value(value, refs)) for (key, value) in obj.items()) + ">>"
def line_through(seq):
return "".join("{0.x:.6f} {0.y:.6f} {1} ".format(1000*v.co, c) for (v, c) in zip(seq, chain("m", repeat("l"))))
def format_value(value, refs=tuple()):
if value in refs:
return "{} 0 R".format(refs.index(value) + 1)
elif type(value) is dict:
return format_dict(value, refs)
elif type(value) in (list, tuple):
return "[ " + " ".join(format_value(item, refs) for item in value) + " ]"
elif type(value) is int:
return str(value)
elif type(value) is float:
return "{:.6f}".format(value)
elif type(value) is bool:
return "true" if value else "false"
else:
return "/{}".format(value) # this script can output only PDF names, no strings
def write_object(index, obj, refs, f, stream=None):
byte_count = f.write("{} 0 obj\n".format(index))
if type(obj) is not dict:
stream, obj = obj, dict()
elif "stream" in obj:
stream = obj.pop("stream")
if stream:
if True or type(stream) is bytes:
obj["Filter"] = ["ASCII85Decode", "FlateDecode"]
stream = encode(stream)
obj["Length"] = len(stream)
byte_count += f.write(format_dict(obj, refs))
if stream:
byte_count += f.write("\nstream\n")
byte_count += f.write(stream)
byte_count += f.write("\nendstream")
return byte_count + f.write("\nendobj\n")
def encode(data):
from base64 import a85encode
from zlib import compress
if hasattr(data, "encode"):
data = data.encode()
return a85encode(compress(data), adobe=True, wrapcol=250)[2:].decode()
page_size_pt = 1000 * self.mm_to_pt * self.page_size
root = {"Type": "Pages", "MediaBox": [0, 0, page_size_pt.x, page_size_pt.y], "Kids": list()}
catalog = {"Type": "Catalog", "Pages": root}
font = {
"Type": "Font", "Subtype": "Type1", "Name": "F1",
"BaseFont": "Helvetica", "Encoding": "MacRomanEncoding"}
dl = [length * self.style.line_width * 1000 for length in (1, 4, 9)]
format_style = {
'SOLID': list(), 'DOT': [dl[0], dl[1]], 'DASH': [dl[1], dl[2]],
'LONGDASH': [dl[2], dl[1]], 'DASHDOT': [dl[2], dl[1], dl[0], dl[1]]}
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
styles = {
"Gtext": {"ca": self.style.text_color[3], "Font": [font, 1000 * self.text_size]},
"Gsticker": {"ca": self.style.sticker_fill[3]}}
for name in ("outer", "convex", "concave", "freestyle"):
gs = {
"LW": self.style.line_width * 1000 * getattr(self.style, name + "_width"),
"CA": getattr(self.style, name + "_color")[3],
"D": [format_style[getattr(self.style, name + "_style")], 0]}
styles["G" + name] = gs
for name in ("outbg", "inbg"):
gs = {
"LW": self.style.line_width * 1000 * getattr(self.style, name + "_width"),
"CA": getattr(self.style, name + "_color")[3],
"D": [format_style['SOLID'], 0]}
styles["G" + name] = gs
objects = [root, catalog, font]
objects.extend(styles.values())
for page in mesh.pages:
commands = ["{0:.6f} 0 0 {0:.6f} 0 0 cm".format(self.mm_to_pt)]
resources = {"Font": {"F1": font}, "ExtGState": styles, "XObject": dict()}
for island in page.islands:
commands.append("q 1 0 0 1 {0.x:.6f} {0.y:.6f} cm".format(1000*(self.margin + island.pos)))
if island.embedded_image:
identifier = "Im{}".format(len(resources["XObject"]) + 1)
commands.append(self.command_image.format(1000 * island.bounding_box, identifier))
objects.append(island.embedded_image)
resources["XObject"][identifier] = island.embedded_image
if island.title:
commands.append(self.command_label.format(
size=1000*self.text_size,
x=500 * (island.bounding_box.x - self.text_width(island.title)),
y=1000 * 0.2 * self.text_size,
label=island.title))
data_markers, data_stickerfill, data_outer, data_convex, data_concave, data_freestyle = (list() for i in range(6))
for marker in island.markers:
if isinstance(marker, Sticker):
data_stickerfill.append(line_through(marker.vertices) + "f")
if marker.text:
data_markers.append(self.command_sticker.format(
label=marker.text,
pos=1000*marker.center,
mat=marker.rot,
align=-500 * self.text_width(marker.text, marker.width),
size=1000*marker.width))
elif isinstance(marker, Arrow):
size = 1000 * marker.size
position = 1000 * (marker.center + marker.size * marker.rot @ M.Vector((0, -0.9)))
data_markers.append(self.command_arrow.format(
index=marker.text,
arrow_pos=1000 * marker.center,
pos=position - 1000 * M.Vector((0.5 * self.text_width(marker.text), 0.4 * self.text_size)),
mat=size * marker.rot,
size=size))
elif isinstance(marker, NumberAlone):
data_markers.append(self.command_number.format(
label=marker.text,
pos=1000*marker.center,
size=1000*marker.size))
outer_edges = set(island.boundary)
while outer_edges:
data_loop = list()
uvedge = outer_edges.pop()
while 1:
if uvedge.sticker:
data_loop.extend(uvedge.sticker.vertices[1:])
else:
vertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
data_loop.append(vertex)
uvedge = uvedge.neighbor_right
try:
outer_edges.remove(uvedge)
except KeyError:
break
data_outer.append(line_through(data_loop) + "s")
for loop, uvedge in island.edges.items():
edge = mesh.edges[loop.edge]
if edge.is_cut(uvedge.uvface.face) and not uvedge.sticker:
continue
data_uvedge = line_through((uvedge.va, uvedge.vb)) + "S"
if edge.freestyle:
data_freestyle.append(data_uvedge)
# each uvedge exists in two opposite-oriented variants; we want to add each only once
if uvedge.sticker or uvedge.uvface.flipped != (id(uvedge.va) > id(uvedge.vb)):
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
if edge.angle > self.angle_epsilon:
data_convex.append(data_uvedge)
elif edge.angle < -self.angle_epsilon:
data_concave.append(data_uvedge)
if island.is_inside_out:
data_convex, data_concave = data_concave, data_convex
if data_stickerfill and self.style.sticker_fill[3] > 0:
commands.append("/Gsticker gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} rg".format(self.style.sticker_fill))
commands.extend(data_stickerfill)
if data_freestyle:
commands.append("/Gfreestyle gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.freestyle_color))
commands.extend(data_freestyle)
if (data_convex or data_concave) and not self.pure_net and self.style.use_inbg:
commands.append("/Ginbg gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.inbg_color))
commands.extend(chain(data_convex, data_concave))
if data_convex:
commands.append("/Gconvex gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.convex_color))
commands.extend(data_convex)
if data_concave:
commands.append("/Gconcave gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.concave_color))
commands.extend(data_concave)
if data_outer:
if not self.pure_net and self.style.use_outbg:
commands.append("/Goutbg gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.outbg_color))
commands.extend(data_outer)
commands.append("/Gouter gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.outer_color))
commands.extend(data_outer)
commands.append("/Gtext gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} rg".format(self.style.text_color))
commands.extend(data_markers)
commands.append("Q")
content = "\n".join(commands)
page = {"Type": "Page", "Parent": root, "Contents": content, "Resources": resources}
root["Kids"].append(page)
objects.extend((page, content))
root["Count"] = len(root["Kids"])
with open(filename, "w+") as f:
xref_table = list()
position = f.write("%PDF-1.4\n")
for index, obj in enumerate(objects, 1):
xref_table.append(position)
position += write_object(index, obj, objects, f)
xref_pos = position
f.write("xref_table\n0 {}\n".format(len(xref_table) + 1))
f.write("{:010} {:05} f\n".format(0, 65536))
for position in xref_table:
f.write("{:010} {:05} n\n".format(position, 0))
f.write("trailer\n")
f.write(format_dict({"Size": len(xref_table), "Root": catalog}, objects))
f.write("\nstartxref\n{}\n%%EOF\n".format(xref_pos))
command_label = "/Gtext gs BT {x:.6f} {y:.6f} Td ({label}) Tj ET"
command_image = "q {0.x:.6f} 0 0 {0.y:.6f} 0 0 cm 1 0 0 -1 0 1 cm /{1} Do Q"
command_sticker = "q {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {pos.x:.6f} {pos.y:.6f} cm BT {align:.6f} 0 Td /F1 {size:.6f} Tf ({label}) Tj ET Q"
command_arrow = "q BT {pos.x:.6f} {pos.y:.6f} Td /F1 {size:.6f} Tf ({index}) Tj ET {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {arrow_pos.x:.6f} {arrow_pos.y:.6f} cm 0 0 m 1 -1 l 0 -0.25 l -1 -1 l f Q"
command_number = "q {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {pos.x:.6f} {pos.y:.6f} cm BT /F1 {size:.6f} Tf ({label}) Tj ET Q"
class Unfold(bpy.types.Operator):
"""Blender Operator: unfold the selected object."""
bl_idname = "mesh.unfold"
bl_label = "Unfold"
bl_description = "Mark seams so that the mesh can be exported as a paper model"
bl_options = {'REGISTER', 'UNDO'}
edit: bpy.props.BoolProperty(default=False, options={'HIDDEN'})
priority_effect_convex: bpy.props.FloatProperty(
name="Priority Convex", description="Priority effect for edges in convex angles",
default=default_priority_effect['CONVEX'], soft_min=-1, soft_max=10, subtype='FACTOR')
priority_effect_concave: bpy.props.FloatProperty(
name="Priority Concave", description="Priority effect for edges in concave angles",
default=default_priority_effect['CONCAVE'], soft_min=-1, soft_max=10, subtype='FACTOR')
priority_effect_length: bpy.props.FloatProperty(
name="Priority Length", description="Priority effect of edge length",
default=default_priority_effect['LENGTH'], soft_min=-10, soft_max=1, subtype='FACTOR')
do_create_uvmap: bpy.props.BoolProperty(
name="Create UVMap", description="Create a new UV Map showing the islands and page layout", default=False)
object = None
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == "MESH"
def draw(self, context):
layout = self.layout
col = layout.column()
col.active = not self.object or len(self.object.data.uv_layers) < 8
col.prop(self.properties, "do_create_uvmap")
layout.label(text="Edge Cutting Factors:")
col = layout.column(align=True)
col.label(text="Face Angle:")
col.prop(self.properties, "priority_effect_convex", text="Convex")
col.prop(self.properties, "priority_effect_concave", text="Concave")
layout.prop(self.properties, "priority_effect_length", text="Edge Length")
def execute(self, context):
sce = bpy.context.scene
settings = sce.paper_model
recall_mode = context.object.mode
bpy.ops.object.mode_set(mode='EDIT')
self.object = context.object
cage_size = M.Vector((settings.output_size_x, settings.output_size_y))
priority_effect = {
'CONVEX': self.priority_effect_convex,
'CONCAVE': self.priority_effect_concave,
'LENGTH': self.priority_effect_length}
try:
unfolder = Unfolder(self.object)
unfolder.do_create_uvmap = self.do_create_uvmap
scale = sce.unit_settings.scale_length / settings.scale
unfolder.prepare(cage_size, priority_effect, scale, settings.limit_by_page)
unfolder.mesh.mark_cuts()
except UnfoldError as error:
self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0])
error.mesh_select()
bpy.ops.object.mode_set(mode=recall_mode)
return {'CANCELLED'}
mesh = self.object.data
mesh.update()
if mesh.paper_island_list:
unfolder.copy_island_names(mesh.paper_island_list)
island_list = mesh.paper_island_list
attributes = {item.label: (item.abbreviation, item.auto_label, item.auto_abbrev) for item in island_list}
island_list.clear() # remove previously defined islands
for island in unfolder.mesh.islands:
# add islands to UI list and set default descriptions
list_item = island_list.add()
# add faces' IDs to the island
for face in island.faces:
lface = list_item.faces.add()
lface.id = face.index
list_item["label"] = island.label
list_item["abbreviation"], list_item["auto_label"], list_item["auto_abbrev"] = attributes.get(
island.label,
(island.abbreviation, True, True))
island_item_changed(list_item, context)
mesh.paper_island_index = -1
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
bpy.ops.object.mode_set(mode=recall_mode)
return {'FINISHED'}
class ClearAllSeams(bpy.types.Operator):
"""Blender Operator: clear all seams of the active Mesh and all its unfold data"""
bl_idname = "mesh.clear_all_seams"
bl_label = "Clear All Seams"
bl_description = "Clear all the seams and unfolded islands of the active object"
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == 'MESH'
def execute(self, context):
ob = context.active_object
mesh = ob.data
for edge in mesh.edges:
edge.use_seam = False
mesh.paper_island_list.clear()
return {'FINISHED'}
def page_size_preset_changed(self, context):
"""Update the actual document size to correct values"""
if hasattr(self, "limit_by_page") and not self.limit_by_page:
return
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
if self.page_size_preset == 'A4':
self.output_size_x = 0.210
self.output_size_y = 0.297
elif self.page_size_preset == 'A3':
self.output_size_x = 0.297
self.output_size_y = 0.420
elif self.page_size_preset == 'US_LETTER':
self.output_size_x = 0.216
self.output_size_y = 0.279
elif self.page_size_preset == 'US_LEGAL':
self.output_size_x = 0.216
self.output_size_y = 0.356
class PaperModelStyle(bpy.types.PropertyGroup):
line_styles = [
('SOLID', "Solid (----)", "Solid line"),
('DOT', "Dots (. . .)", "Dotted line"),
('DASH', "Short Dashes (- - -)", "Solid line"),
('LONGDASH', "Long Dashes (-- --)", "Solid line"),
('DASHDOT', "Dash-dotted (-- .)", "Solid line")
]
outer_color: bpy.props.FloatVectorProperty(
name="Outer Lines", description="Color of net outline",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
outer_style: bpy.props.EnumProperty(
name="Outer Lines Drawing Style", description="Drawing style of net outline",
default='SOLID', items=line_styles)
line_width: bpy.props.FloatProperty(
name="Base Lines Thickness", description="Base thickness of net lines, each actual value is a multiple of this length",
default=1e-4, min=0, soft_max=5e-3, precision=5, step=1e-2, subtype="UNSIGNED", unit="LENGTH")
outer_width: bpy.props.FloatProperty(
name="Outer Lines Thickness", description="Relative thickness of net outline",
default=3, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
use_outbg: bpy.props.BoolProperty(
name="Highlight Outer Lines", description="Add another line below every line to improve contrast",
outbg_color: bpy.props.FloatVectorProperty(
name="Outer Highlight", description="Color of the highlight for outer lines",
default=(1.0, 1.0, 1.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
outbg_width: bpy.props.FloatProperty(
name="Outer Highlight Thickness", description="Relative thickness of the highlighting lines",
default=5, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
convex_color: bpy.props.FloatVectorProperty(
name="Inner Convex Lines", description="Color of lines to be folded to a convex angle",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
convex_style: bpy.props.EnumProperty(
name="Convex Lines Drawing Style", description="Drawing style of lines to be folded to a convex angle",
default='DASH', items=line_styles)
convex_width: bpy.props.FloatProperty(
name="Convex Lines Thickness", description="Relative thickness of concave lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
concave_color: bpy.props.FloatVectorProperty(
name="Inner Concave Lines", description="Color of lines to be folded to a concave angle",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
concave_style: bpy.props.EnumProperty(
name="Concave Lines Drawing Style", description="Drawing style of lines to be folded to a concave angle",
default='DASHDOT', items=line_styles)
concave_width: bpy.props.FloatProperty(
name="Concave Lines Thickness", description="Relative thickness of concave lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
freestyle_color: bpy.props.FloatVectorProperty(
name="Freestyle Edges", description="Color of lines marked as Freestyle Edge",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
freestyle_style: bpy.props.EnumProperty(
name="Freestyle Edges Drawing Style", description="Drawing style of Freestyle Edges",
default='SOLID', items=line_styles)
freestyle_width: bpy.props.FloatProperty(
name="Freestyle Edges Thickness", description="Relative thickness of Freestyle edges",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
use_inbg: bpy.props.BoolProperty(
name="Highlight Inner Lines", description="Add another line below every line to improve contrast",
inbg_color: bpy.props.FloatVectorProperty(
name="Inner Highlight", description="Color of the highlight for inner lines",
default=(1.0, 1.0, 1.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
inbg_width: bpy.props.FloatProperty(
name="Inner Highlight Thickness", description="Relative thickness of the highlighting lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
sticker_fill: bpy.props.FloatVectorProperty(
name="Tabs Fill", description="Fill color of sticking tabs",
default=(0.9, 0.9, 0.9, 1.0), min=0, max=1, subtype='COLOR', size=4)
text_color: bpy.props.FloatVectorProperty(
name="Text Color", description="Color of all text used in the document",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
bpy.utils.register_class(PaperModelStyle)
class ExportPaperModel(bpy.types.Operator):
"""Blender Operator: save the selected object's net and optionally bake its texture"""
bl_idname = "export_mesh.paper_model"
bl_label = "Export Paper Model"
bl_description = "Export the selected object's net and optionally bake its texture"
filepath: bpy.props.StringProperty(
name="File Path", description="Target file to save the SVG", options={'SKIP_SAVE'})
filename: bpy.props.StringProperty(
name="File Name", description="Name of the file", options={'SKIP_SAVE'})
directory: bpy.props.StringProperty(
name="Directory", description="Directory of the file", options={'SKIP_SAVE'})
page_size_preset: bpy.props.EnumProperty(
name="Page Size", description="Size of the exported document",
default='A4', update=page_size_preset_changed, items=global_paper_sizes)
output_size_x: bpy.props.FloatProperty(
name="Page Width", description="Width of the exported document",
default=0.210, soft_min=0.105, soft_max=0.841, subtype="UNSIGNED", unit="LENGTH")
output_size_y: bpy.props.FloatProperty(
name="Page Height", description="Height of the exported document",
default=0.297, soft_min=0.148, soft_max=1.189, subtype="UNSIGNED", unit="LENGTH")
output_margin: bpy.props.FloatProperty(
name="Page Margin", description="Distance from page borders to the printable area",
default=0.005, min=0, soft_max=0.1, step=0.1, subtype="UNSIGNED", unit="LENGTH")
output_type: bpy.props.EnumProperty(
name="Textures", description="Source of a texture for the model",
default='NONE', items=[
('NONE', "No Texture", "Export the net only"),
('TEXTURE', "From Materials", "Render the diffuse color and all painted textures"),
('AMBIENT_OCCLUSION', "Ambient Occlusion", "Render the Ambient Occlusion pass"),
('RENDER', "Full Render", "Render the material in actual scene illumination"),
('SELECTED_TO_ACTIVE', "Selected to Active", "Render all selected surrounding objects as a texture")