Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
print("version 3 imported")
import bpy
import time
import copy
from mathutils import *
from math import pi, sin, degrees, radians, atan2, copysign, cos, acos
from math import floor, ceil
from random import random, uniform, seed, choice, getstate, setstate, randint
from collections import deque, OrderedDict
tau = 2 * pi
# Initialise the split error and axis vectors
splitError = 0.0
zAxis = Vector((0, 0, 1))
yAxis = Vector((0, 1, 0))
xAxis = Vector((1, 0, 0))
# This class will contain a part of the tree which needs to be extended and the required tree parameters
class stemSpline:
def __init__(self, spline, curvature, curvatureV, attractUp, segments, maxSegs, segLength, childStems, stemRadStart, stemRadEnd, splineNum, ofst, pquat):
self.spline = spline
self.p = spline.bezier_points[-1]
self.curv = curvature
self.curvV = curvatureV
self.seg = segments
self.segMax = maxSegs
self.segL = segLength
self.children = childStems
self.radS = stemRadStart
self.radE = stemRadEnd
self.splN = splineNum
self.offsetLen = ofst
self.patentQuat = pquat
self.curvSignx = 1
self.curvSigny = 1
# This method determines the quaternion of the end of the spline
def quat(self):
if len(self.spline.bezier_points) == 1:
return ((self.spline.bezier_points[-1].handle_right - self.spline.bezier_points[-1].co).normalized()).to_track_quat('Z', 'Y')
return ((self.spline.bezier_points[-1].co - self.spline.bezier_points[-2].co).normalized()).to_track_quat('Z', 'Y')
# Determine the declination
def dec(self):
tempVec = zAxis.copy()
tempVec.rotate(self.quat())
return zAxis.angle(tempVec)
# Update the end of the spline and increment the segment count
def updateEnd(self):
self.p = self.spline.bezier_points[-1]
self.seg += 1
# This class contains the data for a point where a new branch will sprout
class childPoint:
def __init__(self, coords, quat, radiusPar, offset, sOfst, lengthPar, parBone):
self.co = coords
self.quat = quat
self.radiusPar = radiusPar
self.offset = offset
self.lengthPar = lengthPar
self.parBone = parBone
# This function calculates the shape ratio as defined in the paper
def shapeRatio(shape, ratio, pruneWidthPeak=0.0, prunePowerHigh=0.0, prunePowerLow=0.0, custom=None):
return 0.05 + 0.95*ratio #0.2 + 0.8*ratio
elif shape == 1:
return 0.2 + 0.8*sin(pi*ratio)
elif shape == 2:
return 0.2 + 0.8*sin(0.5*pi*ratio)
elif shape == 3:
return 1.0
elif shape == 4:
return 0.5 + 0.5*ratio
elif shape == 5:
if ratio <= 0.7:
return 0.05 + 0.95 * ratio/0.7
return 0.05 + 0.95 * (1.0 - ratio)/0.3
elif shape == 6:
return 1.0 - 0.8*ratio
elif shape == 7:
if ratio <= 0.7:
return 0.5 + 0.5*ratio/0.7
else:
return 0.5 + 0.5*(1.0 - ratio)/0.3
elif shape == 8:
r = 1 - ratio
if r == 1:
v = custom[3]
elif r >= custom[2]:
pos = (r - custom[2]) / (1 - custom[2])
#if (custom[0] >= custom[1] <= custom[3]) or (custom[0] <= custom[1] >= custom[3]):
pos = pos * pos
v = (pos * (custom[3] - custom[1])) + custom[1]
else:
pos = r / custom[2]
#if (custom[0] >= custom[1] <= custom[3]) or (custom[0] <= custom[1] >= custom[3]):
pos = 1 - (1 - pos) * (1 - pos)
v = (pos * (custom[1] - custom[0])) + custom[0]
return v
elif shape == 9:
if (ratio < (1 - pruneWidthPeak)) and (ratio > 0.0):
return ((ratio/(1 - pruneWidthPeak))**prunePowerHigh)
elif (ratio >= (1 - pruneWidthPeak)) and (ratio < 1.0):
return (((1 - ratio)/pruneWidthPeak)**prunePowerLow)
else:
return 0.0
elif shape == 10:
return 0.5 + 0.5 * (1 - ratio)
# This function determines the actual number of splits at a given point using the global error
def splits(n):
global splitError
nEff = round(n + splitError, 0)
def splits2(n):
r = random()
if r < n:
return 1
else:
return 0
def splits3(n):
ni = int(n)
nf = n - int(n)
r = random()
if r < nf:
return ni + 1
else:
return ni + 0
# Determine the declination from a given quaternion
def declination(quat):
tempVec = zAxis.copy()
tempVec.rotate(quat)
tempVec.normalize()
return degrees(acos(tempVec.z))
# Determines the angle of upward rotation of a segment due to attractUp
def curveUp(attractUp, quat, curveRes):
tempVec = yAxis.copy()
tempVec.rotate(quat)
tempVec.normalize()
dec = radians(declination(quat))
curveUpAng = attractUp*dec*abs(tempVec.z)/curveRes
if (-dec + curveUpAng) < -pi:
curveUpAng = -pi + dec
if (dec - curveUpAng) < 0:
curveUpAng = dec
return curveUpAng
# Evaluate a bezier curve for the parameter 0<=t<=1 along its length
def evalBez(p1, h1, h2, p2, t):
return ((1-t)**3)*p1 + (3*t*(1-t)**2)*h1 + (3*(t**2)*(1-t))*h2 + (t**3)*p2
# Evaluate the unit tangent on a bezier curve for t
def evalBezTan(p1, h1, h2, p2, t):
return ((-3*(1-t)**2)*p1 + (-6*t*(1-t) + 3*(1-t)**2)*h1 + (-3*(t**2) + 6*t*(1-t))*h2 + (3*t**2)*p2).normalized()
# Determine the range of t values along a splines length where child stems are formed
def findChildPoints(stemList, numChild):
numPoints = sum([len(n.spline.bezier_points) for n in stemList])
numSplines = len(stemList)
numSegs = numPoints - numSplines
numPerSeg = numChild/numSegs
numMain = round(numPerSeg*stemList[0].segMax, 0)
return [(a+1)/(numMain) for a in range(int(numMain))]
def findChildPoints2(stemList, numChild):
return [(a+1)/(numChild) for a in range(int(numChild))]
# Find the coordinates, quaternion and radius for each t on the stem
def interpStem1(stem, tVals, lPar, parRad):
points = stem.spline.bezier_points
numPoints = len(points)
checkVal = (stem.segMax - (numPoints - 1)) / stem.segMax
# Loop through all the parametric values to be determined
for t in tVals:
if t == 1.0:
index = numPoints-2
coord = points[-1].co
quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z', 'Y')
radius = points[-1].radius
tempList.append(childPoint(coord, quat, (parRad, radius), t, lPar, 'bone'+(str(stem.splN).rjust(3, '0'))+'.'+(str(index).rjust(3, '0'))))
elif (t >= checkVal) and (t < 1.0):
scaledT = (t - checkVal) / ((1 - checkVal) + .0001)
length = (numPoints-1)*scaledT
index = int(length)
tTemp = length - index
coord = evalBez(points[index].co, points[index].handle_right, points[index+1].handle_left, points[index+1].co, tTemp)
quat = (evalBezTan(points[index].co, points[index].handle_right, points[index+1].handle_left, points[index+1].co, tTemp)).to_track_quat('Z', 'Y')
radius = (1-tTemp)*points[index].radius + tTemp*points[index+1].radius # Not sure if this is the parent radius at the child point or parent start radius
tempList.append(childPoint(coord, quat, (parRad, radius), t, lPar, 'bone'+(str(stem.splN).rjust(3, '0'))+'.'+(str(index).rjust(3, '0'))))
return tempList
def interpStem(stem, tVals, lPar, parRad, maxOffset, baseSize):
numSegs = len(points) - 1
stemLen = stem.segL * numSegs
checkBottom = stem.offsetLen / maxOffset
checkTop = checkBottom + (stemLen / maxOffset)
# Loop through all the parametric values to be determined
if (t >= checkBottom) and (t <= checkTop) and (t < 1.0):
scaledT = (t - checkBottom) / (checkTop - checkBottom)
ofst = ((t - baseSize) / (checkTop - baseSize)) * (1 - baseSize) + baseSize
length = numSegs * scaledT
tTemp = length - index
coord = evalBez(points[index].co, points[index].handle_right, points[index+1].handle_left, points[index+1].co, tTemp)
quat = (evalBezTan(points[index].co, points[index].handle_right, points[index+1].handle_left, points[index+1].co, tTemp)).to_track_quat('Z', 'Y')
radius = (1-tTemp)*points[index].radius + tTemp*points[index+1].radius # Not sure if this is the parent radius at the child point or parent start radius
tempList.append(childPoint(coord, quat, (parRad, radius), t, ofst, lPar, 'bone'+(str(stem.splN).rjust(3, '0'))+'.'+(str(index).rjust(3, '0'))))
#add stem at tip
index = numSegs-1
coord = points[-1].co
quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z', 'Y')
radius = points[-1].radius
tempList.append(childPoint(coord, quat, (parRad, radius), 1, 1, lPar, 'bone'+(str(stem.splN).rjust(3, '0'))+'.'+(str(index).rjust(3, '0'))))
# round down bone number
def roundBone(bone, step):
bone_i = bone[:-3]
bone_n = int(bone[-3:])
bone_n = int(bone_n / step) * step
return bone_i + str(bone_n).rjust(3, '0')
# Convert a list of degrees to radians
def toRad(list):
return [radians(a) for a in list]
def anglemean(a1, a2, fac):
x1 = sin(a1)
y1 = cos(a1)
x2 = sin(a2)
y2 = cos(a2)
x = x1 + (x2 - x1) * fac
y = y1 + (y2 - y1) * fac
return atan2(x, y)
# This is the function which extends (or grows) a given stem.
def growSpline(n, stem, numSplit, splitAng, splitAngV, splineList, hType, splineToBone, closeTip, kp, splitHeight, outAtt, stemsegL,
lenVar, taperCrown, boneStep, rotate, rotateV):
#curv at base
sCurv = stem.curv
if (n == 0) and (kp <= splitHeight):
sCurv = 0.0
#curveangle = sCurv + (uniform(-stem.curvV, stem.curvV) * kp)
#curveVar = uniform(-stem.curvV, stem.curvV) * kp
curveangle = sCurv + (uniform(0, stem.curvV) * kp * stem.curvSignx)
curveVar = uniform(0, stem.curvV) * kp * stem.curvSigny
stem.curvSignx *= -1
stem.curvSigny *= -1
curveVarMat = Matrix.Rotation(curveVar, 3, 'Y')
# First find the current direction of the stem
dir = stem.quat()
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
if n == 0:
adir = zAxis.copy()
adir.rotate(dir)
ry = atan2(adir[0], adir[2])
adir.rotate(Euler((0, -ry, 0)))
rx = atan2(adir[1], adir[2])
dir = Euler((-rx, ry, 0), 'XYZ')
#length taperCrown
if n == 0:
dec = declination(dir) / 180
dec = dec ** 2
tf = 1 - (dec * taperCrown * 30)
tf = max(.1, tf)
else:
tf = 1.0
#outward attraction
if (n > 0) and (kp > 0) and (outAtt > 0):
p = stem.p.co.copy()
d = atan2(p[0], -p[1]) + tau
edir = dir.to_euler('XYZ', Euler((0, 0, d), 'XYZ'))
d = anglemean(edir[2], d, (kp * outAtt))
dirv = Euler((edir[0], edir[1], d), 'XYZ')
dir = dirv.to_quaternion()
#parent weight
# parWeight = kp * degrees(stem.curvV) * pi
# #parWeight = parWeight * kp
# #parWeight = kp
# if (n > 1) and (parWeight != 0):
# d1 = zAxis.copy()
# d2 = zAxis.copy()
# d1.rotate(dir)
# d2.rotate(stem.patentQuat)
#
# x = d1[0] + ((d2[0] - d1[0]) * parWeight)
# y = d1[1] + ((d2[1] - d1[1]) * parWeight)
# z = d1[2] + ((d2[2] - d1[2]) * parWeight)
#
# d3 = Vector((x, y, z))
# dir = d3.to_track_quat('Z', 'Y')
# If the stem splits, we need to add new splines etc
if numSplit > 0:
# Get the curve data
cuData = stem.spline.id_data.name
cu = bpy.data.curves[cuData]
#calc split angles
angle = choice([-1, 1]) * (splitAng + uniform(-splitAngV, splitAngV))
if n > 0:
#make branches flatter
angle *= max(1 - declination(dir) / 90, 0) * .67 + .33
spreadangle = choice([-1, 1]) * (splitAng + uniform(-splitAngV, splitAngV))
#branchRotMat = Matrix.Rotation(radians(uniform(0, 360)), 3, 'Z')
if not hasattr(stem, 'rLast'):
stem.rLast = radians(uniform(0, 360))
br = rotate[0] + uniform(-rotateV[0], rotateV[0])
branchRot = stem.rLast + br
branchRotMat = Matrix.Rotation(branchRot, 3, 'Z')
stem.rLast = branchRot
# Now for each split add the new spline and adjust the growth direction
for i in range(numSplit):
#find split scale
lenV = uniform(1 - lenVar, 1 + lenVar)
bScale = min(lenV * tf, 1)
newSpline = cu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (stem.p.co, 'VECTOR', 'VECTOR')
newPoint.radius = (stem.radS*(1 - stem.seg/stem.segMax) + stem.radE*(stem.seg/stem.segMax)) * bScale
# Here we make the new "sprouting" stems diverge from the current direction
divRotMat = Matrix.Rotation(angle + curveangle, 3, 'X')
#horizontal curvature variation
dirVec.rotate(curveVarMat)
if n == 0: #Special case for trunk splits
dirVec.rotate(branchRotMat)
ang = pi - ((tau) / (numSplit + 1)) * (i+1)
dirVec.rotate(Matrix.Rotation(ang, 3, 'Z'))
spreadMat = Matrix.Rotation(spreadangle, 3, 'Y')
if n != 0: #Special case for trunk splits
dirVec.rotate(spreadMat)
dirVec.rotate(dir)
# Introduce upward curvature
upRotAxis = xAxis.copy()
upRotAxis.rotate(dirVec.to_track_quat('Z', 'Y'))
curveUpAng = curveUp(stem.vertAtt, dirVec.to_track_quat('Z', 'Y'), stem.segMax)
upRotMat = Matrix.Rotation(-curveUpAng, 3, upRotAxis)
# Make the growth vec the length of a stem segment
dirVec.normalize()
#split length variation
stemL = stemsegL * lenV
dirVec *= stemL * tf
ofst = stem.offsetLen + (stem.segL * (len(stem.spline.bezier_points) - 1))
##dirVec *= stem.segL
Andrew Hale
committed
# Get the end point position
end_co = stem.p.co.copy()
# Add the new point and adjust its coords, handles and radius
newSpline.bezier_points.add()
newPoint = newSpline.bezier_points[-1]
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (end_co + dirVec, hType, hType)
newPoint.radius = (stem.radS*(1 - (stem.seg + 1)/stem.segMax) + stem.radE*((stem.seg + 1)/stem.segMax)) * bScale
if (stem.seg == stem.segMax-1) and closeTip:
newPoint.radius = 0.0
# If this isn't the last point on a stem, then we need to add it to the list of stems to continue growing
#print(stem.seg != stem.segMax, stem.seg, stem.segMax)
#if stem.seg != stem.segMax: # if probs not nessesary
nstem = stemSpline(newSpline, stem.curv, stem.curvV, stem.vertAtt, stem.seg+1, stem.segMax, stemL, stem.children,
stem.radS * bScale, stem.radE * bScale, len(cu.splines)-1, ofst, stem.quat())
nstem.splitlast = 1#numSplit #keep track of numSplit for next stem
nstem.rLast = branchRot + pi
splineList.append(nstem)
bone = 'bone'+(str(stem.splN)).rjust(3, '0')+'.'+(str(len(stem.spline.bezier_points)-2)).rjust(3, '0')
bone = roundBone(bone, boneStep[n])
splineToBone.append((bone, False, True, len(stem.spline.bezier_points)-2))
# The original spline also needs to keep growing so adjust its direction too
divRotMat = Matrix.Rotation(-angle + curveangle, 3, 'X')
#horizontal curvature variation
dirVec.rotate(curveVarMat)
if n == 0: #Special case for trunk splits
dirVec.rotate(branchRotMat)
#spread
spreadMat = Matrix.Rotation(-spreadangle, 3, 'Y')
if n != 0: #Special case for trunk splits
dirVec.rotate(spreadMat)
stem.splitlast = 1#numSplit #keep track of numSplit for next stem
else:
# If there are no splits then generate the growth direction without accounting for spreading of stems
dirVec = zAxis.copy()
divRotMat = Matrix.Rotation(curveangle, 3, 'X')
#horizontal curvature variation
dirVec.rotate(curveVarMat)
stem.splitlast = 0#numSplit #keep track of numSplit for next stem
# Introduce upward curvature
upRotAxis.rotate(dirVec.to_track_quat('Z', 'Y'))
curveUpAng = curveUp(stem.vertAtt, dirVec.to_track_quat('Z', 'Y'), stem.segMax)
upRotMat = Matrix.Rotation(-curveUpAng, 3, upRotAxis)
Andrew Hale
committed
# Get the end point position
end_co = stem.p.co.copy()
stem.spline.bezier_points.add()
newPoint = stem.spline.bezier_points[-1]
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (end_co + dirVec, hType, hType)
newPoint.radius = stem.radS*(1 - (stem.seg + 1)/stem.segMax) + stem.radE*((stem.seg + 1)/stem.segMax)
if (stem.seg == stem.segMax-1) and closeTip:
newPoint.radius = 0.0
# There are some cases where a point cannot have handles as VECTOR straight away, set these now.
if len(stem.spline.bezier_points) == 2:
tempPoint = stem.spline.bezier_points[0]
(tempPoint.handle_left_type, tempPoint.handle_right_type) = ('VECTOR', 'VECTOR')
# Update the last point in the spline to be the newly added one
stem.updateEnd()
#return splineList
def genLeafMesh(leafScale, leafScaleX, leafScaleT, leafScaleV, loc, quat, offset, index, downAngle, downAngleV, rotate, rotateV, oldRot,
bend, leaves, leafShape, leafangle, horzLeaves):
if leafShape == 'hex':
verts = [Vector((0, 0, 0)), Vector((0.5, 0, 1/3)), Vector((0.5, 0, 2/3)), Vector((0, 0, 1)), Vector((-0.5, 0, 2/3)), Vector((-0.5, 0, 1/3))]
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 0], [0, 3]]
faces = [[0, 1, 2, 3], [0, 3, 4, 5]]
elif leafShape == 'rect':
#verts = [Vector((1, 0, 0)), Vector((1, 0, 1)), Vector((-1, 0, 1)), Vector((-1, 0, 0))]
verts = [Vector((.5, 0, 0)), Vector((.5, 0, 1)), Vector((-.5, 0, 1)), Vector((-.5, 0, 0))]
edges = [[0, 1], [1, 2], [2, 3], [3, 0]]
faces = [[0, 1, 2, 3]]
elif leafShape == 'dFace':
verts = [Vector((.5, .5, 0)), Vector((.5, -.5, 0)), Vector((-.5, -.5, 0)), Vector((-.5, .5, 0))]
edges = [[0, 1], [1, 2], [2, 3], [3, 0]]
faces = [[0, 3, 2, 1]]
elif leafShape == 'dVert':
verts = [Vector((0, 0, 1))]
edges = []
faces = []
normal = Vector((0, 0, 1))
rotMat = Matrix.Rotation(oldRot, 3, 'Y')
rotMat = Matrix.Rotation(oldRot, 3, 'Z')
# If the -ve flag for rotate is used we need to find which side of the stem the last child point was and then grow in the opposite direction.
if rotate < 0.0:
oldRot = -copysign(rotate + uniform(-rotateV, rotateV), oldRot)
else:
# If the special -ve flag for leaves is used we need a different rotation of the leaf geometry
if leaves == -1:
#oldRot = 0
rotMat = Matrix.Rotation(0, 3, 'Y')
elif leaves < -1:
oldRot += rotate / (-leaves - 1)
else:
oldRot += rotate + uniform(-rotateV, rotateV)
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# if leaves < 0:
# rotMat = Matrix.Rotation(oldRot, 3, 'Y')
# else:
# rotMat = Matrix.Rotation(oldRot, 3, 'Z')
if leaves >= 0:
#downRotMat = Matrix.Rotation(downAngle+uniform(-downAngleV, downAngleV), 3, 'X')
if downAngleV > 0.0:
downV = -downAngleV * offset
else:
downV = uniform(-downAngleV, downAngleV)
downRotMat = Matrix.Rotation(downAngle + downV, 3, 'X')
#leaf scale variation
if (leaves < -1) and (rotate != 0):
f = 1 - abs((oldRot - (rotate / (-leaves - 1))) / (rotate / 2))
else:
f = offset
if leafScaleT < 0:
leafScale = leafScale * (1 - (1 - f) * -leafScaleT)
else:
leafScale = leafScale * (1 - f * leafScaleT)
leafScale = leafScale * uniform(1 - leafScaleV, 1 + leafScaleV)
if leafShape == 'dFace':
leafScale = leafScale * .1
# If the bending of the leaves is used we need to rotate them differently
normal = yAxis.copy()
orientationVec = zAxis.copy()
normal.rotate(quat)
orientationVec.rotate(quat)
thetaPos = atan2(loc.y, loc.x)
thetaBend = thetaPos - atan2(normal.y, normal.x)
rotateZ = Matrix.Rotation(bend*thetaBend, 3, 'Z')
normal.rotate(rotateZ)
orientationVec.rotate(rotateZ)
phiBend = atan2((normal.xy).length, normal.z)
orientation = atan2(orientationVec.y, orientationVec.x)
rotateZOrien = Matrix.Rotation(orientation, 3, 'X')
rotateX = Matrix.Rotation(bend*phiBend, 3, 'Z')
rotateZOrien2 = Matrix.Rotation(-orientation, 3, 'X')
# For each of the verts we now rotate and scale them, then append them to the list to be added to the mesh
for v in verts:
v.z *= leafScale
v.rotate(Euler((0, 0, radians(180))))
#leafangle
v.rotate(Matrix.Rotation(radians(-leafangle), 3, 'X'))
if rotate < 0:
v.rotate(Euler((0, 0, radians(90))))
if oldRot < 0:
v.rotate(Euler((0, 0, radians(180))))
if (leaves > 0) and (rotate > 0) and horzLeaves:
nRotMat = Matrix.Rotation(-oldRot + rotate, 3, 'Z')
v.rotate(nRotMat)
if leaves > 0:
v.rotate(downRotMat)
v.rotate(rotMat)
v.rotate(quat)
if (bend != 0.0) and (leaves > 0):
# Correct the rotation
v.rotate(rotateZ)
v.rotate(rotateZOrien)
v.rotate(rotateX)
v.rotate(rotateZOrien2)
if leafShape == 'dVert':
normal = verts[0]
normal.normalize()
v = loc
vertsList.append([v.x, v.y, v.z])
else:
for v in verts:
v += loc
vertsList.append([v.x, v.y, v.z])
for f in faces:
facesList.append([f[0] + index, f[1] + index, f[2] + index, f[3] + index])
return vertsList, facesList, normal, oldRot
Brendon Murphy
committed
def create_armature(armAnim, leafP, cu, frameRate, leafMesh, leafObj, leafVertSize, leaves, levelCount, splineToBone,
treeOb, wind, gust, gustF, af1, af2, af3, leafAnim, loopFrames, previewArm, armLevels, makeMesh, boneStep):
Brendon Murphy
committed
arm = bpy.data.armatures.new('tree')
armOb = bpy.data.objects.new('treeArm', arm)
bpy.context.scene.objects.link(armOb)
# Create a new action to store all animation
newAction = bpy.data.actions.new(name='windAction')
armOb.animation_data_create()
armOb.animation_data.action = newAction
arm.draw_type = 'STICK'
arm.use_deform_delay = True
# Add the armature modifier to the curve
armMod = treeOb.modifiers.new('windSway', 'ARMATURE')
if previewArm:
armMod.show_viewport = False
arm.draw_type = 'WIRE'
treeOb.hide = True
armMod.use_apply_on_spline = True
Brendon Murphy
committed
armMod.object = armOb
armMod.use_bone_envelopes = True
armMod.use_vertex_groups = False # curves don't have vertex groups (yet)
Brendon Murphy
committed
# If there are leaves then they need a modifier
if leaves:
armMod = leafObj.modifiers.new('windSway', 'ARMATURE')
armMod.object = armOb
armMod.use_bone_envelopes = False
armMod.use_vertex_groups = True
Brendon Murphy
committed
# Make sure all objects are deselected (may not be required?)
for ob in bpy.data.objects:
ob.select = False
fps = bpy.context.scene.render.fps
animSpeed = (24 / fps) * frameRate
Brendon Murphy
committed
# Set the armature as active and go to edit mode to add bones
bpy.context.scene.objects.active = armOb
bpy.ops.object.mode_set(mode='EDIT')
# For all the splines in the curve we need to add bones at each bezier point
for i, parBone in enumerate(splineToBone):
if (i < levelCount[armLevels]) or (armLevels == -1) or (not makeMesh):
s = cu.splines[i]
b = None
# Get some data about the spline like length and number of points
numPoints = len(s.bezier_points) - 1
#find branching level
level = 0
for l, c in enumerate(levelCount):
if i < c:
level = l
break
level = min(level, 3)
step = boneStep[level]
# Calculate things for animation
Brendon Murphy
committed
if armAnim:
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
splineL = numPoints * ((s.bezier_points[0].co - s.bezier_points[1].co).length)
# Set the random phase difference of the animation
bxOffset = uniform(0, tau)
byOffset = uniform(0, tau)
# Set the phase multiplier for the spline
#bMult_r = (s.bezier_points[0].radius / max(splineL, 1e-6)) * (1 / 15) * (1 / frameRate)
#bMult = degrees(bMult_r) # This shouldn't have to be in degrees but it looks much better in animation
bMult = (1 / max(splineL ** .5, 1e-6)) * (1 / 4)
#print((1 / bMult) * tau) #print wavelength in frames
windFreq1 = bMult * animSpeed
windFreq2 = 0.7 * bMult * animSpeed
if loopFrames != 0:
bMult_l = 1 / (loopFrames / tau)
fRatio = max(1, round(windFreq1 / bMult_l))
fgRatio = max(1, round(windFreq2 / bMult_l))
windFreq1 = fRatio * bMult_l
windFreq2 = fgRatio * bMult_l
# For all the points in the curve (less the last) add a bone and name it by the spline it will affect
nx = 0
for n in range(0, numPoints, step):
oldBone = b
boneName = 'bone' + (str(i)).rjust(3, '0') + '.' + (str(n)).rjust(3, '0')
b = arm.edit_bones.new(boneName)
b.head = s.bezier_points[n].co
nx += step
nx = min(nx, numPoints)
b.tail = s.bezier_points[nx].co
b.head_radius = s.bezier_points[n].radius
b.tail_radius = s.bezier_points[n + 1].radius
b.envelope_distance = 0.001
# # If there are leaves then we need a new vertex group so they will attach to the bone
# if not leafAnim:
# if (len(levelCount) > 1) and (i >= levelCount[-2]) and leafObj:
# leafObj.vertex_groups.new(boneName)
# elif (len(levelCount) == 1) and leafObj:
# leafObj.vertex_groups.new(boneName)
# If this is first point of the spline then it must be parented to the level above it
if n == 0:
if parBone:
b.parent = arm.edit_bones[parBone]
# Otherwise, we need to attach it to the previous bone in the spline
else:
b.parent = oldBone
b.use_connect = True
# If there isn't a previous bone then it shouldn't be attached
if not oldBone:
b.use_connect = False
# Add the animation to the armature if required
if armAnim:
# Define all the required parameters of the wind sway by the dimension of the spline
#a0 = 4 * splineL * (1 - n / (numPoints + 1)) / max(s.bezier_points[n].radius, 1e-6)
a0 = 2 * (splineL / numPoints) * (1 - n / (numPoints + 1)) / max(s.bezier_points[n].radius, 1e-6)
a0 = a0 * min(step, numPoints)
#a0 = (splineL / numPoints) / max(s.bezier_points[n].radius, 1e-6)
a1 = (wind / 50) * a0
a2 = a1 * .65 #(windGust / 50) * a0 + a1 / 2
p = s.bezier_points[nx].co - s.bezier_points[n].co
p.normalize()
ag = (wind * gust / 50) * a0
a3 = -p[0] * ag
a4 = p[2] * ag
a1 = radians(a1)
a2 = radians(a2)
a3 = radians(a3)
a4 = radians(a4)
#wind bending
if loopFrames == 0:
swayFreq = gustF * (tau / fps) * frameRate #animSpeed # .075 # 0.02
else:
swayFreq = 1 / (loopFrames / tau)
# Prevent tree base from rotating
if (boneName == "bone000.000") or (boneName == "bone000.001"):
a1 = 0
a2 = 0
a3 = 0
a4 = 0
# Add new fcurves for each sway as well as the modifiers
swayX = armOb.animation_data.action.fcurves.new('pose.bones["' + boneName + '"].rotation_euler', 0)
swayY = armOb.animation_data.action.fcurves.new('pose.bones["' + boneName + '"].rotation_euler', 2)
swayXMod1 = swayX.modifiers.new(type='FNGENERATOR')
swayXMod2 = swayX.modifiers.new(type='FNGENERATOR')
swayYMod1 = swayY.modifiers.new(type='FNGENERATOR')
swayYMod2 = swayY.modifiers.new(type='FNGENERATOR')
# Set the parameters for each modifier
swayXMod1.amplitude = a1
swayXMod1.phase_offset = bxOffset
swayXMod1.phase_multiplier = windFreq1
swayXMod2.amplitude = a2
swayXMod2.phase_offset = 0.7 * bxOffset
swayXMod2.phase_multiplier = windFreq2
swayXMod2.use_additive = True
swayYMod1.amplitude = a1
swayYMod1.phase_offset = byOffset
swayYMod1.phase_multiplier = windFreq1
swayYMod2.amplitude = a2
swayYMod2.phase_offset = 0.7 * byOffset
swayYMod2.phase_multiplier = windFreq2
swayYMod2.use_additive = True
#wind bending
swayYMod3 = swayY.modifiers.new(type='FNGENERATOR')
swayYMod3.amplitude = a3
swayYMod3.phase_multiplier = swayFreq
swayYMod3.value_offset = .6 * a3
swayYMod3.use_additive = True
swayXMod3 = swayX.modifiers.new(type='FNGENERATOR')
swayXMod3.amplitude = a4
swayXMod3.phase_multiplier = swayFreq
swayXMod3.value_offset = .6 * a4
swayXMod3.use_additive = True
Brendon Murphy
committed
if leaves:
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
bonelist = [b.name for b in arm.edit_bones]
vertexGroups = OrderedDict()
for i, cp in enumerate(leafP):
# find leafs parent bone
leafParent = roundBone(cp.parBone, boneStep[armLevels])
idx = int(leafParent[4:-4])
while leafParent not in bonelist:
#find parent bone of parent bone
leafParent = splineToBone[idx]
idx = int(leafParent[4:-4])
if leafAnim:
bname = "leaf" + str(i)
b = arm.edit_bones.new(bname)
b.head = cp.co
b.tail = cp.co + Vector((0, 0, .02))
b.envelope_distance = 0.0
b.parent = arm.edit_bones[leafParent]
vertexGroups[bname] = [v.index for v in leafMesh.vertices[leafVertSize * i:(leafVertSize * i + leafVertSize)]]
if armAnim:
# Define all the required parameters of the wind sway by the dimension of the spline
a1 = wind * .25
a1 *= af1
bMult = (1 / animSpeed) * 6
bMult *= 1 / max(af2, .001)
ofstRand = af3
bxOffset = uniform(-ofstRand, ofstRand)
byOffset = uniform(-ofstRand, ofstRand)
# Add new fcurves for each sway as well as the modifiers
swayX = armOb.animation_data.action.fcurves.new('pose.bones["' + bname + '"].rotation_euler', 0)
swayY = armOb.animation_data.action.fcurves.new('pose.bones["' + bname + '"].rotation_euler', 2)
# Add keyframe so noise works
swayX.keyframe_points.add()
swayY.keyframe_points.add()
swayX.keyframe_points[0].co = (0, 0)
swayY.keyframe_points[0].co = (0, 0)
# Add noise modifiers
swayXMod = swayX.modifiers.new(type='NOISE')
swayYMod = swayY.modifiers.new(type='NOISE')
if loopFrames != 0:
swayXMod.use_restricted_range = True
swayXMod.frame_end = loopFrames
swayXMod.blend_in = 4
swayXMod.blend_out = 4
swayYMod.use_restricted_range = True
swayYMod.frame_end = loopFrames
swayYMod.blend_in = 4
swayYMod.blend_out = 4
swayXMod.scale = bMult
swayXMod.strength = a1
swayXMod.offset = bxOffset
swayYMod.scale = bMult
swayYMod.strength = a1
swayYMod.offset = byOffset
else:
if leafParent not in vertexGroups:
vertexGroups[leafParent] = []
vertexGroups[leafParent].extend([v.index for v in leafMesh.vertices[leafVertSize * i:(leafVertSize * i + leafVertSize)]])
for group in vertexGroups:
leafObj.vertex_groups.new(group)
leafObj.vertex_groups[group].add(vertexGroups[group], 1.0, 'ADD')
Brendon Murphy
committed
# Now we need the rotation mode to be 'XYZ' to ensure correct rotation
bpy.ops.object.mode_set(mode='OBJECT')
for p in armOb.pose.bones:
p.rotation_mode = 'XYZ'
treeOb.parent = armOb
def kickstart_trunk(addstem, levels, leaves, branches, cu, curve, curveRes, curveV, attractUp, length, lengthV, ratio, ratioPower, resU, scale0, scaleV0,
scaleVal, taper, minRadius, rootFlare):
Brendon Murphy
committed
newSpline = cu.splines.new('BEZIER')
cu.resolution_u = resU
newPoint = newSpline.bezier_points[-1]
newPoint.co = Vector((0, 0, 0))
newPoint.handle_right = Vector((0, 0, 1))
newPoint.handle_left = Vector((0, 0, -1))
# (newPoint.handle_right_type, newPoint.handle_left_type) = ('VECTOR', 'VECTOR')
branchL = scaleVal * length[0]
curveVal = curve[0] / curveRes[0]
#curveVal = curveVal * (branchL / scaleVal)
if levels == 1:
childStems = leaves
else:
childStems = branches[1]
startRad = scaleVal * ratio * scale0 * uniform(1-scaleV0, 1+scaleV0) ## * (scale0 + uniform(-scaleV0, scaleV0)) #
endRad = (startRad * (1 - taper[0])) ** ratioPower
startRad = max(startRad, minRadius)
endRad = max(endRad, minRadius)
newPoint.radius = startRad * rootFlare
Brendon Murphy
committed
addstem(
stemSpline(newSpline, curveVal, curveV[0] / curveRes[0], attractUp[0], 0, curveRes[0], branchL / curveRes[0],
childStems, startRad, endRad, 0, 0, None))
def fabricate_stems(addsplinetobone, addstem, baseSize, branches, childP, cu, curve, curveBack, curveRes, curveV, attractUp,
downAngle, downAngleV, leafDist, leaves, length, lengthV, levels, n, ratioPower, resU,
rotate, rotateV, scaleVal, shape, storeN, taper, shapeS, minRadius, radiusTweak, customShape, rMode, segSplits,
useOldDownAngle, useParentAngle, boneStep):
#prevent baseSize from going to 1.0
baseSize = min(0.999, baseSize)
Brendon Murphy
committed
# Store the old rotation to allow new stems to be rotated away from the previous one.
oldRotate = 0
Brendon Murphy
committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#use fancy child point selection / rotation
if (n == 1) and (rMode != "original"):
childP_T = OrderedDict()
childP_L = []
for p in childP:
if p.offset == 1:
childP_L.append(p)
else:
if p.offset not in childP_T:
childP_T[p.offset] = [p]
else:
childP_T[p.offset].append(p)
childP_T = [childP_T[k] for k in sorted(childP_T.keys())]
childP = []
rot_a = []
for p in childP_T:
if rMode == "rotate":
if rotate[n] < 0.0:
oldRotate = -copysign(rotate[n], oldRotate)
else:
oldRotate += rotate[n]
bRotate = oldRotate + uniform(-rotateV[n], rotateV[n])
#choose start point whose angle is closest to the rotate angle
a1 = bRotate % tau
a_diff = []
for a in p:
a2 = atan2(a.co[0], -a.co[1])
d = min((a1-a2+tau)%tau, (a2-a1+tau)%tau)
a_diff.append(d)
idx = a_diff.index(min(a_diff))
#find actual rotate angle from branch location
br = p[idx]
b = br.co
vx = sin(bRotate)
vy = cos(bRotate)
v = Vector((vx, vy))
bD = ((b[0] * b[0] + b[1] * b[1]) ** .5)
bL = br.lengthPar * length[1] * shapeRatio(shape, (1 - br.offset) / (1 - baseSize), custom=customShape)
#account for down angle
if downAngleV[1] > 0: