Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
import os
import bpy
import bmesh
from mathutils import Vector
from math import sqrt
from copy import copy
# -----------------------------------------------------------------------------
# Atom and element data
# This is a list that contains some data of all possible elements. The structure
# is as follows:
#
# 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54 means
#
# No., name, short name, color, radius (used), radius (covalent), radius (atomic),
#
# charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all
# charge states for any atom are listed, if existing.
# The list is fixed and cannot be changed ... (see below)
ELEMENTS_DEFAULT = (
( 1, "Hydrogen", "H", ( 1.0, 1.0, 1.0, 1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ),
( 2, "Helium", "He", ( 0.85, 1.0, 1.0, 1.0), 0.93, 0.93, 0.49 ),
( 3, "Lithium", "Li", ( 0.8, 0.50, 1.0, 1.0), 1.23, 1.23, 2.05 , 1 , 0.68 ),
( 4, "Beryllium", "Be", ( 0.76, 1.0, 0.0, 1.0), 0.90, 0.90, 1.40 , 1 , 0.44 , 2 , 0.35 ),
( 5, "Boron", "B", ( 1.0, 0.70, 0.70, 1.0), 0.82, 0.82, 1.17 , 1 , 0.35 , 3 , 0.23 ),
( 6, "Carbon", "C", ( 0.56, 0.56, 0.56, 1.0), 0.77, 0.77, 0.91 , -4 , 2.60 , 4 , 0.16 ),
( 7, "Nitrogen", "N", ( 0.18, 0.31, 0.97, 1.0), 0.75, 0.75, 0.75 , -3 , 1.71 , 1 , 0.25 , 3 , 0.16 , 5 , 0.13 ),
( 8, "Oxygen", "O", ( 1.0, 0.05, 0.05, 1.0), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 , 1 , 0.22 , 6 , 0.09 ),
( 9, "Fluorine", "F", ( 0.56, 0.87, 0.31, 1.0), 0.72, 0.72, 0.57 , -1 , 1.33 , 7 , 0.08 ),
(10, "Neon", "Ne", ( 0.70, 0.89, 0.96, 1.0), 0.71, 0.71, 0.51 , 1 , 1.12 ),
(11, "Sodium", "Na", ( 0.67, 0.36, 0.94, 1.0), 1.54, 1.54, 2.23 , 1 , 0.97 ),
(12, "Magnesium", "Mg", ( 0.54, 1.0, 0.0, 1.0), 1.36, 1.36, 1.72 , 1 , 0.82 , 2 , 0.66 ),
(13, "Aluminium", "Al", ( 0.74, 0.65, 0.65, 1.0), 1.18, 1.18, 1.82 , 3 , 0.51 ),
(14, "Silicon", "Si", ( 0.94, 0.78, 0.62, 1.0), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 , 1 , 0.65 , 4 , 0.42 ),
(15, "Phosphorus", "P", ( 1.0, 0.50, 0.0, 1.0), 1.06, 1.06, 1.23 , -3 , 2.12 , 3 , 0.44 , 5 , 0.35 ),
(16, "Sulfur", "S", ( 1.0, 1.0, 0.18, 1.0), 1.02, 1.02, 1.09 , -2 , 1.84 , 2 , 2.19 , 4 , 0.37 , 6 , 0.30 ),
(17, "Chlorine", "Cl", ( 0.12, 0.94, 0.12, 1.0), 0.99, 0.99, 0.97 , -1 , 1.81 , 5 , 0.34 , 7 , 0.27 ),
(18, "Argon", "Ar", ( 0.50, 0.81, 0.89, 1.0), 0.98, 0.98, 0.88 , 1 , 1.54 ),
(19, "Potassium", "K", ( 0.56, 0.25, 0.83, 1.0), 2.03, 2.03, 2.77 , 1 , 0.81 ),
(20, "Calcium", "Ca", ( 0.23, 1.0, 0.0, 1.0), 1.74, 1.74, 2.23 , 1 , 1.18 , 2 , 0.99 ),
(21, "Scandium", "Sc", ( 0.90, 0.90, 0.90, 1.0), 1.44, 1.44, 2.09 , 3 , 0.73 ),
(22, "Titanium", "Ti", ( 0.74, 0.76, 0.78, 1.0), 1.32, 1.32, 2.00 , 1 , 0.96 , 2 , 0.94 , 3 , 0.76 , 4 , 0.68 ),
(23, "Vanadium", "V", ( 0.65, 0.65, 0.67, 1.0), 1.22, 1.22, 1.92 , 2 , 0.88 , 3 , 0.74 , 4 , 0.63 , 5 , 0.59 ),
(24, "Chromium", "Cr", ( 0.54, 0.6, 0.78, 1.0), 1.18, 1.18, 1.85 , 1 , 0.81 , 2 , 0.89 , 3 , 0.63 , 6 , 0.52 ),
(25, "Manganese", "Mn", ( 0.61, 0.47, 0.78, 1.0), 1.17, 1.17, 1.79 , 2 , 0.80 , 3 , 0.66 , 4 , 0.60 , 7 , 0.46 ),
(26, "Iron", "Fe", ( 0.87, 0.4, 0.2, 1.0), 1.17, 1.17, 1.72 , 2 , 0.74 , 3 , 0.64 ),
(27, "Cobalt", "Co", ( 0.94, 0.56, 0.62, 1.0), 1.16, 1.16, 1.67 , 2 , 0.72 , 3 , 0.63 ),
(28, "Nickel", "Ni", ( 0.31, 0.81, 0.31, 1.0), 1.15, 1.15, 1.62 , 2 , 0.69 ),
(29, "Copper", "Cu", ( 0.78, 0.50, 0.2, 1.0), 1.17, 1.17, 1.57 , 1 , 0.96 , 2 , 0.72 ),
(30, "Zinc", "Zn", ( 0.49, 0.50, 0.69, 1.0), 1.25, 1.25, 1.53 , 1 , 0.88 , 2 , 0.74 ),
(31, "Gallium", "Ga", ( 0.76, 0.56, 0.56, 1.0), 1.26, 1.26, 1.81 , 1 , 0.81 , 3 , 0.62 ),
(32, "Germanium", "Ge", ( 0.4, 0.56, 0.56, 1.0), 1.22, 1.22, 1.52 , -4 , 2.72 , 2 , 0.73 , 4 , 0.53 ),
(33, "Arsenic", "As", ( 0.74, 0.50, 0.89, 1.0), 1.20, 1.20, 1.33 , -3 , 2.22 , 3 , 0.58 , 5 , 0.46 ),
(34, "Selenium", "Se", ( 1.0, 0.63, 0.0, 1.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 , 1 , 0.66 , 4 , 0.50 , 6 , 0.42 ),
(35, "Bromine", "Br", ( 0.65, 0.16, 0.16, 1.0), 1.14, 1.14, 1.12 , -1 , 1.96 , 5 , 0.47 , 7 , 0.39 ),
(36, "Krypton", "Kr", ( 0.36, 0.72, 0.81, 1.0), 1.31, 1.31, 1.24 ),
(37, "Rubidium", "Rb", ( 0.43, 0.18, 0.69, 1.0), 2.16, 2.16, 2.98 , 1 , 1.47 ),
(38, "Strontium", "Sr", ( 0.0, 1.0, 0.0, 1.0), 1.91, 1.91, 2.45 , 2 , 1.12 ),
(39, "Yttrium", "Y", ( 0.58, 1.0, 1.0, 1.0), 1.62, 1.62, 2.27 , 3 , 0.89 ),
(40, "Zirconium", "Zr", ( 0.58, 0.87, 0.87, 1.0), 1.45, 1.45, 2.16 , 1 , 1.09 , 4 , 0.79 ),
(41, "Niobium", "Nb", ( 0.45, 0.76, 0.78, 1.0), 1.34, 1.34, 2.08 , 1 , 1.00 , 4 , 0.74 , 5 , 0.69 ),
(42, "Molybdenum", "Mo", ( 0.32, 0.70, 0.70, 1.0), 1.30, 1.30, 2.01 , 1 , 0.93 , 4 , 0.70 , 6 , 0.62 ),
(43, "Technetium", "Tc", ( 0.23, 0.61, 0.61, 1.0), 1.27, 1.27, 1.95 , 7 , 0.97 ),
(44, "Ruthenium", "Ru", ( 0.14, 0.56, 0.56, 1.0), 1.25, 1.25, 1.89 , 4 , 0.67 ),
(45, "Rhodium", "Rh", ( 0.03, 0.49, 0.54, 1.0), 1.25, 1.25, 1.83 , 3 , 0.68 ),
(46, "Palladium", "Pd", ( 0.0, 0.41, 0.52, 1.0), 1.28, 1.28, 1.79 , 2 , 0.80 , 4 , 0.65 ),
(47, "Silver", "Ag", ( 0.75, 0.75, 0.75, 1.0), 1.34, 1.34, 1.75 , 1 , 1.26 , 2 , 0.89 ),
(48, "Cadmium", "Cd", ( 1.0, 0.85, 0.56, 1.0), 1.48, 1.48, 1.71 , 1 , 1.14 , 2 , 0.97 ),
(49, "Indium", "In", ( 0.65, 0.45, 0.45, 1.0), 1.44, 1.44, 2.00 , 3 , 0.81 ),
(50, "Tin", "Sn", ( 0.4, 0.50, 0.50, 1.0), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 , 2 , 0.93 , 4 , 0.71 ),
(51, "Antimony", "Sb", ( 0.61, 0.38, 0.70, 1.0), 1.40, 1.40, 1.53 , -3 , 2.45 , 3 , 0.76 , 5 , 0.62 ),
(52, "Tellurium", "Te", ( 0.83, 0.47, 0.0, 1.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 , 1 , 0.82 , 4 , 0.70 , 6 , 0.56 ),
(53, "Iodine", "I", ( 0.58, 0.0, 0.58, 1.0), 1.33, 1.33, 1.32 , -1 , 2.20 , 5 , 0.62 , 7 , 0.50 ),
(54, "Xenon", "Xe", ( 0.25, 0.61, 0.69, 1.0), 1.31, 1.31, 1.24 ),
(55, "Caesium", "Cs", ( 0.34, 0.09, 0.56, 1.0), 2.35, 2.35, 3.35 , 1 , 1.67 ),
(56, "Barium", "Ba", ( 0.0, 0.78, 0.0, 1.0), 1.98, 1.98, 2.78 , 1 , 1.53 , 2 , 1.34 ),
(57, "Lanthanum", "La", ( 0.43, 0.83, 1.0, 1.0), 1.69, 1.69, 2.74 , 1 , 1.39 , 3 , 1.06 ),
(58, "Cerium", "Ce", ( 1.0, 1.0, 0.78, 1.0), 1.65, 1.65, 2.70 , 1 , 1.27 , 3 , 1.03 , 4 , 0.92 ),
(59, "Praseodymium", "Pr", ( 0.85, 1.0, 0.78, 1.0), 1.65, 1.65, 2.67 , 3 , 1.01 , 4 , 0.90 ),
(60, "Neodymium", "Nd", ( 0.78, 1.0, 0.78, 1.0), 1.64, 1.64, 2.64 , 3 , 0.99 ),
(61, "Promethium", "Pm", ( 0.63, 1.0, 0.78, 1.0), 1.63, 1.63, 2.62 , 3 , 0.97 ),
(62, "Samarium", "Sm", ( 0.56, 1.0, 0.78, 1.0), 1.62, 1.62, 2.59 , 3 , 0.96 ),
(63, "Europium", "Eu", ( 0.38, 1.0, 0.78, 1.0), 1.85, 1.85, 2.56 , 2 , 1.09 , 3 , 0.95 ),
(64, "Gadolinium", "Gd", ( 0.27, 1.0, 0.78, 1.0), 1.61, 1.61, 2.54 , 3 , 0.93 ),
(65, "Terbium", "Tb", ( 0.18, 1.0, 0.78, 1.0), 1.59, 1.59, 2.51 , 3 , 0.92 , 4 , 0.84 ),
(66, "Dysprosium", "Dy", ( 0.12, 1.0, 0.78, 1.0), 1.59, 1.59, 2.49 , 3 , 0.90 ),
(67, "Holmium", "Ho", ( 0.0, 1.0, 0.61, 1.0), 1.58, 1.58, 2.47 , 3 , 0.89 ),
(68, "Erbium", "Er", ( 0.0, 0.90, 0.45, 1.0), 1.57, 1.57, 2.45 , 3 , 0.88 ),
(69, "Thulium", "Tm", ( 0.0, 0.83, 0.32, 1.0), 1.56, 1.56, 2.42 , 3 , 0.87 ),
(70, "Ytterbium", "Yb", ( 0.0, 0.74, 0.21, 1.0), 1.74, 1.74, 2.40 , 2 , 0.93 , 3 , 0.85 ),
(71, "Lutetium", "Lu", ( 0.0, 0.67, 0.14, 1.0), 1.56, 1.56, 2.25 , 3 , 0.85 ),
(72, "Hafnium", "Hf", ( 0.30, 0.76, 1.0, 1.0), 1.44, 1.44, 2.16 , 4 , 0.78 ),
(73, "Tantalum", "Ta", ( 0.30, 0.65, 1.0, 1.0), 1.34, 1.34, 2.09 , 5 , 0.68 ),
(74, "Tungsten", "W", ( 0.12, 0.58, 0.83, 1.0), 1.30, 1.30, 2.02 , 4 , 0.70 , 6 , 0.62 ),
(75, "Rhenium", "Re", ( 0.14, 0.49, 0.67, 1.0), 1.28, 1.28, 1.97 , 4 , 0.72 , 7 , 0.56 ),
(76, "Osmium", "Os", ( 0.14, 0.4, 0.58, 1.0), 1.26, 1.26, 1.92 , 4 , 0.88 , 6 , 0.69 ),
(77, "Iridium", "Ir", ( 0.09, 0.32, 0.52, 1.0), 1.27, 1.27, 1.87 , 4 , 0.68 ),
(78, "Platinum", "Pt", ( 0.81, 0.81, 0.87, 1.0), 1.30, 1.30, 1.83 , 2 , 0.80 , 4 , 0.65 ),
(79, "Gold", "Au", ( 1.0, 0.81, 0.13, 1.0), 1.34, 1.34, 1.79 , 1 , 1.37 , 3 , 0.85 ),
(80, "Mercury", "Hg", ( 0.72, 0.72, 0.81, 1.0), 1.49, 1.49, 1.76 , 1 , 1.27 , 2 , 1.10 ),
(81, "Thallium", "Tl", ( 0.65, 0.32, 0.30, 1.0), 1.48, 1.48, 2.08 , 1 , 1.47 , 3 , 0.95 ),
(82, "Lead", "Pb", ( 0.34, 0.34, 0.38, 1.0), 1.47, 1.47, 1.81 , 2 , 1.20 , 4 , 0.84 ),
(83, "Bismuth", "Bi", ( 0.61, 0.30, 0.70, 1.0), 1.46, 1.46, 1.63 , 1 , 0.98 , 3 , 0.96 , 5 , 0.74 ),
(84, "Polonium", "Po", ( 0.67, 0.36, 0.0, 1.0), 1.46, 1.46, 1.53 , 6 , 0.67 ),
(85, "Astatine", "At", ( 0.45, 0.30, 0.27, 1.0), 1.45, 1.45, 1.43 , -3 , 2.22 , 3 , 0.85 , 5 , 0.46 ),
(86, "Radon", "Rn", ( 0.25, 0.50, 0.58, 1.0), 1.00, 1.00, 1.34 ),
(87, "Francium", "Fr", ( 0.25, 0.0, 0.4, 1.0), 1.00, 1.00, 1.00 , 1 , 1.80 ),
(88, "Radium", "Ra", ( 0.0, 0.49, 0.0, 1.0), 1.00, 1.00, 1.00 , 2 , 1.43 ),
(89, "Actinium", "Ac", ( 0.43, 0.67, 0.98, 1.0), 1.00, 1.00, 1.00 , 3 , 1.18 ),
(90, "Thorium", "Th", ( 0.0, 0.72, 1.0, 1.0), 1.65, 1.65, 1.00 , 4 , 1.02 ),
(91, "Protactinium", "Pa", ( 0.0, 0.63, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.13 , 4 , 0.98 , 5 , 0.89 ),
(92, "Uranium", "U", ( 0.0, 0.56, 1.0, 1.0), 1.42, 1.42, 1.00 , 4 , 0.97 , 6 , 0.80 ),
(93, "Neptunium", "Np", ( 0.0, 0.50, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.10 , 4 , 0.95 , 7 , 0.71 ),
(94, "Plutonium", "Pu", ( 0.0, 0.41, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.08 , 4 , 0.93 ),
(95, "Americium", "Am", ( 0.32, 0.36, 0.94, 1.0), 1.00, 1.00, 1.00 , 3 , 1.07 , 4 , 0.92 ),
(96, "Curium", "Cm", ( 0.47, 0.36, 0.89, 1.0), 1.00, 1.00, 1.00 ),
(97, "Berkelium", "Bk", ( 0.54, 0.30, 0.89, 1.0), 1.00, 1.00, 1.00 ),
(98, "Californium", "Cf", ( 0.63, 0.21, 0.83, 1.0), 1.00, 1.00, 1.00 ),
(99, "Einsteinium", "Es", ( 0.70, 0.12, 0.83, 1.0), 1.00, 1.00, 1.00 ),
(100, "Fermium", "Fm", ( 0.70, 0.12, 0.72, 1.0), 1.00, 1.00, 1.00 ),
(101, "Mendelevium", "Md", ( 0.70, 0.05, 0.65, 1.0), 1.00, 1.00, 1.00 ),
(102, "Nobelium", "No", ( 0.74, 0.05, 0.52, 1.0), 1.00, 1.00, 1.00 ),
(103, "Lawrencium", "Lr", ( 0.78, 0.0, 0.4, 1.0), 1.00, 1.00, 1.00 ),
(104, "Vacancy", "Vac", ( 0.5, 0.5, 0.5, 1.0), 1.00, 1.00, 1.00),
(105, "Default", "Default", ( 1.0, 1.0, 1.0, 1.0), 1.00, 1.00, 1.00),
(106, "Stick", "Stick", ( 0.5, 0.5, 0.5, 1.0), 1.00, 1.00, 1.00),
)
# The list 'ELEMENTS' contains all data of the elements and will be used during
# runtime. The list will be initialized with the fixed
# data from above via the class below (ElementProp). One fixed list (above),
# which cannot be changed, and a list of classes with same data (ELEMENTS) exist.
# The list 'ELEMENTS' can be modified by e.g. loading a separate custom
# data file.
ELEMENTS = []
# This is the class, which stores the properties for one element.
class ElementProp(object):
__slots__ = ('number', 'name', 'short_name', 'color', 'radii', 'radii_ionic')
def __init__(self, number, name, short_name, color, radii, radii_ionic):
self.number = number
self.name = name
self.short_name = short_name
self.color = color
self.radii = radii
self.radii_ionic = radii_ionic
# This function measures the distance between two selected objects.
def distance():
# In the 'EDIT' mode
if bpy.context.mode == 'EDIT_MESH':
atom = bpy.context.edit_object
bm = bmesh.from_edit_mesh(atom.data)
locations = []
for v in bm.verts:
if v.select:
locations.append(atom.matrix_world @ v.co)
if len(locations) > 1:
location1 = locations[0]
location2 = locations[1]
else:
return "N.A"
# In the 'OBJECT' mode
else:
location1 = bpy.context.selected_objects[0].location
location2 = bpy.context.selected_objects[1].location
else:
return "N.A."
dv = location2 - location1
dist = str(dv.length)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
pos = str.find(dist, ".")
dist = dist[:pos+4]
dist = dist + " A"
return dist
def choose_objects(action_type,
who,
radius_all,
radius_pm,
radius_type,
radius_type_ionic,
sticks_all):
# For selected objects of all selected layers
if who == "ALL_IN_LAYER":
# Determine all selected layers.
layers = []
for i, layer in enumerate(bpy.context.scene.layers):
if layer == True:
layers.append(i)
# Put all objects, which are in the layers, into a list.
change_objects_all = []
for atom in bpy.context.scene.objects:
for layer in layers:
if atom.layers[layer] == True:
change_objects_all.append(atom)
# For selected objects of the visible layer
elif who == "ALL_ACTIVE":
change_objects_all = []
# Note all selected objects first.
for atom in bpy.context.selected_objects:
change_objects_all.append(atom)
# This is very important now: If there are dupliverts structures, note
# only the parents and NOT the children! Otherwise the double work is
# done or the system can even crash if objects are deleted. - The
# chidlren are accessed anyways (see below).
change_objects = []
for atom in change_objects_all:
if atom.parent != None:
FLAG = False
for atom2 in change_objects:
if atom2 == atom.parent:
FLAG = True
if FLAG == False:
change_objects.append(atom)
else:
change_objects.append(atom)
# And now, consider all objects, which are in the list 'change_objects'.
for atom in change_objects:
if len(atom.children) != 0:
for atom_child in atom.children:
if atom_child.type in {'SURFACE', 'MESH', 'META'}:
modify_objects(action_type,
atom_child,
radius_all,
radius_pm,
radius_type,
radius_type_ionic,
sticks_all)
else:
if atom.type in {'SURFACE', 'MESH', 'META'}:
modify_objects(action_type,
atom,
radius_all,
radius_pm,
radius_type,
radius_type_ionic,
sticks_all)
# Modifying the radius of a selected atom or stick
def modify_objects(action_type,
atom,
radius_all,
radius_pm,
radius_type,
radius_type_ionic,
sticks_all):
# Modify atom radius (in pm)
if action_type == "ATOM_RADIUS_PM" and "STICK" not in atom.name.upper():
if radius_pm[0] in atom.name:
atom.scale = (radius_pm[1]/100,) * 3
# Modify atom radius (all selected)
if action_type == "ATOM_RADIUS_ALL" and "STICK" not in atom.name.upper():
atom.scale *= radius_all
# Modify atom radius (type, van der Waals, atomic or ionic)
if action_type == "ATOM_RADIUS_TYPE" and "STICK" not in atom.name.upper():
for element in ELEMENTS:
if element.name in atom.name:
# For ionic radii
if radius_type == '3':
charge_states = element.radii_ionic[::2]
charge_radii = element.radii_ionic[1::2]
charge_state_chosen = int(radius_type_ionic) - 4
find = (lambda searchList, elem:
[[i for i, x in enumerate(searchList) if x == e]
for e in elem])
index = find(charge_states,[charge_state_chosen])[0]
# Is there a charge state?
if index != []:
atom.scale = (charge_radii[index[0]],) * 3
# For atomic and van der Waals radii.
else:
atom.scale = (element.radii[int(radius_type)],) * 3
# Modify atom sticks
if (action_type == "STICKS_RADIUS_ALL" and 'STICK' in atom.name.upper() and
('CUP' in atom.name.upper() or
'CYLINDER' in atom.name.upper())):
Clemens Barth
committed
Clemens Barth
committed
# For dupliverts structures only: Make the cylinder or cup visible
# first, otherwise one cannot go into EDIT mode. Note that 'atom' here
# is in fact a 'stick' (cylinder or cup).
# First, identify if it is a normal cylinder object or a dupliverts
# structure. The identifier for a dupliverts structure is the parent's
# name, which includes "_sticks_mesh"
if "_sticks_mesh" in atom.parent.name:
atom.hide_set(False)
bpy.context.view_layer.objects.active = atom
bpy.ops.object.mode_set(mode='EDIT', toggle=False)
bm = bmesh.from_edit_mesh(atom.data)
locations = []
for v in bm.verts:
locations.append(v.co)
center = Vector((0.0,0.0,0.0))
center = sum([location for location in locations], center)/len(locations)
radius = sum([(loc[0]-center[0])**2+(loc[1]-center[1])**2
for loc in locations], 0)
radius_new = radius * sticks_all
for v in bm.verts:
v.co[0] = ((v.co[0] - center[0]) / radius) * radius_new + center[0]
v.co[1] = ((v.co[1] - center[1]) / radius) * radius_new + center[1]
bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
Clemens Barth
committed
# Hide again the representative stick (cylinder or cup) if it is a
# dupliverts structure.
if "_sticks_mesh" in atom.parent.name:
atom.hide_set(True)
bpy.context.view_layer.objects.active = None
# Change the atom objects
if action_type == "ATOM_REPLACE_OBJ" and "STICK" not in atom.name.upper():
scn = bpy.context.scene.atom_blend
material = atom.active_material
new_material = draw_obj_material(scn.replace_objs_material, material)
# Special object (like halo, etc.)
if scn.replace_objs_special != '0':
atom = draw_obj_special(scn.replace_objs_special, atom)
# Standard geometrical objects
else:
# If the atom shape shall not be changed, then:
if scn.replace_objs == '0':
atom.active_material = new_material
# If the atom shape shall change, then:
else:
atom = draw_obj(scn.replace_objs, atom, new_material)
# If the atom is the representative ball of a dupliverts structure,
# then make it invisible.
if atom.parent != None:
atom.hide_set(True)
# Default shapes and colors for atoms
if action_type == "ATOM_DEFAULT_OBJ" and "STICK" not in atom.name.upper():
scn = bpy.context.scene.atom_blend
# Create new material
new_material = bpy.data.materials.new("tmp")
# Create new object (NURBS sphere = '1b')
new_atom = draw_obj('1b', atom, new_material)
new_atom.active_material = new_material
new_material = draw_obj_material('0', new_material)
# Change size and color of the new object
for element in ELEMENTS:
if element.name in new_atom.name:
new_atom.scale = (element.radii[0],) * 3
new_atom.active_material.diffuse_color = element.color
new_atom.name = element.name + "_ball"
new_atom.active_material.name = element.name
break
# Separating atoms from a dupliverts structure.
def separate_atoms(scn):
# Get the mesh.
mesh = bpy.context.edit_object
# Do nothing if it is not a dupliverts structure.
if not mesh.instance_type == "VERTS":
return {'FINISHED'}
# This is the name of the mesh
mesh_name = mesh.name
# Get the collection
coll = mesh.users_collection[0]
# Get the coordinates of the selected vertices (atoms)
bm = bmesh.from_edit_mesh(mesh.data)
locations = []
for v in bm.verts:
if v.select:
locations.append(mesh.matrix_world @ v.co)
# Free memory
bm.free()
Clemens Barth
committed
# Delete already the selected vertices
bpy.ops.mesh.delete(type='VERT')
Clemens Barth
committed
# Find the representative ball within the collection.
for obj in coll.objects:
if obj.parent != None:
if obj.parent.name == mesh_name:
break
# Create balls and put them at the places where the vertices (atoms) have
# been before.
for location in locations:
obj_dupli = obj.copy()
obj_dupli.data = obj.data.copy()
obj_dupli.parent = None
coll.objects.link(obj_dupli)
obj_dupli.location = location
obj_dupli.name = obj.name + "_sep"
Clemens Barth
committed
# Do not hide the object!
obj_dupli.hide_set(False)
Clemens Barth
committed
bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
bpy.context.view_layer.objects.active = mesh
# Prepare a new material
def draw_obj_material(material_type, material):
mat_P_BSDF_default = material.node_tree.nodes['Principled BSDF']
default_color = mat_P_BSDF_default.inputs['Base Color'].default_value
if material_type == '0': # Unchanged
material_new = material
if material_type == '1': # Normal
# We create again the 'normal' material. Why? It's because the old
# one could have been deleted by the user during the course of the
# user's work in Blender ... .
material_new = bpy.data.materials.new(material.name + "_normal")
material_new.use_nodes = True
mat_P_BSDF = material_new.node_tree.nodes['Principled BSDF']
mat_P_BSDF.inputs['Base Color'].default_value = default_color
mat_P_BSDF.inputs['Metallic'].default_value = 0.0
mat_P_BSDF.inputs['Specular'].default_value = 0.5
mat_P_BSDF.inputs['Roughness'].default_value = 0.5
mat_P_BSDF.inputs['Clearcoat Roughness'].default_value = 0.03
mat_P_BSDF.inputs['IOR'].default_value = 1.45
mat_P_BSDF.inputs['Transmission'].default_value = 0.0
mat_P_BSDF.inputs['Transmission Roughness'].default_value = 0.0
mat_P_BSDF.inputs['Alpha'].default_value = 1.0
# Some additional stuff for eevee.
material_new.blend_method = 'OPAQUE'
material_new.shadow_method = 'OPAQUE'
if material_type == '2': # Transparent
material_new = bpy.data.materials.new(material.name + "_transparent")
material_new.use_nodes = True
mat_P_BSDF = material_new.node_tree.nodes['Principled BSDF']
mat_P_BSDF.inputs['Base Color'].default_value = default_color
mat_P_BSDF.inputs['Metallic'].default_value = 0.0
mat_P_BSDF.inputs['Specular'].default_value = 0.15
mat_P_BSDF.inputs['Roughness'].default_value = 0.2
mat_P_BSDF.inputs['Clearcoat Roughness'].default_value = 0.37
mat_P_BSDF.inputs['IOR'].default_value = 1.45
mat_P_BSDF.inputs['Transmission'].default_value = 0.8
mat_P_BSDF.inputs['Transmission Roughness'].default_value = 0.0
mat_P_BSDF.inputs['Alpha'].default_value = 0.4
# Some additional stuff for eevee.
material_new.blend_method = 'HASHED'
material_new.shadow_method = 'HASHED'
material_new.use_backface_culling = False
if material_type == '3': # Reflecting
material_new = bpy.data.materials.new(material.name + "_reflecting")
material_new.use_nodes = True
mat_P_BSDF = material_new.node_tree.nodes['Principled BSDF']
mat_P_BSDF.inputs['Base Color'].default_value = default_color
mat_P_BSDF.inputs['Metallic'].default_value = 0.7
mat_P_BSDF.inputs['Specular'].default_value = 0.15
mat_P_BSDF.inputs['Roughness'].default_value = 0.1
mat_P_BSDF.inputs['Clearcoat Roughness'].default_value = 0.5
mat_P_BSDF.inputs['IOR'].default_value = 0.8
mat_P_BSDF.inputs['Transmission'].default_value = 0.0
mat_P_BSDF.inputs['Transmission Roughness'].default_value = 0.0
mat_P_BSDF.inputs['Alpha'].default_value = 1.0
# Some additional stuff for eevee.
material_new.blend_method = 'OPAQUE'
material_new.shadow_method = 'OPAQUE'
if material_type == '4': # Transparent + reflecting
material_new = bpy.data.materials.new(material.name + "_trans+refl")
material_new.use_nodes = True
mat_P_BSDF = material_new.node_tree.nodes['Principled BSDF']
mat_P_BSDF.inputs['Base Color'].default_value = default_color
mat_P_BSDF.inputs['Metallic'].default_value = 0.5
mat_P_BSDF.inputs['Specular'].default_value = 0.15
mat_P_BSDF.inputs['Roughness'].default_value = 0.05
mat_P_BSDF.inputs['Clearcoat Roughness'].default_value = 0.37
mat_P_BSDF.inputs['IOR'].default_value = 1.45
mat_P_BSDF.inputs['Transmission'].default_value = 0.6
mat_P_BSDF.inputs['Transmission Roughness'].default_value = 0.0
mat_P_BSDF.inputs['Alpha'].default_value = 0.6
# Some additional stuff for eevee.
material_new.blend_method = 'HASHED'
material_new.shadow_method = 'HASHED'
material_new.use_backface_culling = False
Clemens Barth
committed
# Always, when the material is changed, a new name is created. Note that
# this makes sense: Imagine, an other object uses the same material as the
# selected one. After changing the material of the selected object the old
# material should certainly not change and remain the same.
if material_type in {'1','2','3','4'}:
if "_repl" in material.name:
pos = material.name.rfind("_repl")
if material.name[pos+5:].isdigit():
counter = int(material.name[pos+5:])
material_new.name = material.name[:pos]+"_repl"+str(counter+1)
else:
material_new.name = material.name+"_repl1"
else:
material_new.name = material.name+"_repl1"
material_new.diffuse_color = material.diffuse_color
return material_new
# Get the collection of an object.
def get_collection_object(obj):
Clemens Barth
committed
coll_all = obj.users_collection
if len(coll_all) > 0:
coll = coll_all[0]
else:
coll = bpy.context.scene.collection
return coll
# Draw an object (e.g. cube, sphere, cylinder, ...)
def draw_obj(atom_shape, atom, new_material):
# No change
if atom_shape == '0':
return None
if atom_shape == '1a': #Sphere mesh
bpy.ops.mesh.primitive_uv_sphere_add(
segments=32,
ring_count=32,
radius=1,
enter_editmode=False,
location=atom.location,
rotation=(0, 0, 0))
if atom_shape == '1b': #Sphere NURBS
bpy.ops.surface.primitive_nurbs_surface_sphere_add(
enter_editmode=False,
location=atom.location,
rotation=(0.0, 0.0, 0.0))
if atom_shape == '2': #Cube
bpy.ops.mesh.primitive_cube_add(
enter_editmode=False,
location=atom.location,
rotation=(0.0, 0.0, 0.0))
if atom_shape == '3': #Plane
bpy.ops.mesh.primitive_plane_add(
enter_editmode=False,
location=atom.location,
rotation=(0.0, 0.0, 0.0))
if atom_shape == '4a': #Circle
bpy.ops.mesh.primitive_circle_add(
vertices=32,
radius=1,
fill_type='NOTHING',
enter_editmode=False,
location=atom.location,
rotation=(0, 0, 0))
if atom_shape == '4b': #Circle NURBS
bpy.ops.surface.primitive_nurbs_surface_circle_add(
enter_editmode=False,
location=atom.location,
rotation=(0, 0, 0))
if atom_shape in {'5a','5b','5c','5d','5e'}: #Icosphere
index = {'5a':1,'5b':2,'5c':3,'5d':4,'5e':5}
bpy.ops.mesh.primitive_ico_sphere_add(
subdivisions=int(index[atom_shape]),
radius=1,
enter_editmode=False,
location=atom.location,
rotation=(0, 0, 0))
if atom_shape == '6a': #Cylinder
bpy.ops.mesh.primitive_cylinder_add(
vertices=32,
radius=1,
depth=2,
end_fill_type='NGON',
enter_editmode=False,
location=atom.location,
rotation=(0, 0, 0))
if atom_shape == '6b': #Cylinder NURBS
bpy.ops.surface.primitive_nurbs_surface_cylinder_add(
enter_editmode=False,
location=atom.location,
rotation=(0, 0, 0))
if atom_shape == '7': #Cone
bpy.ops.mesh.primitive_cone_add(
vertices=32,
radius1=1,
radius2=0,
depth=2,
end_fill_type='NGON',
enter_editmode=False,
location=atom.location,
rotation=(0, 0, 0))
if atom_shape == '8a': #Torus
bpy.ops.mesh.primitive_torus_add(
rotation=(0, 0, 0),
location=atom.location,
major_radius=1,
minor_radius=0.25,
major_segments=48,
minor_segments=12,
abso_major_rad=1,
abso_minor_rad=0.5)
if atom_shape == '8b': #Torus NURBS
bpy.ops.surface.primitive_nurbs_surface_torus_add(
enter_editmode=False,
location=atom.location,
rotation=(0, 0, 0))
new_atom = bpy.context.view_layer.objects.active
new_atom.scale = atom.scale + Vector((0.0,0.0,0.0))
new_atom.name = atom.name
new_atom.select_set(True)
new_atom.active_material = new_material
Clemens Barth
committed
# If it is the representative object of a duplivert structure then
# transfer the parent and hide the new object.
if atom.parent != None:
new_atom.parent = atom.parent
new_atom.hide_set(True)
# Note the collection where the old object was placed into.
coll_old_atom = get_collection_object(atom)
Clemens Barth
committed
# Note the collection where the new object was placed into.
coll_new_atom_past = get_collection_object(new_atom)
Clemens Barth
committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
# If it is not the same collection then ...
if coll_new_atom_past != coll_old_atom:
# Put the new object into the collection of the old object and ...
coll_old_atom.objects.link(new_atom)
# ... unlink the new atom from its original collection.
coll_new_atom_past.objects.unlink(new_atom)
# If necessary, remove the childrens of the old object.
for child in atom.children:
bpy.ops.object.select_all(action='DESELECT')
child.hide_set(True)
child.select_set(True)
child.parent = None
coll_child = get_collection_object(child)
coll_child.objects.unlink(child)
bpy.ops.object.delete()
# Deselect everything
bpy.ops.object.select_all(action='DESELECT')
# Make the old atom visible.
atom.hide_set(True)
# Select the old atom.
atom.select_set(True)
# Remove the parent if necessary.
atom.parent = None
# Unlink the old object from the collection.
coll_old_atom.objects.unlink(atom)
# Delete the old atom
bpy.ops.object.delete()
#if "_F2+_center" or "_F+_center" or "_F0_center" in coll_old_atom:
# print("Delete the collection")
return new_atom
# Draw a special object (e.g. halo, etc. ...)
def draw_obj_special(atom_shape, atom):
# Note the collection where 'atom' is placed into.
coll_atom = get_collection_object(atom)
# Now, create a collection for the new objects
coll_new = atom.name
# Create the new collection and ...
coll_new = bpy.data.collections.new(coll_new)
# ... link it to the collection, which contains 'atom'.
coll_atom.children.link(coll_new)
# Get the color of the selected atom.
material = atom.active_material
mat_P_BSDF_default = material.node_tree.nodes['Principled BSDF']
default_color = mat_P_BSDF_default.inputs['Base Color'].default_value
# Create first a cube
bpy.ops.mesh.primitive_cube_add(align='WORLD',
enter_editmode=False,
location=atom.location,
rotation=(0.0, 0.0, 0.0))
cube = bpy.context.view_layer.objects.active
cube.scale = atom.scale + Vector((0.0,0.0,0.0))
cube.select_set(True)
# F2+ center
if atom_shape == '1':
cube.name = atom.name + "_F2+_vac"
# New material for this cube
material_new = bpy.data.materials.new(atom.name + "_F2+_vac")
material_new.use_nodes = True
mat_P_BSDF = material_new.node_tree.nodes['Principled BSDF']
mat_P_BSDF.inputs['Base Color'].default_value = default_color
mat_P_BSDF.inputs['Metallic'].default_value = 0.7
mat_P_BSDF.inputs['Specular'].default_value = 0.0
mat_P_BSDF.inputs['Roughness'].default_value = 0.65
mat_P_BSDF.inputs['Clearcoat Roughness'].default_value = 0.0
mat_P_BSDF.inputs['IOR'].default_value = 1.45
mat_P_BSDF.inputs['Transmission'].default_value = 0.6
mat_P_BSDF.inputs['Transmission Roughness'].default_value = 0.5
mat_P_BSDF.inputs['Alpha'].default_value = 0.6
# Some additional stuff for eevee.
material_new.blend_method = 'HASHED'
material_new.shadow_method = 'HASHED'
material_new.use_backface_culling = False
cube.active_material = material_new
# Put a point lamp inside the defect.
lamp_data = bpy.data.lights.new(name=atom.name + "_F2+_lamp", type="POINT")
lamp_data.distance = atom.scale[0] * 2.0
lamp_data.energy = 2000.0
lamp_data.color = (0.8, 0.8, 0.8)
lamp = bpy.data.objects.new(atom.name + "_F2+_lamp", lamp_data)
lamp.location = Vector((0.0, 0.0, 0.0))
bpy.context.collection.objects.link(lamp)
lamp.parent = cube
# The new 'atom' is the F2+ defect
new_atom = cube
Clemens Barth
committed
# Note the collection where all the new objects were placed into.
# We use only one object, the cube
coll_ori = get_collection_object(cube)
Clemens Barth
committed
# If it is not the same collection then ...
if coll_ori != coll_new:
# Put all new objects into the new collection and ...
coll_new.objects.link(cube)
coll_new.objects.link(lamp)
# ... unlink them from their original collection.
coll_ori.objects.unlink(cube)
coll_ori.objects.unlink(lamp)
Clemens Barth
committed
coll_new.name = atom.name + "_F2+_center"
Clemens Barth
committed
if atom.parent != None:
cube.parent = atom.parent
cube.hide_set(True)
lamp.hide_set(True)
Clemens Barth
committed
# F+ center
if atom_shape == '2':
cube.name = atom.name + "_F2+_vac"
# New material for this cube
material_new = bpy.data.materials.new(atom.name + "_F2+_vac")
material_new.use_nodes = True
mat_P_BSDF = material_new.node_tree.nodes['Principled BSDF']
mat_P_BSDF.inputs['Base Color'].default_value = [0.0, 0.0, 0.8, 1.0]
mat_P_BSDF.inputs['Metallic'].default_value = 0.7
mat_P_BSDF.inputs['Specular'].default_value = 0.0
mat_P_BSDF.inputs['Roughness'].default_value = 0.65
mat_P_BSDF.inputs['Clearcoat Roughness'].default_value = 0.0
mat_P_BSDF.inputs['IOR'].default_value = 1.45
mat_P_BSDF.inputs['Transmission'].default_value = 0.6
mat_P_BSDF.inputs['Transmission Roughness'].default_value = 0.5
mat_P_BSDF.inputs['Alpha'].default_value = 0.6
# Some additional stuff for eevee.
material_new.blend_method = 'HASHED'
material_new.shadow_method = 'HASHED'
material_new.use_backface_culling = False
cube.active_material = material_new
# Create now an electron
scale = atom.scale / 10.0
bpy.ops.surface.primitive_nurbs_surface_sphere_add(
enter_editmode=False,
location=(0.0, 0.0, 0.0),
rotation=(0.0, 0.0, 0.0))
electron = bpy.context.view_layer.objects.active
electron.scale = scale
electron.name = atom.name + "_F+_electron"
electron.parent = cube
# New material for the electron
material_electron = bpy.data.materials.new(atom.name + "_F+-center")
material_electron.use_nodes = True
mat_P_BSDF = material_electron.node_tree.nodes['Principled BSDF']
mat_P_BSDF.inputs['Base Color'].default_value = [0.0, 0.0, 0.8, 1.0]
mat_P_BSDF.inputs['Metallic'].default_value = 0.8
mat_P_BSDF.inputs['Specular'].default_value = 0.0
mat_P_BSDF.inputs['Roughness'].default_value = 0.3
mat_P_BSDF.inputs['Clearcoat Roughness'].default_value = 0.0
mat_P_BSDF.inputs['IOR'].default_value = 1.45
mat_P_BSDF.inputs['Transmission'].default_value = 0.6
mat_P_BSDF.inputs['Transmission Roughness'].default_value = 0.5
mat_P_BSDF.inputs['Alpha'].default_value = 1.0
# Some additional stuff for eevee.
material_electron.blend_method = 'OPAQUE'
material_electron.shadow_method = 'OPAQUE'
material_electron.use_backface_culling = False
electron.active_material = material_electron
# Put a point lamp inside the electron
lamp_data = bpy.data.lights.new(name=atom.name + "_F+_lamp", type="POINT")
lamp_data.distance = atom.scale[0] * 2.0
lamp_data.energy = 100000.0
lamp_data.color = (0.0, 0.0, 0.8)
lamp = bpy.data.objects.new(atom.name + "_F+_lamp", lamp_data)
lamp.location = Vector((scale[0]*1.5, 0.0, 0.0))
bpy.context.collection.objects.link(lamp)
lamp.parent = cube
# The new 'atom' is the F+ defect complex + lamp
new_atom = cube
# Note the collection where all the new objects were placed into.
# We use only one object, the cube
coll_ori = get_collection_object(cube)
Clemens Barth
committed
# If it is not the same collection then ...
if coll_ori != coll_new:
# Put all new objects into the new collection and ...
coll_new.objects.link(cube)
coll_new.objects.link(electron)
coll_new.objects.link(lamp)
# ... unlink them from their original collection.
coll_ori.objects.unlink(cube)
coll_ori.objects.unlink(electron)
coll_ori.objects.unlink(lamp)
coll_new.name = atom.name + "_F+_center"
Clemens Barth
committed
if atom.parent != None:
cube.parent = atom.parent
cube.hide_set(True)
electron.hide_set(True)
lamp.hide_set(True)
# F0 center
if atom_shape == '3':
cube.name = atom.name + "_F2+_vac"
# New material for this cube
material_new = bpy.data.materials.new(atom.name + "_F2+_vac")
material_new.use_nodes = True
mat_P_BSDF = material_new.node_tree.nodes['Principled BSDF']
mat_P_BSDF.inputs['Base Color'].default_value = [0.8, 0.0, 0.0, 1.0]
mat_P_BSDF.inputs['Metallic'].default_value = 0.7
mat_P_BSDF.inputs['Specular'].default_value = 0.0
mat_P_BSDF.inputs['Roughness'].default_value = 0.65
mat_P_BSDF.inputs['Clearcoat Roughness'].default_value = 0.0
mat_P_BSDF.inputs['IOR'].default_value = 1.45
mat_P_BSDF.inputs['Transmission'].default_value = 0.6
mat_P_BSDF.inputs['Transmission Roughness'].default_value = 0.5
mat_P_BSDF.inputs['Alpha'].default_value = 0.6
# Some additional stuff for eevee.
material_new.blend_method = 'HASHED'
material_new.shadow_method = 'HASHED'
material_new.use_backface_culling = False
cube.active_material = material_new
# Create now two electrons ... .
scale = atom.scale / 10.0
bpy.ops.surface.primitive_nurbs_surface_sphere_add(
enter_editmode=False,
location=(scale[0]*1.5,0.0,0.0),
rotation=(0.0, 0.0, 0.0))
electron1 = bpy.context.view_layer.objects.active
electron1.scale = scale
electron1.name = atom.name + "_F0_electron_1"
electron1.parent = cube
bpy.ops.surface.primitive_nurbs_surface_sphere_add(
enter_editmode=False,
location=(-scale[0]*1.5,0.0,0.0),
rotation=(0.0, 0.0, 0.0))
electron2 = bpy.context.view_layer.objects.active
electron2.scale = scale
electron2.name = atom.name + "_F0_electron_2"
electron2.parent = cube
# Create a new material for the two electrons.
material_electron = bpy.data.materials.new(atom.name + "_F0-center")
material_electron.use_nodes = True
mat_P_BSDF = material_electron.node_tree.nodes['Principled BSDF']
mat_P_BSDF.inputs['Base Color'].default_value = [0.0, 0.0, 0.8, 1.0]
mat_P_BSDF.inputs['Metallic'].default_value = 0.8
mat_P_BSDF.inputs['Specular'].default_value = 0.0
mat_P_BSDF.inputs['Roughness'].default_value = 0.3
mat_P_BSDF.inputs['Clearcoat Roughness'].default_value = 0.0
mat_P_BSDF.inputs['IOR'].default_value = 1.45
mat_P_BSDF.inputs['Transmission'].default_value = 0.6
mat_P_BSDF.inputs['Transmission Roughness'].default_value = 0.5
mat_P_BSDF.inputs['Alpha'].default_value = 1.0
# Some additional stuff for eevee.
material_electron.blend_method = 'OPAQUE'
material_electron.shadow_method = 'OPAQUE'
material_electron.use_backface_culling = False
# We assign the materials to the two electrons.
electron1.active_material = material_electron
electron2.active_material = material_electron
# Put two point lamps inside the electrons.
lamp1_data = bpy.data.lights.new(name=atom.name + "_F0_lamp_1", type="POINT")
lamp1_data.distance = atom.scale[0] * 2.0
lamp1_data.energy = 20000.0
lamp1_data.color = (0.8, 0.0, 0.0)
lamp1 = bpy.data.objects.new(atom.name + "_F0_lamp", lamp1_data)
lamp1.location = Vector((scale[0]*1.5, 0.0, 0.0))
bpy.context.collection.objects.link(lamp1)
lamp1.parent = cube
lamp2_data = bpy.data.lights.new(name=atom.name + "_F0_lamp_2", type="POINT")
lamp2_data.distance = atom.scale[0] * 2.0
lamp2_data.energy = 20000.0
lamp2_data.color = (0.8, 0.0, 0.0)
lamp2 = bpy.data.objects.new(atom.name + "_F0_lamp", lamp2_data)
lamp2.location = Vector((-scale[0]*1.5, 0.0, 0.0))
bpy.context.collection.objects.link(lamp2)
lamp2.parent = cube
# The new 'atom' is the F0 defect complex + lamps
new_atom = cube
# Note the collection where all the new objects were placed into.
# We use only one object, the cube
coll_ori = get_collection_object(cube)
Clemens Barth
committed
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
# If it is not the same collection then ...
if coll_ori != coll_new:
# Put all new objects into the collection of 'atom' and ...
coll_new.objects.link(cube)
coll_new.objects.link(electron1)
coll_new.objects.link(electron2)
coll_new.objects.link(lamp1)
coll_new.objects.link(lamp2)
# ... unlink them from their original collection.
coll_ori.objects.unlink(cube)
coll_ori.objects.unlink(electron1)
coll_ori.objects.unlink(electron2)
coll_ori.objects.unlink(lamp1)
coll_ori.objects.unlink(lamp2)
coll_new.name = atom.name + "_F0_center"
if atom.parent != None:
cube.parent = atom.parent
cube.hide_set(True)
electron1.hide_set(True)
electron2.hide_set(True)
lamp1.hide_set(True)
lamp2.hide_set(True)
Clemens Barth
committed
# Deselect everything
bpy.ops.object.select_all(action='DESELECT')
# Make the old atom visible.
atom.hide_set(True)
# Select the old atom.
atom.select_set(True)
# Remove the parent if necessary.
atom.parent = None
# Unlink the old object from the collection.
coll_atom.objects.unlink(atom)
# Delete the old atom
bpy.ops.object.delete()
Clemens Barth
committed
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
return new_atom
# Initialization of the list 'ELEMENTS'.
def read_elements():
del ELEMENTS[:]
for item in ELEMENTS_DEFAULT:
# All three radii into a list
radii = [item[4],item[5],item[6]]
# The handling of the ionic radii will be done later. So far, it is an
# empty list.
radii_ionic = item[7:]
li = ElementProp(item[0],item[1],item[2],item[3],
radii,radii_ionic)
ELEMENTS.append(li)
# Custom data file: changing color and radii by using the list 'ELEMENTS'.
def custom_datafile_change_atom_props():
for atom in bpy.context.selected_objects:
if len(atom.children) != 0:
child = atom.children[0]
if child.type in {'SURFACE', 'MESH', 'META'}:
for element in ELEMENTS:
if element.name in atom.name:
child.scale = (element.radii[0],) * 3
child.active_material.diffuse_color = element.color
else:
if atom.type in {'SURFACE', 'MESH', 'META'}:
for element in ELEMENTS:
if element.name in atom.name:
atom.scale = (element.radii[0],) * 3
atom.active_material.diffuse_color = element.color
# Reading a custom data file and modifying the list 'ELEMENTS'.
def custom_datafile(path_datafile):
if path_datafile == "":
return False
path_datafile = bpy.path.abspath(path_datafile)
if os.path.isfile(path_datafile) == False:
return False
# The whole list gets deleted! We build it new.
del ELEMENTS[:]
# Read the data file, which contains all data
# (atom name, radii, colors, etc.)
data_file_p = open(path_datafile, "r")
for line in data_file_p:
if "Atom" in line:
line = data_file_p.readline()
# Number
line = data_file_p.readline()
number = line[19:-1]
# Name
line = data_file_p.readline()
name = line[19:-1]
# Short name
line = data_file_p.readline()
short_name = line[19:-1]
# Color
line = data_file_p.readline()
color_value = line[19:-1].split(',')
color = [float(color_value[0]),
float(color_value[1]),
float(color_value[2]),
float(color_value[3])]
# Used radius
line = data_file_p.readline()
radius_used = float(line[19:-1])
# Atomic radius
line = data_file_p.readline()
radius_atomic = float(line[19:-1])
# Van der Waals radius
line = data_file_p.readline()
radius_vdW = float(line[19:-1])
radii = [radius_used,radius_atomic,radius_vdW]
radii_ionic = []
element = ElementProp(number,name,short_name,color,
radii, radii_ionic)
ELEMENTS.append(element)
data_file_p.close()
return True