Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
import bpy
import subprocess
import os
import sys
import time
import math
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import platform as pltfrm
if pltfrm.architecture()[0] == '64bit':
bitness = 64
else:
bitness = 32
def write_pov(filename, scene=None, info_callback=None):
file = open(filename, 'w')
# Only for testing
if not scene:
scene = bpy.data.scenes[0]
render = scene.render
world = scene.world
def uniqueName(name, nameSeq):
if name not in nameSeq:
return name
name_orig = name
i = 1
while name in nameSeq:
name = '%s_%.3d' % (name_orig, i)
i += 1
return name
def writeMatrix(matrix):
file.write('\tmatrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n' %\
(matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]))
def writeObjectMaterial(material):
if material and material.transparency_method == 'RAYTRACE':
file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)
# Other interior args
# fade_distance 2
# fade_power [Value]
# fade_color
# dispersion
# dispersion_samples
materialNames = {}
DEF_MAT_NAME = 'Default'
def writeMaterial(material):
# Assumes only called once on each material
if material:
name_orig = material.name
else:
name_orig = DEF_MAT_NAME
name = materialNames[name_orig] = uniqueName(bpy.path.clean_name(name_orig), materialNames)
file.write('#declare %s = finish {\n' % name)
if material:
file.write('\tdiffuse %.3g\n' % material.diffuse_intensity)
file.write('\tspecular %.3g\n' % material.specular_intensity)
file.write('\tambient %.3g\n' % material.ambient)
#file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value
# map hardness between 0.0 and 1.0
roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0)))
# scale from 0.0 to 0.1
roughness *= 0.1
# add a small value because 0.0 is invalid
roughness += (1 / 511.0)
file.write('\troughness %.3g\n' % roughness)
# 'phong 70.0 '
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
raytrace_mirror = material.raytrace_mirror
if raytrace_mirror.reflect_factor:
file.write('\treflection {\n')
file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
file.write('\t\tfresnel 1 falloff %.3g exponent %.3g metallic %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor, raytrace_mirror.reflect_factor))
else:
file.write('\tdiffuse 0.8\n')
file.write('\tspecular 0.2\n')
# This is written into the object
'''
if material and material.transparency_method=='RAYTRACE':
'interior { ior %.3g} ' % material.raytrace_transparency.ior
'''
#file.write('\t\t\tcrand 1.0\n') # Sand granyness
#file.write('\t\t\tmetallic %.6f\n' % material.spec)
#file.write('\t\t\tphong %.6f\n' % material.spec)
#file.write('\t\t\tphong_size %.6f\n' % material.spec)
#file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness
file.write('}\n')
def exportCamera():
camera = scene.camera
matrix = camera.matrix_world
# compute resolution
Qsize = float(render.resolution_x) / float(render.resolution_y)
file.write('camera {\n')
file.write('\tlocation <0, 0, 0>\n')
file.write('\tlook_at <0, 0, -1>\n')
file.write('\tright <%s, 0, 0>\n' % - Qsize)
file.write('\tup <0, 1, 0>\n')
file.write('\tangle %f \n' % (360.0 * math.atan(16.0 / camera.data.lens) / math.pi))
file.write('\trotate <%.6f, %.6f, %.6f>\n' % tuple([math.degrees(e) for e in matrix.rotation_part().to_euler()]))
file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
file.write('}\n')
def exportLamps(lamps):
# Get all lamps
for ob in lamps:
lamp = ob.data
matrix = ob.matrix_world
color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy
file.write('light_source {\n')
file.write('\t< 0,0,0 >\n')
file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color)
if lamp.type == 'POINT': # Point Lamp
pass
elif lamp.type == 'SPOT': # Spot
file.write('\tspotlight\n')
# Falloff is the main radius from the centre line
file.write('\tfalloff %.2f\n' % (math.degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH
file.write('\tradius %.6f\n' % ((math.degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))
# Blender does not have a tightness equivilent, 0 is most like blender default.
file.write('\ttightness 0\n') # 0:10f
file.write('\tpoint_at <0, 0, -1>\n')
elif lamp.type == 'SUN':
file.write('\tparallel\n')
file.write('\tpoint_at <0, 0, -1>\n') # *must* be after 'parallel'
elif lamp.type == 'AREA':
size_x = lamp.size
samples_x = lamp.shadow_ray_samples_x
if lamp.shape == 'SQUARE':
size_y = size_x
samples_y = samples_x
else:
size_y = lamp.size_y
samples_y = lamp.shadow_ray_samples_y
file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
if lamp.shadow_ray_sample_method == 'CONSTANT_JITTERED':
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
if lamp.jitter:
file.write('\tjitter\n')
else:
file.write('\tadaptive 1\n')
file.write('\tjitter\n')
if lamp.shadow_method == 'NOSHADOW':
file.write('\tshadowless\n')
file.write('\tfade_distance %.6f\n' % lamp.distance)
file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
writeMatrix(matrix)
file.write('}\n')
def exportMeta(metas):
# TODO - blenders 'motherball' naming is not supported.
for ob in metas:
meta = ob.data
file.write('blob {\n')
file.write('\t\tthreshold %.4g\n' % meta.threshold)
try:
material = meta.materials[0] # lame! - blender cant do enything else.
except:
material = None
for elem in meta.elements:
if elem.type not in ('BALL', 'ELLIPSOID'):
continue # Not supported
stiffness = - stiffness
if elem.type == 'BALL':
file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))
# After this wecould do something simple like...
# "pigment {Blue} }"
# except we'll write the color
elif elem.type == 'ELLIPSOID':
# location is modified by scale
file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness))
file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))
if material:
diffuse_color = material.diffuse_color
if material.use_transparency and material.transparency_method == 'RAYTRACE':
trans = 1.0 - material.raytrace_transparency.filter
else:
trans = 0.0
file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
(diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name]))
else:
file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME) # Write the finish last.
writeObjectMaterial(material)
writeMatrix(ob.matrix_world)
file.write('}\n')
def exportMeshs(scene, sel):
ob_num = 0
for ob in sel:
ob_num += 1
if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE', 'LATTICE'):
continue
me = ob.data
me_materials = me.materials
me = ob.create_mesh(scene, True, 'RENDER')
continue
if info_callback:
info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))
#if ob.type!='MESH':
# continue
# me = ob.data
matrix = ob.matrix_world
try:
verts_normals = [tuple(v.normal) for v in me.vertices]
# quads incur an extra face
quadCount = len([f for f in faces_verts if len(f) == 4])
file.write('mesh2 {\n')
file.write('\tvertex_vectors {\n')
file.write('\t\t%s' % (len(me.vertices))) # vert count
for v in me.vertices:
file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
file.write('\n }\n')
# Build unique Normal list
uniqueNormals = {}
for fi, f in enumerate(me.faces):
fv = faces_verts[fi]
# [-1] is a dummy index, use a list so we can modify in place
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
for v in fv:
key = verts_normals[v]
uniqueNormals[key] = [-1]
else: # Use face normal
key = faces_normals[fi]
uniqueNormals[key] = [-1]
file.write('\tnormal_vectors {\n')
file.write('\t\t%d' % len(uniqueNormals)) # vert count
idx = 0
for no, index in uniqueNormals.items():
file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
index[0] = idx
idx += 1
file.write('\n }\n')
# Vertex colours
vertCols = {} # Use for material colours also.
if uv_layer:
# Generate unique UV's
uniqueUVs = {}
for fi, uv in enumerate(uv_layer):
if len(faces_verts[fi]) == 4:
uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
else:
uvs = uv.uv1, uv.uv2, uv.uv3
for uv in uvs:
uniqueUVs[tuple(uv)] = [-1]
file.write('\tuv_vectors {\n')
#print unique_uvs
file.write('\t\t%s' % (len(uniqueUVs))) # vert count
idx = 0
for uv, index in uniqueUVs.items():
file.write(',\n\t\t<%.6f, %.6f>' % uv)
index[0] = idx
idx += 1
'''
else:
# Just add 1 dummy vector, no real UV's
file.write('\t\t1') # vert count
file.write(',\n\t\t<0.0, 0.0>')
'''
file.write('\n }\n')
if me.vertex_colors:
for fi, f in enumerate(me.faces):
material_index = f.material_index
material = me_materials[material_index]
if material and material.use_vertex_color_paint:
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
col = vcol_layer[fi]
if len(faces_verts[fi]) == 4:
cols = col.color1, col.color2, col.color3, col.color4
else:
cols = col.color1, col.color2, col.color3
for col in cols:
key = col[0], col[1], col[2], material_index # Material index!
vertCols[key] = [-1]
else:
if material:
diffuse_color = tuple(material.diffuse_color)
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
vertCols[key] = [-1]
else:
# No vertex colours, so write material colours as vertex colours
for i, material in enumerate(me_materials):
if material:
diffuse_color = tuple(material.diffuse_color)
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
vertCols[key] = [-1]
# Vert Colours
file.write('\ttexture_list {\n')
file.write('\t\t%s' % (len(vertCols))) # vert count
idx = 0
for col, index in vertCols.items():
if me_materials:
material = me_materials[col[3]]
material_finish = materialNames[material.name]
if material.use_transparency and material.transparency_method == 'RAYTRACE':
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
trans = 1.0 - material.raytrace_transparency.filter
else:
trans = 0.0
else:
material_finish = DEF_MAT_NAME # not working properly,
trans = 0.0
#print material.apl
file.write(',\n\t\ttexture { pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s}}' %
(col[0], col[1], col[2], 1.0 - material.alpha, trans, material_finish))
index[0] = idx
idx += 1
file.write('\n }\n')
# Face indicies
file.write('\tface_indices {\n')
file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
for fi, f in enumerate(me.faces):
fv = faces_verts[fi]
material_index = f.material_index
if len(fv) == 4:
indicies = (0, 1, 2), (0, 2, 3)
else:
indicies = ((0, 1, 2),)
if vcol_layer:
col = vcol_layer[fi]
if len(fv) == 4:
cols = col.color1, col.color2, col.color3, col.color4
else:
cols = col.color1, col.color2, col.color3
if not me_materials or me_materials[material_index] == None: # No materials
for i1, i2, i3 in indicies:
file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
else:
material = me_materials[material_index]
for i1, i2, i3 in indicies:
if me.vertex_colors and material.use_vertex_color_paint:
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# Colour per vertex - vertex colour
col1 = cols[i1]
col2 = cols[i2]
col3 = cols[i3]
ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
else:
# Colour per material - flat material colour
diffuse_color = material.diffuse_color
ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]
file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
file.write('\n }\n')
# normal_indices indicies
file.write('\tnormal_indices {\n')
file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
for fi, fv in enumerate(faces_verts):
if len(fv) == 4:
indicies = (0, 1, 2), (0, 2, 3)
else:
indicies = ((0, 1, 2),)
for i1, i2, i3 in indicies:
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
file.write(',\n\t\t<%d,%d,%d>' %\
(uniqueNormals[verts_normals[fv[i1]]][0],\
uniqueNormals[verts_normals[fv[i2]]][0],\
uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
else:
idx = uniqueNormals[faces_normals[fi]][0]
file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count
file.write('\n }\n')
if uv_layer:
file.write('\tuv_indices {\n')
file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
for fi, fv in enumerate(faces_verts):
if len(fv) == 4:
indicies = (0, 1, 2), (0, 2, 3)
else:
indicies = ((0, 1, 2),)
uv = uv_layer[fi]
if len(faces_verts[fi]) == 4:
uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
else:
uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)
for i1, i2, i3 in indicies:
file.write(',\n\t\t<%d,%d,%d>' %\
(uniqueUVs[uvs[i1]][0],\
uniqueUVs[uvs[i2]][0],\
uniqueUVs[uvs[i2]][0])) # vert count
file.write('\n }\n')
if me.materials:
material = me.materials[0] # dodgy
writeObjectMaterial(material)
writeMatrix(matrix)
file.write('}\n')
bpy.data.meshes.remove(me)
def exportWorld(world):
if not world:
return
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
if mist.use_mist:
file.write('fog {\n')
file.write('\tdistance %.6f\n' % mist.depth)
file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,)))
#file.write('\tfog_offset %.6f\n' % mist.start)
#file.write('\tfog_alt 5\n')
#file.write('\tturbulence 0.2\n')
#file.write('\tturb_depth 0.3\n')
file.write('\tfog_type 1\n')
file.write('}\n')
def exportGlobalSettings(scene):
file.write('global_settings {\n')
if scene.pov_radio_enable:
file.write('\tradiosity {\n')
file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout)
file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample)
file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness)
file.write("\t\tcount %d\n" % scene.pov_radio_count)
file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound)
file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold)
file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor)
file.write("\t\tmedia %d\n" % scene.pov_radio_media)
file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse)
file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count)
file.write("\t\tnormal %d\n" % scene.pov_radio_normal)
file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit)
file.write('\t}\n')
if world:
file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color))
file.write('}\n')
# Convert all materials to strings we can access directly per vertex.
writeMaterial(None) # default material
for material in bpy.data.materials:
writeMaterial(material)
exportCamera()
#exportMaterials()
sel = scene.objects
exportLamps([l for l in sel if l.type == 'LAMP'])
exportMeta([l for l in sel if l.type == 'META'])
exportMeshs(scene, sel)
exportWorld(scene.world)
exportGlobalSettings(scene)
file.close()
def write_pov_ini(filename_ini, filename_pov, filename_image):
scene = bpy.data.scenes[0]
render = scene.render
x = int(render.resolution_x * render.resolution_percentage * 0.01)
y = int(render.resolution_y * render.resolution_percentage * 0.01)
file = open(filename_ini, 'w')
file.write('Input_File_Name="%s"\n' % filename_pov)
file.write('Output_File_Name="%s"\n' % filename_image)
file.write('Width=%d\n' % x)
file.write('Height=%d\n' % y)
# Needed for border render.
'''
file.write('Start_Column=%d\n' % part.x)
file.write('End_Column=%d\n' % (part.x+part.w))
file.write('Start_Row=%d\n' % (part.y))
file.write('End_Row=%d\n' % (part.y+part.h))
'''
file.write('Display=0\n')
file.write('Pause_When_Done=0\n')
file.write('Output_File_Type=T\n') # TGA, best progressive loading
file.write('Output_Alpha=1\n')
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 1 assumed
file.write('Antialias=1\n')
file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
else:
file.write('Antialias=0\n')
file.close()
class PovrayRender(bpy.types.RenderEngine):
bl_idname = 'POVRAY_RENDER'
bl_label = "Povray"
DELAY = 0.02
def _export(self, scene):
import tempfile
self._temp_file_in = tempfile.mktemp(suffix='.pov')
self._temp_file_out = tempfile.mktemp(suffix='.tga')
self._temp_file_ini = tempfile.mktemp(suffix='.ini')
'''
self._temp_file_in = '/test.pov'
self._temp_file_out = '/test.tga'
self._temp_file_ini = '/test.ini'
'''
def info_callback(txt):
self.update_stats("", "POVRAY: " + txt)
write_pov(self._temp_file_in, scene, info_callback)
def _render(self):
try:
os.remove(self._temp_file_out) # so as not to load the old file
except:
pass
write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out)
print ("***-STARTING-***")
pov_binary = "povray"
if sys.platform == 'win32':
import winreg
regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.6\\Windows')
if bitness == 64:
pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64'
else:
pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine'
if 1:
# TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists
try:
self._process = subprocess.Popen([pov_binary, self._temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
except OSError:
# TODO, report api
print("POVRAY: could not execute '%s', possibly povray isn't installed" % pov_binary)
import traceback
traceback.print_exc()
print ("***-DONE-***")
return False
else:
# This works too but means we have to wait until its done
os.system('%s %s' % (pov_binary, self._temp_file_ini))
print ("***-DONE-***")
return True
def _cleanup(self):
for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
try:
os.remove(f)
except:
pass
self.update_stats("", "")
def render(self, scene):
self.update_stats("", "POVRAY: Exporting data from Blender")
self._export(scene)
self.update_stats("", "POVRAY: Parsing File")
if not self._render():
self.update_stats("", "POVRAY: Not found")
return
r = scene.render
# compute resolution
x = int(r.resolution_x * r.resolution_percentage * 0.01)
y = int(r.resolution_y * r.resolution_percentage * 0.01)
# Wait for the file to be created
while not os.path.exists(self._temp_file_out):
if self.test_break():
try:
self._process.terminate()
except:
pass
break
if self._process.poll() != None:
self.update_stats("", "POVRAY: Failed")
break
time.sleep(self.DELAY)
if os.path.exists(self._temp_file_out):
self.update_stats("", "POVRAY: Rendering")
prev_size = -1
def update_image():
result = self.begin_result(0, 0, x, y)
lay = result.layers[0]
# possible the image wont load early on.
try:
lay.load_from_file(self._temp_file_out)
except:
pass
self.end_result(result)
# Update while povray renders
while True:
# test if povray exists
if self._process.poll() is not None:
update_image()
break
# user exit
if self.test_break():
try:
self._process.terminate()
except:
pass
break
# Would be nice to redirect the output
# stdout_value, stderr_value = self._process.communicate() # locks
# check if the file updated
new_size = os.path.getsize(self._temp_file_out)
if new_size != prev_size:
update_image()
prev_size = new_size
time.sleep(self.DELAY)
self._cleanup()