Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
#
# Authors : Clemens Barth (Blendphys@root-1.de), ...
#
# Homepage(Wiki) : http://development.root-1.de/Atomic_Blender.php
# Tracker : http://projects.blender.org/tracker/index.php?func=detail&aid=29226&group_id=153&atid=467
#
# Start of project : 2011-08-31 by Clemens Barth
# First publication in Blender : 2011-11-11
# Last modified : 2011-12-01
#
# Acknowledgements: Thanks to ideasman, meta_androcto, truman, kilon,
# dairin0d, PKHG, Valter, etc
#
import bpy
import io
import math
import os
from math import pi, cos, sin
from mathutils import Vector, Matrix
# These are variables, which contain the name of the PDB file and
# the path of the PDB file.
# They are used almost everywhere, which is the reason why they
# should stay global. First, they are empty and get 'filled' directly
# after having chosen the PDB file (see 'class LoadPDB' further below).
ATOM_PDB_FILEPATH = ""
# Some string stuff for the console.
ATOM_PDB_STRING = "Atomic Blender\n==================="
# -----------------------------------------------------------------------------
# Atom, stick and element data
# This is a list that contains some data of all possible elements. The structure
# is as follows:
#
# 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54 means
#
# No., name, short name, color, radius (used), radius (covalent), radius (atomic),
#
# charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# charge states for any atom are listed, if existing.
# The list is fixed and cannot be changed ... (see below)
ATOM_PDB_ELEMENTS_DEFAULT = (
( 1, "Hydrogen", "H", ( 1.0, 1.0, 1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ),
( 2, "Helium", "He", ( 0.85, 1.0, 1.0), 0.93, 0.93, 0.49 ),
( 3, "Lithium", "Li", ( 0.8, 0.50, 1.0), 1.23, 1.23, 2.05 , 1 , 0.68 ),
( 4, "Beryllium", "Be", ( 0.76, 1.0, 0.0), 0.90, 0.90, 1.40 , 1 , 0.44 , 2 , 0.35 ),
( 5, "Boron", "B", ( 1.0, 0.70, 0.70), 0.82, 0.82, 1.17 , 1 , 0.35 , 3 , 0.23 ),
( 6, "Carbon", "C", ( 0.56, 0.56, 0.56), 0.77, 0.77, 0.91 , -4 , 2.60 , 4 , 0.16 ),
( 7, "Nitrogen", "N", ( 0.18, 0.31, 0.97), 0.75, 0.75, 0.75 , -3 , 1.71 , 1 , 0.25 , 3 , 0.16 , 5 , 0.13 ),
( 8, "Oxygen", "O", ( 1.0, 0.05, 0.05), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 , 1 , 0.22 , 6 , 0.09 ),
( 9, "Fluorine", "F", ( 0.56, 0.87, 0.31), 0.72, 0.72, 0.57 , -1 , 1.33 , 7 , 0.08 ),
(10, "Neon", "Ne", ( 0.70, 0.89, 0.96), 0.71, 0.71, 0.51 , 1 , 1.12 ),
(11, "Sodium", "Na", ( 0.67, 0.36, 0.94), 1.54, 1.54, 2.23 , 1 , 0.97 ),
(12, "Magnesium", "Mg", ( 0.54, 1.0, 0.0), 1.36, 1.36, 1.72 , 1 , 0.82 , 2 , 0.66 ),
(13, "Aluminium", "Al", ( 0.74, 0.65, 0.65), 1.18, 1.18, 1.82 , 3 , 0.51 ),
(14, "Silicon", "Si", ( 0.94, 0.78, 0.62), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 , 1 , 0.65 , 4 , 0.42 ),
(15, "Phosphorus", "P", ( 1.0, 0.50, 0.0), 1.06, 1.06, 1.23 , -3 , 2.12 , 3 , 0.44 , 5 , 0.35 ),
(16, "Sulfur", "S", ( 1.0, 1.0, 0.18), 1.02, 1.02, 1.09 , -2 , 1.84 , 2 , 2.19 , 4 , 0.37 , 6 , 0.30 ),
(17, "Chlorine", "Cl", ( 0.12, 0.94, 0.12), 0.99, 0.99, 0.97 , -1 , 1.81 , 5 , 0.34 , 7 , 0.27 ),
(18, "Argon", "Ar", ( 0.50, 0.81, 0.89), 0.98, 0.98, 0.88 , 1 , 1.54 ),
(19, "Potassium", "K", ( 0.56, 0.25, 0.83), 2.03, 2.03, 2.77 , 1 , 0.81 ),
(20, "Calcium", "Ca", ( 0.23, 1.0, 0.0), 1.74, 1.74, 2.23 , 1 , 1.18 , 2 , 0.99 ),
(21, "Scandium", "Sc", ( 0.90, 0.90, 0.90), 1.44, 1.44, 2.09 , 3 , 0.73 ),
(22, "Titanium", "Ti", ( 0.74, 0.76, 0.78), 1.32, 1.32, 2.00 , 1 , 0.96 , 2 , 0.94 , 3 , 0.76 , 4 , 0.68 ),
(23, "Vanadium", "V", ( 0.65, 0.65, 0.67), 1.22, 1.22, 1.92 , 2 , 0.88 , 3 , 0.74 , 4 , 0.63 , 5 , 0.59 ),
(24, "Chromium", "Cr", ( 0.54, 0.6, 0.78), 1.18, 1.18, 1.85 , 1 , 0.81 , 2 , 0.89 , 3 , 0.63 , 6 , 0.52 ),
(25, "Manganese", "Mn", ( 0.61, 0.47, 0.78), 1.17, 1.17, 1.79 , 2 , 0.80 , 3 , 0.66 , 4 , 0.60 , 7 , 0.46 ),
(26, "Iron", "Fe", ( 0.87, 0.4, 0.2), 1.17, 1.17, 1.72 , 2 , 0.74 , 3 , 0.64 ),
(27, "Cobalt", "Co", ( 0.94, 0.56, 0.62), 1.16, 1.16, 1.67 , 2 , 0.72 , 3 , 0.63 ),
(28, "Nickel", "Ni", ( 0.31, 0.81, 0.31), 1.15, 1.15, 1.62 , 2 , 0.69 ),
(29, "Copper", "Cu", ( 0.78, 0.50, 0.2), 1.17, 1.17, 1.57 , 1 , 0.96 , 2 , 0.72 ),
(30, "Zinc", "Zn", ( 0.49, 0.50, 0.69), 1.25, 1.25, 1.53 , 1 , 0.88 , 2 , 0.74 ),
(31, "Gallium", "Ga", ( 0.76, 0.56, 0.56), 1.26, 1.26, 1.81 , 1 , 0.81 , 3 , 0.62 ),
(32, "Germanium", "Ge", ( 0.4, 0.56, 0.56), 1.22, 1.22, 1.52 , -4 , 2.72 , 2 , 0.73 , 4 , 0.53 ),
(33, "Arsenic", "As", ( 0.74, 0.50, 0.89), 1.20, 1.20, 1.33 , -3 , 2.22 , 3 , 0.58 , 5 , 0.46 ),
(34, "Selenium", "Se", ( 1.0, 0.63, 0.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 , 1 , 0.66 , 4 , 0.50 , 6 , 0.42 ),
(35, "Bromine", "Br", ( 0.65, 0.16, 0.16), 1.14, 1.14, 1.12 , -1 , 1.96 , 5 , 0.47 , 7 , 0.39 ),
(36, "Krypton", "Kr", ( 0.36, 0.72, 0.81), 1.31, 1.31, 1.24 ),
(37, "Rubidium", "Rb", ( 0.43, 0.18, 0.69), 2.16, 2.16, 2.98 , 1 , 1.47 ),
(38, "Strontium", "Sr", ( 0.0, 1.0, 0.0), 1.91, 1.91, 2.45 , 2 , 1.12 ),
(39, "Yttrium", "Y", ( 0.58, 1.0, 1.0), 1.62, 1.62, 2.27 , 3 , 0.89 ),
(40, "Zirconium", "Zr", ( 0.58, 0.87, 0.87), 1.45, 1.45, 2.16 , 1 , 1.09 , 4 , 0.79 ),
(41, "Niobium", "Nb", ( 0.45, 0.76, 0.78), 1.34, 1.34, 2.08 , 1 , 1.00 , 4 , 0.74 , 5 , 0.69 ),
(42, "Molybdenum", "Mo", ( 0.32, 0.70, 0.70), 1.30, 1.30, 2.01 , 1 , 0.93 , 4 , 0.70 , 6 , 0.62 ),
(43, "Technetium", "Tc", ( 0.23, 0.61, 0.61), 1.27, 1.27, 1.95 , 7 , 0.97 ),
(44, "Ruthenium", "Ru", ( 0.14, 0.56, 0.56), 1.25, 1.25, 1.89 , 4 , 0.67 ),
(45, "Rhodium", "Rh", ( 0.03, 0.49, 0.54), 1.25, 1.25, 1.83 , 3 , 0.68 ),
(46, "Palladium", "Pd", ( 0.0, 0.41, 0.52), 1.28, 1.28, 1.79 , 2 , 0.80 , 4 , 0.65 ),
(47, "Silver", "Ag", ( 0.75, 0.75, 0.75), 1.34, 1.34, 1.75 , 1 , 1.26 , 2 , 0.89 ),
(48, "Cadmium", "Cd", ( 1.0, 0.85, 0.56), 1.48, 1.48, 1.71 , 1 , 1.14 , 2 , 0.97 ),
(49, "Indium", "In", ( 0.65, 0.45, 0.45), 1.44, 1.44, 2.00 , 3 , 0.81 ),
(50, "Tin", "Sn", ( 0.4, 0.50, 0.50), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 , 2 , 0.93 , 4 , 0.71 ),
(51, "Antimony", "Sb", ( 0.61, 0.38, 0.70), 1.40, 1.40, 1.53 , -3 , 2.45 , 3 , 0.76 , 5 , 0.62 ),
(52, "Tellurium", "Te", ( 0.83, 0.47, 0.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 , 1 , 0.82 , 4 , 0.70 , 6 , 0.56 ),
(53, "Iodine", "I", ( 0.58, 0.0, 0.58), 1.33, 1.33, 1.32 , -1 , 2.20 , 5 , 0.62 , 7 , 0.50 ),
(54, "Xenon", "Xe", ( 0.25, 0.61, 0.69), 1.31, 1.31, 1.24 ),
(55, "Caesium", "Cs", ( 0.34, 0.09, 0.56), 2.35, 2.35, 3.35 , 1 , 1.67 ),
(56, "Barium", "Ba", ( 0.0, 0.78, 0.0), 1.98, 1.98, 2.78 , 1 , 1.53 , 2 , 1.34 ),
(57, "Lanthanum", "La", ( 0.43, 0.83, 1.0), 1.69, 1.69, 2.74 , 1 , 1.39 , 3 , 1.06 ),
(58, "Cerium", "Ce", ( 1.0, 1.0, 0.78), 1.65, 1.65, 2.70 , 1 , 1.27 , 3 , 1.03 , 4 , 0.92 ),
(59, "Praseodymium", "Pr", ( 0.85, 1.0, 0.78), 1.65, 1.65, 2.67 , 3 , 1.01 , 4 , 0.90 ),
(60, "Neodymium", "Nd", ( 0.78, 1.0, 0.78), 1.64, 1.64, 2.64 , 3 , 0.99 ),
(61, "Promethium", "Pm", ( 0.63, 1.0, 0.78), 1.63, 1.63, 2.62 , 3 , 0.97 ),
(62, "Samarium", "Sm", ( 0.56, 1.0, 0.78), 1.62, 1.62, 2.59 , 3 , 0.96 ),
(63, "Europium", "Eu", ( 0.38, 1.0, 0.78), 1.85, 1.85, 2.56 , 2 , 1.09 , 3 , 0.95 ),
(64, "Gadolinium", "Gd", ( 0.27, 1.0, 0.78), 1.61, 1.61, 2.54 , 3 , 0.93 ),
(65, "Terbium", "Tb", ( 0.18, 1.0, 0.78), 1.59, 1.59, 2.51 , 3 , 0.92 , 4 , 0.84 ),
(66, "Dysprosium", "Dy", ( 0.12, 1.0, 0.78), 1.59, 1.59, 2.49 , 3 , 0.90 ),
(67, "Holmium", "Ho", ( 0.0, 1.0, 0.61), 1.58, 1.58, 2.47 , 3 , 0.89 ),
(68, "Erbium", "Er", ( 0.0, 0.90, 0.45), 1.57, 1.57, 2.45 , 3 , 0.88 ),
(69, "Thulium", "Tm", ( 0.0, 0.83, 0.32), 1.56, 1.56, 2.42 , 3 , 0.87 ),
(70, "Ytterbium", "Yb", ( 0.0, 0.74, 0.21), 1.74, 1.74, 2.40 , 2 , 0.93 , 3 , 0.85 ),
(71, "Lutetium", "Lu", ( 0.0, 0.67, 0.14), 1.56, 1.56, 2.25 , 3 , 0.85 ),
(72, "Hafnium", "Hf", ( 0.30, 0.76, 1.0), 1.44, 1.44, 2.16 , 4 , 0.78 ),
(73, "Tantalum", "Ta", ( 0.30, 0.65, 1.0), 1.34, 1.34, 2.09 , 5 , 0.68 ),
(74, "Tungsten", "W", ( 0.12, 0.58, 0.83), 1.30, 1.30, 2.02 , 4 , 0.70 , 6 , 0.62 ),
(75, "Rhenium", "Re", ( 0.14, 0.49, 0.67), 1.28, 1.28, 1.97 , 4 , 0.72 , 7 , 0.56 ),
(76, "Osmium", "Os", ( 0.14, 0.4, 0.58), 1.26, 1.26, 1.92 , 4 , 0.88 , 6 , 0.69 ),
(77, "Iridium", "Ir", ( 0.09, 0.32, 0.52), 1.27, 1.27, 1.87 , 4 , 0.68 ),
(78, "Platinium", "Pt", ( 0.81, 0.81, 0.87), 1.30, 1.30, 1.83 , 2 , 0.80 , 4 , 0.65 ),
(79, "Gold", "Au", ( 1.0, 0.81, 0.13), 1.34, 1.34, 1.79 , 1 , 1.37 , 3 , 0.85 ),
(80, "Mercury", "Hg", ( 0.72, 0.72, 0.81), 1.49, 1.49, 1.76 , 1 , 1.27 , 2 , 1.10 ),
(81, "Thallium", "Tl", ( 0.65, 0.32, 0.30), 1.48, 1.48, 2.08 , 1 , 1.47 , 3 , 0.95 ),
(82, "Lead", "Pb", ( 0.34, 0.34, 0.38), 1.47, 1.47, 1.81 , 2 , 1.20 , 4 , 0.84 ),
(83, "Bismuth", "Bi", ( 0.61, 0.30, 0.70), 1.46, 1.46, 1.63 , 1 , 0.98 , 3 , 0.96 , 5 , 0.74 ),
(84, "Polonium", "Po", ( 0.67, 0.36, 0.0), 1.46, 1.46, 1.53 , 6 , 0.67 ),
(85, "Astatine", "At", ( 0.45, 0.30, 0.27), 1.45, 1.45, 1.43 , -3 , 2.22 , 3 , 0.85 , 5 , 0.46 ),
(86, "Radon", "Rn", ( 0.25, 0.50, 0.58), 1.00, 1.00, 1.34 ),
(87, "Francium", "Fr", ( 0.25, 0.0, 0.4), 1.00, 1.00, 1.00 , 1 , 1.80 ),
(88, "Radium", "Ra", ( 0.0, 0.49, 0.0), 1.00, 1.00, 1.00 , 2 , 1.43 ),
(89, "Actinium", "Ac", ( 0.43, 0.67, 0.98), 1.00, 1.00, 1.00 , 3 , 1.18 ),
(90, "Thorium", "Th", ( 0.0, 0.72, 1.0), 1.65, 1.65, 1.00 , 4 , 1.02 ),
(91, "Protactinium", "Pa", ( 0.0, 0.63, 1.0), 1.00, 1.00, 1.00 , 3 , 1.13 , 4 , 0.98 , 5 , 0.89 ),
(92, "Uranium", "U", ( 0.0, 0.56, 1.0), 1.42, 1.42, 1.00 , 4 , 0.97 , 6 , 0.80 ),
(93, "Neptunium", "Np", ( 0.0, 0.50, 1.0), 1.00, 1.00, 1.00 , 3 , 1.10 , 4 , 0.95 , 7 , 0.71 ),
(94, "Plutonium", "Pu", ( 0.0, 0.41, 1.0), 1.00, 1.00, 1.00 , 3 , 1.08 , 4 , 0.93 ),
(95, "Americium", "Am", ( 0.32, 0.36, 0.94), 1.00, 1.00, 1.00 , 3 , 1.07 , 4 , 0.92 ),
(96, "Curium", "Cm", ( 0.47, 0.36, 0.89), 1.00, 1.00, 1.00 ),
(97, "Berkelium", "Bk", ( 0.54, 0.30, 0.89), 1.00, 1.00, 1.00 ),
(98, "Californium", "Cf", ( 0.63, 0.21, 0.83), 1.00, 1.00, 1.00 ),
(99, "Einsteinium", "Es", ( 0.70, 0.12, 0.83), 1.00, 1.00, 1.00 ),
(100, "Fermium", "Fm", ( 0.70, 0.12, 0.72), 1.00, 1.00, 1.00 ),
(101, "Mendelevium", "Md", ( 0.70, 0.05, 0.65), 1.00, 1.00, 1.00 ),
(102, "Nobelium", "No", ( 0.74, 0.05, 0.52), 1.00, 1.00, 1.00 ),
(103, "Lawrencium", "Lr", ( 0.78, 0.0, 0.4), 1.00, 1.00, 1.00 ),
(104, "Vacancy", "Vac", ( 0.5, 0.5, 0.5), 1.00, 1.00, 1.00),
(105, "Default", "Default", ( 1.0, 1.0, 1.0), 1.00, 1.00, 1.00),
(106, "Stick", "Stick", ( 0.5, 0.5, 0.5), 1.00, 1.00, 1.00),
)
# This list here contains all data of the elements and will be used during
# runtime. It is a list of classes.
# During executing Atomic Blender, the list will be initialized with the fixed
# data from above via the class structure below (CLASS_atom_pdb_Elements). We
# have then one fixed list (above), which will never be changed, and a list of
# classes with same data. The latter can be modified via loading a separate
# custom data file.
ATOM_PDB_ELEMENTS = []
# This is the class, which stores the properties for one element.
class CLASS_atom_pdb_Elements(object):
__slots__ = ('number', 'name', 'short_name', 'color', 'radii', 'radii_ionic')
def __init__(self, number, name, short_name, color, radii, radii_ionic):
self.number = number
self.name = name
self.short_name = short_name
self.color = color
self.radii = radii
self.radii_ionic = radii_ionic
# This is the class, which stores the properties of one atom.
class CLASS_atom_pdb_atom(object):
__slots__ = ('element', 'name', 'location', 'radius', 'color', 'material')
def __init__(self, element, name, location, radius, color, material):
self.element = element
self.name = name
self.location = location
self.radius = radius
self.color = color
self.material = material
# This is the class, which stores the two atoms of one stick.
# -----------------------------------------------------------------------------
# Some small routines
# Routine which produces a cylinder. All is somewhat easy to undertsand.
vertices = []
faces = []
dphi = 2.0 * pi/(float(sectors)-1)
# Vertices
vertices_top = [Vector((0,0,length / 2.0))]
vertices_bottom = [Vector((0,0,-length / 2.0))]
for i in range(sectors-1):
x = radius * cos( dphi * i )
y = radius * sin( dphi * i )
vertex = Vector((x,y,z))
vertices_top.append(vertex)
z = -length / 2.0
vertex = Vector((x,y,z))
vertices_bottom.append(vertex)
vertices = vertices_top + vertices_bottom
# Top facets
for i in range(sectors-1):
if i == sectors-2:
face_top = [0,sectors-1,1]
face_bottom = [sectors,2*sectors-1,sectors+1]
else:
face_top = [0]
face_bottom = [sectors]
for j in range(2):
face_top.append(i+j+1)
face_bottom.append(i+j+1+sectors)
faces.append(face_top)
faces.append(face_bottom)
faces.append( [i+1, 1, 1+sectors, i+1+sectors] )
faces.append( [i+1, i+2, i+2+sectors, i+1+sectors] )
# Build the mesh
cylinder = bpy.data.meshes.new("Sticks_Cylinder")
cylinder.from_pydata(vertices, [], faces)
cylinder.update()
new_cylinder = bpy.data.objects.new("Sticks_Cylinder", cylinder)
bpy.context.scene.objects.link(new_cylinder)
# This function measures the distance between two objects (atoms),
# which are active.
def DEF_atom_pdb_distance():
if len(bpy.context.selected_bases) > 1:
object_1 = bpy.context.selected_objects[0]
object_2 = bpy.context.selected_objects[1]
else:
return "N.A."
dv = object_2.location - object_1.location
# Routine to modify the radii via the type:
# pre-defined, atomic or van der Waals
# Explanations here are also valid for the next 3 DEFs.
def DEF_atom_pdb_radius_type(rtype,how):
if how == "ALL_IN_LAYER":
# Note all layers that are active.
layers = []
for i in range(20):
if bpy.context.scene.layers[i] == True:
layers.append(i)
# Put all objects, which are in the layers, into a list.
change_objects = []
for obj in bpy.context.scene.objects:
for layer in layers:
if obj.layers[layer] == True:
change_objects.append(obj)
# Consider all objects, which are in the list 'change_objects'.
for obj in change_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
for element in ATOM_PDB_ELEMENTS:
obj.children[0].scale = (element.radii[int(rtype)],) * 3
for element in ATOM_PDB_ELEMENTS:
obj.scale = (element.radii[int(rtype)],) * 3
if how == "ALL_ACTIVE":
for obj in bpy.context.selected_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
for element in ATOM_PDB_ELEMENTS:
obj.children[0].scale = (element.radii[int(rtype)],) * 3
for element in ATOM_PDB_ELEMENTS:
obj.scale = (element.radii[int(rtype)],) * 3
# Routine to modify the radii in picometer of a specific type of atom
def DEF_atom_pdb_radius_pm(atomname, radius_pm, how):
layers = []
for i in range(20):
if bpy.context.scene.layers[i] == True:
layers.append(i)
change_objects = []
for obj in bpy.context.scene.objects:
for layer in layers:
if obj.layers[layer] == True:
change_objects.append(obj)
for obj in change_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if atomname in obj.name:
obj.children[0].scale = (radius_pm/100,) * 3
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if atomname in obj.name:
obj.scale = (radius_pm/100,) * 3
if how == "ALL_ACTIVE":
for obj in bpy.context.selected_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if atomname in obj.name:
obj.children[0].scale = (radius_pm/100,) * 3
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if atomname in obj.name:
obj.scale = (radius_pm/100,) * 3
# Routine to scale the radii of all atoms
def DEF_atom_pdb_radius_all(scale, how):
layers = []
for i in range(20):
if bpy.context.scene.layers[i] == True:
layers.append(i)
change_objects = []
for obj in bpy.context.scene.objects:
for layer in layers:
if obj.layers[layer] == True:
change_objects.append(obj)
for obj in change_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if "Stick" not in obj.name:
obj.children[0].scale *= scale
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if "Stick" not in obj.name:
if how == "ALL_ACTIVE":
for obj in bpy.context.selected_objects:
if len(obj.children) != 0:
if obj.children[0].type == "SURFACE" or obj.children[0].type == "MESH":
if "Stick" not in obj.name:
obj.children[0].scale *= scale
else:
if obj.type == "SURFACE" or obj.type == "MESH":
if "Stick" not in obj.name:
# This reads a custom data file.
def DEF_atom_pdb_custom_datafile(path_datafile):
if path_datafile == "":
return False
path_datafile = bpy.path.abspath(path_datafile)
if os.path.isfile(path_datafile) == False:
return False
# The whole list gets deleted! We build it new.
# Read the data file, which contains all data
# (atom name, radii, colors, etc.)
data_file_p = io.open(path_datafile, "r")
for line in data_file_p:
if "Atom" in line:
line = data_file_p.readline()
# Number
line = data_file_p.readline()
number = line[19:-1]
# Name
line = data_file_p.readline()
name = line[19:-1]
# Short name
line = data_file_p.readline()
short_name = line[19:-1]
# Color
line = data_file_p.readline()
color_value = line[19:-1].split(',')
color = [float(color_value[0]),
float(color_value[1]),
float(color_value[2])]
# Used radius
line = data_file_p.readline()
radius_used = float(line[19:-1])
# Atomic radius
line = data_file_p.readline()
radius_atomic = float(line[19:-1])
# Van der Waals radius
line = data_file_p.readline()
radius_vdW = float(line[19:-1])
radii, radii_ionic)
ATOM_PDB_ELEMENTS.append(element)
return True
# -----------------------------------------------------------------------------
# The main routine
def DEF_atom_pdb_main(use_mesh,Ball_azimuth,Ball_zenith,
Ball_radius_factor,radiustype,Ball_distance_factor,
use_stick,Stick_sectors,Stick_diameter,put_to_center,
use_camera,use_lamp,path_datafile):
# List of materials
atom_material_list = []
# A list of ALL objects which are loaded (needed for selecting the loaded
atom_object_list = []
# ------------------------------------------------------------------------
# INITIALIZE THE ELEMENT LIST
ATOM_PDB_ELEMENTS[:] = []
for item in ATOM_PDB_ELEMENTS_DEFAULT:
# All three radii into a list
radii = [item[4],item[5],item[6]]
# The handling of the ionic radii will be done later. So far, it is an
# empty list.
ATOM_PDB_ELEMENTS.append(li)
# ------------------------------------------------------------------------
# READING DATA OF ATOMS
if DEF_atom_pdb_custom_datafile(path_datafile):
print("Custom data file is loaded.")
# Open the file ...
ATOM_PDB_FILEPATH_p = io.open(ATOM_PDB_FILEPATH, "r")
#Go to the line, in which "ATOM" or "HETATM" appears.
for line in ATOM_PDB_FILEPATH_p:
split_list = line.split(' ')
if "ATOM" in split_list[0]:
break
if "HETATM" in split_list[0]:
break
j = 0
# This is in fact an endless 'while loop', ...
while j > -1:
# ... the loop is broken here (EOF) ...
if line == "":
# If there is a "TER" we need to put empty entries into the lists
# in order to not destroy the order of atom numbers and same numbers
# used for sticks. "TER? What is that?" TER indicates the end of a
# list of ATOM/HETATM records for a chain.
if "TER" in line:
short_name = "TER"
name = "TER"
radius = 0.0
color = [0,0,0]
location = Vector((0,0,0))
all_atoms.append(CLASS_atom_pdb_atom(short_name,
name,
location,
radius,
color,[]))
# If 'ATOM or 'HETATM' appears in the line then do ...
elif "ATOM" in line or "HETATM" in line:
# What follows is due to deviations which appear from PDB to
# PDB file. It is very special. PLEASE, DO NOT CHANGE! From here ...
short_name = line[13:14]
if short_name.isupper() == True:
if line[14:15].islower() == True:
short_name = short_name + line[14:15]
else:
short_name = line[12:13]
if short_name.isupper() == True:
if line[13:14].islower() == True:
short_name = short_name + line[13:14]
# Go through all elements and find the element of the current atom.
FLAG_FOUND = False
for element in ATOM_PDB_ELEMENTS:
if str.upper(short_name) == str.upper(element.short_name):
# Give the atom its proper names, color and radius:
short_name = str.upper(element.short_name)
name = element.name
# int(radiustype) => type of radius:
# pre-defined (0), atomic (1) or van der Waals (2)
radius = float(element.radii[int(radiustype)])
color = element.color
FLAG_FOUND = True
break
# Is it a vacancy or an 'unknown atom' ?
# Give this atom also a name. If it is an 'X' then it is a
# vacancy. Otherwise ...
if "X" in short_name:
short_name = "VAC"
name = "Vacancy"
radius = float(ATOM_PDB_ELEMENTS[-3].radii[int(radiustype)])
color = ATOM_PDB_ELEMENTS[-3].color
# ... take what is written in the PDB file. These are somewhat
# unknown atoms. This should never happen, the element list is
# almost complete. However, we do this due to security reasons.
else:
short_name = str.upper(short_name)
name = str.upper(short_name)
radius = float(ATOM_PDB_ELEMENTS[-2].radii[int(radiustype)])
color = ATOM_PDB_ELEMENTS[-2].color
# x,y and z are at fixed positions in the PDB file.
x = float(line[30:38].rsplit()[0])
y = float(line[38:46].rsplit()[0])
z = float(line[46:55].rsplit()[0])
location = Vector((x,y,z))
j += 1
all_atoms.append(CLASS_atom_pdb_atom(short_name,
name,
location,
radius,
color,[]))
line = ATOM_PDB_FILEPATH_p.readline()
line = line[:-1]
ATOM_PDB_FILEPATH_p.close()
# From above it can be clearly seen that j is now the number of all atoms.
Number_of_total_atoms = j
# ------------------------------------------------------------------------
# MATERIAL PROPERTIES FOR ATOMS
# The list that contains info about all types of atoms is created
# here. It is used for building the material properties for
# instance (see below).
for atom in all_atoms:
FLAG_FOUND = False
for atom_type in atom_all_types_list:
# If the atom name is already in the list, FLAG on 'True'.
if atom_type[0] == atom.name:
FLAG_FOUND = True
break
# No name in the current list has been found? => New entry.
if FLAG_FOUND == False:
# Stored are: Atom label (e.g. 'Na'), the corresponding atom
# name (e.g. 'Sodium') and its color.
atom_all_types_list.append([atom.name, atom.element, atom.color])
# The list of materials is built.
# Note that all atoms of one type (e.g. all hydrogens) get only ONE
# material! This is good because then, by activating one atom in the
# Blender scene and changing the color of this atom, one changes the color
# Create first a new list of materials for each type of atom
for atom_type in atom_all_types_list:
material = bpy.data.materials.new(atom_type[1])
material.name = atom_type[0]
material.diffuse_color = atom_type[2]
atom_material_list.append(material)
# Now, we go through all atoms and give them a material. For all atoms ...
for atom in all_atoms:
# ... and all materials ...
for material in atom_material_list:
# ... select the correct material for the current atom via
# ... and give the atom its material properties.
# However, before we check, if it is a vacancy, because then it
# gets some additional preparation. The vacancy is represented
# by a transparent cube.
if atom.name == "Vacancy":
material.transparency_method = 'Z_TRANSPARENCY'
material.alpha = 1.3
material.raytrace_transparency.fresnel = 1.6
material.raytrace_transparency.fresnel_factor = 1.6
material.use_transparency = True
atom.material = material
# ------------------------------------------------------------------------
# READING DATA OF STICKS
# Open the PDB file again such that the file pointer is in the first
# line ... . Stupid, I know ... ;-)
ATOM_PDB_FILEPATH_p = io.open(ATOM_PDB_FILEPATH, "r")
split_list = line.split(' ')
# Go to the first entry
if "CONECT" not in split_list[0]:
for line in ATOM_PDB_FILEPATH_p:
split_list = line.split(' ')
if "CONECT" in split_list[0]:
break
# This is in fact an endless while loop, ...
# ... or here, when no 'CONECT' appears anymore.
if "CONECT" not in line:
break
# The strings of the atom numbers do have a clear position in the file
# (From 7 to 12, from 13 to 18 and so on.) and one needs to consider
# this. One could also use the split function but then one gets into
# trouble if there are many atoms: For instance, it may happen that one
# In Fact it means that atom No. 11111 has a connection with atom
# No. 222 but also with atom No. 44444. The split function would give
# me only two numbers (11111 and 22244444), which is wrong.
line = line[6:]
# Amount of loops
length = len(line)
loops = int(length/5)
# List of atoms
atom_list = []
for i in range(loops):
number = line[5*i:5*(i+1)].rsplit()
if number[0].isdigit() == True:
atom_number = int(number[0])
atom_list.append(atom_number)
# The first atom is connected with all the others in the list.
atom1 = atom_list[0]
# For all the other atoms in the list do:
for each_atom in atom_list[1:]:
# The second, third, ... partner atom
atom2 = each_atom
# Note that in a PDB file, sticks of one atom pair can appear a
# couple of times. (Only god knows why ...)
# So, does a stick between the considered atoms already exist?
FLAG_BAR = False
for k in range(Number_of_sticks):
if ((all_sticks[k].atom1 == atom1 and all_sticks[k].atom2 == atom2) or
(all_sticks[k].atom2 == atom1 and all_sticks[k].atom1 == atom2)):
sticks_double += 1
# If yes, then FLAG on 'True'.
FLAG_BAR = True
break
# If the stick is not yet registered (FLAG_BAR == False), then
# register it!
if FLAG_BAR == False:
all_sticks.append(CLASS_atom_pdb_stick(atom1,atom2))
j += 1
line = ATOM_PDB_FILEPATH_p.readline()
line = line.rstrip()
ATOM_PDB_FILEPATH_p.close()
# So far, all atoms and sticks have been registered.
# ------------------------------------------------------------------------
# TRANSLATION OF THE STRUCTURE TO THE ORIGIN
# It may happen that the structure in a PDB file already has an offset
# If chosen, the structure is first put into the center of the scene
# (the offset is substracted).
sum_vec = Vector((0.0,0.0,0.0))
# Sum of all atom coordinates
sum_vec = sum([atom.location for atom in all_atoms], sum_vec)
# Then the average is taken
sum_vec = sum_vec / Number_of_total_atoms
# After, for each atom the center of gravity is substracted
for atom in all_atoms:
atom.location -= sum_vec
# ------------------------------------------------------------------------
# Take all atoms and adjust their radii and scale the distances.
for atom in all_atoms:
atom.location *= Ball_distance_factor
# ------------------------------------------------------------------------
# DETERMINATION OF SOME GEOMETRIC PROPERTIES
# In the following, some geometric properties of the whole object are
# determined: center, size, etc.
sum_vec = Vector((0.0,0.0,0.0))
# First the center is determined. All coordinates are summed up ...
sum_vec = sum([atom.location for atom in all_atoms], sum_vec)
# ... and the average is taken. This gives the center of the object.
object_center_vec = sum_vec / Number_of_total_atoms
# Now, we determine the size.The farest atom from the object center is
# taken as a measure. The size is used to place well the camera and light
# into the scene.
object_size_vec = [atom.location - object_center_vec for atom in all_atoms]
object_size = 0.0
object_size = max(object_size_vec).length
# ------------------------------------------------------------------------
# CAMERA AND LAMP
camera_factor = 15.0
# If chosen a camera is put into the scene.
if use_camera == True:
# Assume that the object is put into the global origin. Then, the
# camera is moved in x and z direction, not in y. The object has its
# size at distance math.sqrt(object_size) from the origin. So, move the
# camera by this distance times a factor of camera_factor in x and z.
# Then add x, y and z of the origin of the object.
object_camera_vec = Vector((math.sqrt(object_size) * camera_factor,
0.0,
math.sqrt(object_size) * camera_factor))
camera_xyz_vec = object_center_vec + object_camera_vec
# Create the camera
current_layers=bpy.context.scene.layers
bpy.ops.object.camera_add(view_align=False, enter_editmode=False,
location=camera_xyz_vec,
rotation=(0.0, 0.0, 0.0), layers=current_layers)
# Some properties of the camera are changed.
camera = bpy.context.scene.objects.active
camera.name = "A_camera"
camera.data.name = "A_camera"
camera.data.lens = 45
camera.data.clip_end = 500.0
# Here the camera is rotated such it looks towards the center of
# the object. The [0.0, 0.0, 1.0] vector along the z axis
z_axis_vec = Vector((0.0, 0.0, 1.0))
# The angle between the last two vectors
angle = object_camera_vec.angle(z_axis_vec, 0)
# The cross-product of z_axis_vec and object_camera_vec
axis_vec = z_axis_vec.cross(object_camera_vec)
# Rotate 'axis_vec' by 'angle' and convert this to euler parameters.
# 4 is the size of the matrix.
euler = Matrix.Rotation(angle, 4, axis_vec).to_euler()
camera.rotation_euler = euler
# Rotate the camera around its axis by 90° such that we have a nice
bpy.ops.transform.rotate(value=(90.0*2*math.pi/360.0,),
axis=object_camera_vec,
constraint_axis=(False, False, False),
constraint_orientation='GLOBAL',
mirror=False, proportional='DISABLED',
proportional_edit_falloff='SMOOTH',
proportional_size=1, snap=False,
snap_target='CLOSEST', snap_point=(0, 0, 0),
snap_align=False, snap_normal=(0, 0, 0),
# This does not work, I don't know why.
#
#for area in bpy.context.screen.areas:
# if area.type == 'VIEW_3D':
# area.spaces[0].region_3d.view_perspective = 'CAMERA'
# Here a lamp is put into the scene, if chosen.
if use_lamp == True:
# This is the distance from the object measured in terms of %
# of the camera distance. It is set onto 50% (1/2) distance.
lamp_dl = math.sqrt(object_size) * 15 * 0.5
# This is a factor to which extend the lamp shall go to the right
# (from the camera point of view).
lamp_dy_right = lamp_dl * (3.0/4.0)
# Create x, y and z for the lamp.
object_lamp_vec = Vector((lamp_dl,lamp_dy_right,lamp_dl))
lamp_xyz_vec = object_center_vec + object_lamp_vec
bpy.ops.object.lamp_add (type = 'POINT', view_align=False,
location=lamp_xyz_vec,
rotation=(0.0, 0.0, 0.0),
layers=current_layers)
# Some properties of the lamp are changed.
lamp = bpy.context.scene.objects.active
lamp.data.name = "A_lamp"
lamp.name = "A_lamp"
lamp.data.distance = 500.0
lamp.data.energy = 3.0
lamp.data.shadow_method = 'RAY_SHADOW'
bpy.context.scene.world.light_settings.use_ambient_occlusion = True
bpy.context.scene.world.light_settings.ao_factor = 0.2
# ------------------------------------------------------------------------
# SOME OUTPUT ON THE CONSOLE
print()
print()
print()
print(ATOM_PDB_STRING)
print()
print("Total number of atoms : " + str(Number_of_total_atoms))
print("Total number of sticks : " + str(Number_of_sticks))
print("Center of object : ", object_center_vec)
print("Size of object : ", object_size)
print()
# ------------------------------------------------------------------------
# SORTING THE ATOMS
# Lists of atoms of one type are created. Example:
# draw_all_atoms = [ data_hydrogen,data_carbon,data_nitrogen ]
# data_hydrogen = [["Hydrogen", Material_Hydrogen, Vector((x,y,z)), 109], ...]
draw_all_atoms = []
# Go through the list which contains all types of atoms. It is the list,
# which has been created on the top during reading the PDB file.
# Example: atom_all_types_list = ["hydrogen", "carbon", ...]
for atom_type in atom_all_types_list:
# This is the draw list, which contains all atoms of one type (e.g.
draw_all_atoms_type = []
# Go through all atoms ...
for atom in all_atoms:
# ... select the atoms of the considered type via comparison ...
if atom.name == atom_type[0]:
# ... and append them to the list 'draw_all_atoms_type'.
draw_all_atoms_type.append([atom.name,
atom.material,
# Now append the atom list to the list of all types of atoms
draw_all_atoms.append(draw_all_atoms_type)
# ------------------------------------------------------------------------
# DRAWING THE ATOMS
# This is the number of all atoms which are put into the scene.
bpy.ops.object.select_all(action='DESELECT')
# For each list of atoms of ONE type (e.g. Hydrogen)
for draw_all_atoms_type in draw_all_atoms:
# Create first the vertices composed of the coordinates of all
# atoms of one type
atom_vertices = []
for atom in draw_all_atoms_type:
# In fact, the object is created in the World's origin.
# This is why 'object_center_vec' is substracted. At the end
# the whole object is translated back to 'object_center_vec'.
atom_vertices.append( atom[2] - object_center_vec )
# Build the mesh
atom_mesh = bpy.data.meshes.new("Mesh_"+atom[0])
atom_mesh.from_pydata(atom_vertices, [], [])