Skip to content
Snippets Groups Projects
geom.py 19.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    
    """Geometry classes and operations.
    Also, vector file representation (Art).
    """
    
    __author__ = "howard.trickey@gmail.com"
    
    import math
    
    # distances less than about DISTTOL will be considered
    # essentially zero
    DISTTOL = 1e-3
    INVDISTTOL = 1e3
    
    
    class Points(object):
    
        """Container of points without duplication, each mapped to an int.
    
        Points are either have dimension at least 2, maybe more.
    
        Implementation:
        In order to efficiently find duplicates, we quantize the points
        to triples of ints and map from quantized triples to vertex
        index.
    
        Attributes:
          pos: list of tuple of float - coordinates indexed by
              vertex number
          invmap: dict of (int, int, int) to int - quantized coordinates
              to vertex number map
        """
    
        def __init__(self, initlist=[]):
            self.pos = []
            self.invmap = dict()
            for p in initlist:
                self.AddPoint(p)
    
        @staticmethod
        def Quantize(p):
            """Quantize the float tuple into an int tuple.
    
            Args:
              p: tuple of float
            Returns:
              tuple of int - scaled by INVDISTTOL and rounded p
            """
    
            return tuple([int(round(v * INVDISTTOL)) for v in p])
    
        def AddPoint(self, p):
            """Add point p to the Points set and return vertex number.
    
            If there is an existing point which quantizes the same,,
            don't add a new one but instead return existing index.
    
            Args:
              p: tuple of float - coordinates (2-tuple or 3-tuple)
            Returns:
              int - the vertex number of added (or existing) point
            """
    
            qp = Points.Quantize(p)
            if qp in self.invmap:
                return self.invmap[qp]
            else:
                self.invmap[qp] = len(self.pos)
                self.pos.append(p)
                return len(self.pos) - 1
    
        def AddPoints(self, points):
            """Add another set of points to this set.
    
            We need to return a mapping from indices
            in the argument points space into indices
            in this point space.
    
            Args:
              points: Points - to union into this set
            Returns:
              list of int: maps added indices to new ones
            """
    
            vmap = [0] * len(points.pos)
            for i in range(len(points.pos)):
                vmap[i] = self.AddPoint(points.pos[i])
            return vmap
    
        def AddZCoord(self, z):
            """Change this in place to have a z coordinate, with value z.
    
            Assumes the coordinates are currently 2d.
    
            Args:
              z: the value of the z coordinate to add
            Side Effect:
              self now has a z-coordinate added
            """
    
            assert(len(self.pos) == 0 or len(self.pos[0]) == 2)
            newinvmap = dict()
            for i, (x, y) in enumerate(self.pos):
                newp = (x, y, z)
                self.pos[i] = newp
                newinvmap[self.Quantize(newp)] = i
            self.invmap = newinvmap
    
        def AddToZCoord(self, i, delta):
            """Change the z-coordinate of point with index i to add delta.
    
            Assumes the coordinates are currently 3d.
    
            Args:
              i: int - index of a point
              delta: float - value to add to z-coord
            """
    
            (x, y, z) = self.pos[i]
            self.pos[i] = (x, y, z + delta)
    
        """Contains a Polygonal Area (polygon with possible holes).
    
        A polygon is a list of vertex ids, each an index given by
        a Points object. The list represents a CCW-oriented
        outer boundary (implicitly closed).
        If there are holes, they are lists of CW-oriented vertices
        that should be contained in the outer boundary.
        (So the left face of both the poly and the holes is
        the filled part.)
    
        Attributes:
          points: Points
          poly: list of vertex ids
          holes: list of lists of vertex ids (each a hole in poly)
          data: any - application data (can hold color, e.g.)
    
        def __init__(self, points=None, poly=None, holes=None, data=None):
            self.points = points if points else Points()
            self.poly = poly if poly else []
            self.holes = holes if holes else []
            self.data = data
    
        def AddHole(self, holepa):
            """Add a PolyArea's poly as a hole of self.
    
            Need to reverse the contour and
            adjust the the point indexes and self.points.
    
            vmap = self.points.AddPoints(holepa.points)
            holepoly = [vmap[i] for i in holepa.poly]
            holepoly.reverse()
            self.holes.append(holepoly)
    
        def ContainsPoly(self, poly, points):
            """Tests if poly is contained within self.poly.
    
            Args:
              poly: list of int - indices into points
              points: Points - maps to coords
            Returns:
              bool - True if poly is fully contained within self.poly
            """
    
            for v in poly:
                if PointInside(points.pos[v], self.poly, self.points) == -1:
                    return False
            return True
    
        def Normal(self):
            """Returns the normal of the polyarea's main poly."""
    
            pos = self.points.pos
            poly = self.poly
            if len(pos) == 0 or len(pos[0]) == 2 or len(poly) == 0:
                print("whoops, not enough info to calculate normal")
                return (0.0, 0.0, 1.0)
            return Newell(poly, self.points)
    
    class PolyAreas(object):
        """Contains a list of PolyAreas and a shared Points.
    
        Attributes:
          polyareas: list of PolyArea
          points: Points
        """
    
        def __init__(self):
            self.polyareas = []
            self.points = Points()
    
        def scale_and_center(self, scaled_side_target):
            """Adjust the coordinates of the polyareas so that
            it is centered at the origin and has its longest
            dimension scaled to be scaled_side_target."""
    
            if len(self.points.pos) == 0:
                return
            (minv, maxv) = self.bounds()
            maxside = max([maxv[i] - minv[i] for i in range(2)])
            if maxside > 0.0:
                scale = scaled_side_target / maxside
            else:
                scale = 1.0
            translate = [-0.5 * (maxv[i] + minv[i]) for i in range(2)]
            dim = len(self.points.pos[0])
            if dim == 3:
                translate.append([0.0])
            for v in range(len(self.points.pos)):
                self.points.pos[v] = tuple([scale * (self.points.pos[v][i] + \
                    translate[i]) for i in range(dim)])
    
        def bounds(self):
            """Find bounding box of polyareas in xy.
    
            Returns:
              ([minx,miny],[maxx,maxy]) - all floats
            """
    
            huge = 1e100
            minv = [huge, huge]
            maxv = [-huge, -huge]
            for pa in self.polyareas:
                for face in [pa.poly] + pa.holes:
                    for v in face:
                        vcoords = self.points.pos[v]
                        for i in range(2):
                            if vcoords[i] < minv[i]:
                                minv[i] = vcoords[i]
                            if vcoords[i] > maxv[i]:
                                maxv[i] = vcoords[i]
            if minv[0] == huge:
                minv = [0.0, 0.0]
            if maxv[0] == huge:
                maxv = [0.0, 0.0]
            return (minv, maxv)
    
    class Model(object):
        """Contains a generic 3d model.
    
        A generic 3d model has vertices with 3d coordinates.
        Each vertex gets a 'vertex id', which is an index that
        can be used to refer to the vertex and can be used
        to retrieve the 3d coordinates of the point.
    
        The actual visible part of the geometry are the faces,
        which are n-gons (n>2), specified by a vector of the
        n corner vertices.
        Faces may also have data associated with them,
        and the data will be copied into newly created faces
        from the most likely neighbor faces..
    
        Attributes:
          points: geom.Points - the 3d vertices
          faces: list of list of indices (each a CCW traversal of a face)
          face_data: list of any - if present, is parallel to
              faces list and holds arbitrary data
        """
    
        def __init__(self):
            self.points = Points()
            self.faces = []
            self.face_data = []
    
        """Contains a vector art diagram.
    
        Attributes:
          paths: list of Path objects
        """
    
        def __init__(self):
            self.paths = []
    
        """A color or pattern to fill or stroke with.
    
        For now, just do colors, but could later do
        patterns or images too.
    
        Attributes:
          color: (r,g,b) triple of floats, 0.0=no color, 1.0=max color
        """
    
        def __init__(self, r=0.0, g=0.0, b=0.0):
            self.color = (r, g, b)
    
        @staticmethod
        def CMYK(c, m, y, k):
            """Return Paint specified in CMYK model.
    
            Uses formula from 6.2.4 of PDF Reference.
    
            Args:
              c, m, y, k: float - in range [0, 1]
            Returns:
              Paint - with components in rgb form now
            """
    
            return Paint(1.0 - min(1.0, c + k),
                1.0 - min(1.0, m + k), 1.0 - min(1.0, y + k))
    
    
    black_paint = Paint()
    white_paint = Paint(1.0, 1.0, 1.0)
    
    ColorDict = {
    
        'aqua': Paint(0.0, 1.0, 1.0),
        'black': Paint(0.0, 0.0, 0.0),
        'blue': Paint(0.0, 0.0, 1.0),
        'fuchsia': Paint(1.0, 0.0, 1.0),
        'gray': Paint(0.5, 0.5, 0.5),
        'green': Paint(0.0, 0.5, 0.0),
        'lime': Paint(0.0, 1.0, 0.0),
        'maroon': Paint(0.5, 0.0, 0.0),
        'navy': Paint(0.0, 0.0, 0.5),
        'olive': Paint(0.5, 0.5, 0.0),
        'purple': Paint(0.5, 0.0, 0.5),
        'red': Paint(1.0, 0.0, 0.0),
        'silver': Paint(0.75, 0.75, 0.75),
        'teal': Paint(0.0, 0.5, 0.5),
        'white': Paint(1.0, 1.0, 1.0),
        'yellow': Paint(1.0, 1.0, 0.0)
    
        """Represents a path in the PDF sense, with painting instructions.
    
        Attributes:
          subpaths: list of Subpath objects
          filled: True if path is to be filled
          fillevenodd: True if use even-odd rule to fill (else non-zero winding)
          stroked: True if path is to be stroked
          fillpaint: Paint to fill with
          strokepaint: Paint to stroke with
        """
    
        def __init__(self):
            self.subpaths = []
            self.filled = False
            self.fillevenodd = False
            self.stroked = False
            self.fillpaint = black_paint
            self.strokepaint = black_paint
    
        def AddSubpath(self, subpath):
            """"Add a subpath."""
    
            self.subpaths.append(subpath)
    
        def Empty(self):
            """Returns True if this Path as no subpaths."""
    
            return not self.subpaths
    
        """Represents a subpath in PDF sense, either open or closed.
    
        We'll represent lines, bezier pieces, circular arc pieces
        as tuples with letters giving segment type in first position
        and coordinates (2-tuples of floats) in the other positions.
    
        Segment types:
         ('L', a, b)       - line from a to b
         ('B', a, b, c, d) - cubic bezier from a to b, with control points c,d
         ('Q', a, b, c)    - quadratic bezier from a to b, with 1 control point c
         ('A', a, b, rad, xrot, large-arc, ccw) - elliptical arc from a to b,
           with rad=(rx, ry) as radii, xrot is x-axis rotation in degrees,
           large-arc is True if arc should be >= 180 degrees,
           ccw is True if start->end follows counter-clockwise direction
           (see SVG spec); note that after rad,
           the rest are floats or bools, not coordinate pairs
        Note that s[1] and s[2] are the start and end points for any segment s.
    
        Attributes:
          segments: list of segment tuples (see above)
          closed: True if closed
    
        def __init__(self):
            self.segments = []
            self.closed = False
    
        def Empty(self):
            """Returns True if this subpath as no segments."""
    
            return not self.segments
    
        def AddSegment(self, seg):
            """Add a segment."""
    
            self.segments.append(seg)
    
        @staticmethod
        def SegStart(s):
            """Return start point for segment.
    
            Args:
              s: a segment tuple
            Returns:
              (float, float): the coordinates of the segment's start point
            """
    
        @staticmethod
        def SegEnd(s):
            """Return end point for segment.
    
            Args:
              s: a segment tuple
            Returns:
              (float, float): the coordinates of the segment's end point
            """
    
    class TransformMatrix(object):
        """Transformation matrix for 2d coordinates.
    
        The transform matrix is:
          [ a b 0 ]
          [ c d 0 ]
          [ e f 1 ]
        and coordinate tranformation is defined by:
          [x' y' 1] = [x y 1] x TransformMatrix
    
        Attributes:
          a, b, c, d, e, f: floats
    
        def __init__(self, a=1.0, b=0.0, c=0.0, d=1.0, e=0.0, f=0.0):
            self.a = a
            self.b = b
            self.c = c
            self.d = d
            self.e = e
            self.f = f
    
        def __str__(self):
            return str([self.a, self.b, self.c, self.d, self.e, self.f])
    
        def Copy(self):
            """Return a copy of this matrix."""
    
            return TransformMatrix(self.a, self.b, self.c, self.d, self.e, self.f)
    
        def ComposeTransform(self, a, b, c, d, e, f):
            """Apply the transform given the the arguments on top of this one.
    
            This is accomplished by returning t x sel
            where t is the transform matrix that would be formed from the args.
    
            Arguments:
              a, b, c, d, e, f: float - defines a composing TransformMatrix
            """
    
            newa = a * self.a + b * self.c
            newb = a * self.b + b * self.d
            newc = c * self.a + d * self.c
            newd = c * self.b + d * self.d
            newe = e * self.a + f * self.c + self.e
            newf = e * self.b + f * self.d + self.f
            self.a = newa
            self.b = newb
            self.c = newc
            self.d = newd
            self.e = newe
            self.f = newf
    
        def Apply(self, pt):
            """Return the result of applying this tranform to pt = (x,y).
    
            Arguments:
              (x, y) : (float, float)
            Returns:
              (x', y'): 2-tuple of floats, the result of [x y 1] x self
            """
    
            (x, y) = pt
            return (self.a * x + self.c * y + self.e, \
                self.b * x + self.d * y + self.f)
    
        """Return True if p and q are approximately the same points.
    
        Args:
          p: n-tuple of float
          q: n-tuple of float
        Returns:
          bool - True if the 1-norm <= DISTTOL
        """
    
        for i in range(len(p)):
            if abs(p[i] - q[i]) > DISTTOL:
                return False
            return True
    
        """Return 1, 0, or -1 as v is inside, on, or outside polygon.
    
        Cf. Eric Haines ptinpoly in Graphics Gems IV.
    
        Args:
          v : (float, float) or (float, float, float) - coordinates of a point
          a : list of vertex indices defining polygon (assumed CCW)
          points: Points - to get coordinates for polygon
        Returns:
          1, 0, -1: as v is inside, on, or outside polygon a
        """
    
        (xv, yv) = (v[0], v[1])
        vlast = points.pos[a[-1]]
        (x0, y0) = (vlast[0], vlast[1])
        if x0 == xv and y0 == yv:
            return 0
        yflag0 = y0 > yv
        inside = False
        n = len(a)
        for i in range(0, n):
            vi = points.pos[a[i]]
            (x1, y1) = (vi[0], vi[1])
            if x1 == xv and y1 == yv:
                return 0
            yflag1 = y1 > yv
            if yflag0 != yflag1:
                xflag0 = x0 > xv
                xflag1 = x1 > xv
                if xflag0 == xflag1:
                    if xflag0:
                        inside = not inside
                else:
                    z = x1 - (y1 - yv) * (x0 - x1) / (y0 - y1)
                    if z >= xv:
                        inside = not inside
            x0 = x1
            y0 = y1
            yflag0 = yflag1
        if inside:
            return 1
        else:
            return -1
    
        """Return the area of the polgon, positive if CCW, negative if CW.
    
        Args:
          polygon: list of vertex indices
          points: Points
        Returns:
          float - area of polygon, positive if it was CCW, else negative
        """
    
        a = 0.0
        n = len(polygon)
        for i in range(0, n):
            u = points.pos[polygon[i]]
            v = points.pos[polygon[(i + 1) % n]]
            a += u[0] * v[1] - u[1] * v[0]
        return 0.5 * a
    
        Args:
          a: n-tuple of floats
          b: n-tuple of floats
        Returns:
          n-tuple of floats - pairwise addition a+b
        """
    
        n = len(a)
        assert(n == len(b))
        return tuple([a[i] + b[i] for i in range(n)])
    
        """Return vector a-b.
    
        Args:
          a: n-tuple of floats
          b: n-tuple of floats
        Returns:
          n-tuple of floats - pairwise subtraction a-b
        """
    
        n = len(a)
        assert(n == len(b))
        return tuple([a[i] - b[i] for i in range(n)])
    
    
    def VecDot(a, b):
        """Return the dot product of two vectors.
    
        Args:
          a: n-tuple of floats
          b: n-tuple of floats
        Returns:
          n-tuple of floats - dot product of a and b
        """
    
        n = len(a)
        assert(n == len(b))
        sum = 0.0
        for i in range(n):
            sum += a[i] * b[i]
        return sum
    
        """Return the Euclidean lenght of the argument vector.
    
        Args:
          a: n-tuple of floats
        Returns:
          float: the 2-norm of a
        """
    
        s = 0.0
        for v in a:
            s += v * v
        return math.sqrt(s)
    
        """Use Newell method to find polygon normal.
    
        Assume poly has length at least 3 and points are 3d.
    
        Args:
          poly: list of int - indices into points.pos
          points: Points - assumed 3d
        Returns:
          (float, float, float) - the average normal
        """
    
        sumx = 0.0
        sumy = 0.0
        sumz = 0.0
        n = len(poly)
        pos = points.pos
        for i, ai in enumerate(poly):
            bi = poly[(i + 1) % n]
            a = pos[ai]
            b = pos[bi]
            sumx += (a[1] - b[1]) * (a[2] + b[2])
            sumy += (a[2] - b[2]) * (a[0] + b[0])
            sumz += (a[0] - b[0]) * (a[1] + b[1])
        return Norm3(sumx, sumy, sumz)
    
        """Return vector (x,y,z) normalized by dividing by squared length.
        Return (0.0, 0.0, 1.0) if the result is undefined."""
        sqrlen = x * x + y * y + z * z
        if sqrlen < 1e-100:
            return (0.0, 0.0, 1.0)
        else:
            try:
                d = math.sqrt(sqrlen)
                return (x / d, y / d, z / d)
            except:
                return (0.0, 0.0, 1.0)
    
    
    
    # We're using right-hand coord system, where
    # forefinger=x, middle=y, thumb=z on right hand.
    # Then, e.g., (1,0,0) x (0,1,0) = (0,0,1)
    def Cross3(a, b):
    
        """Return the cross product of two vectors, a x b."""
    
        (ax, ay, az) = a
        (bx, by, bz) = b
        return (ay * bz - az * by, az * bx - ax * bz, ax * by - ay * bx)
    
        """Return matrix multiplication of p times m
        where m is a 4x3 matrix and p is a 3d point, extended with 1."""
    
        (x, y, z) = p
        return (x * m[0] + y * m[3] + z * m[6] + m[9],
            x * m[1] + y * m[4] + z * m[7] + m[10],
            x * m[2] + y * m[5] + z * m[8] + m[11])