Skip to content
Snippets Groups Projects
model.py 19 KiB
Newer Older
  • Learn to ignore specific revisions
  • # SPDX-License-Identifier: GPL-2.0-or-later
    
    
    """Manipulations of Models.
    """
    
    __author__ = "howard.trickey@gmail.com"
    
    from . import geom
    from . import triquad
    from . import offset
    import math
    
    
    def PolyAreasToModel(polyareas, bevel_amount, bevel_pitch, quadrangulate):
    
        """Convert a PolyAreas into a Model object.
    
        Assumes polyareas are in xy plane.
    
        Args:
          polyareas: geom.PolyAreas
          bevel_amount: float - if > 0, amount of bevel
          bevel_pitch: float - if > 0, angle in radians of bevel
          quadrangulate: bool - should n-gons be quadrangulated?
        Returns:
          geom.Model
        """
    
        m = geom.Model()
        if not polyareas:
            return m
        polyareas.points.AddZCoord(0.0)
        m.points = polyareas.points
        for pa in polyareas.polyareas:
            PolyAreaToModel(m, pa, bevel_amount, bevel_pitch, quadrangulate)
    
        return m
    
    
    def PolyAreaToModel(m, pa, bevel_amount, bevel_pitch, quadrangulate):
    
        if bevel_amount > 0.0:
            BevelPolyAreaInModel(m, pa, bevel_amount, bevel_pitch, quadrangulate,
                False)
        elif quadrangulate:
            if len(pa.poly) == 0:
                return
            qpa = triquad.QuadrangulateFaceWithHoles(pa.poly, pa.holes, pa.points)
            m.faces.extend(qpa)
            m.face_data.extend([pa.data] * len(qpa))
        else:
            m.faces.append(pa.poly)
            # TODO: just the first part of QuadrangulateFaceWithHoles, to join
            # holes to outer poly
            m.face_data.append(pa.data)
    
    
    
    def ExtrudePolyAreasInModel(mdl, polyareas, depth, cap_back):
    
        """Extrude the boundaries given by polyareas by -depth in z.
    
        Assumes polyareas are in xy plane.
    
        Arguments:
          mdl: geom.Model - where to do extrusion
          polyareas: geom.Polyareas
          depth: float
          cap_back: bool - if True, cap off the back
        Side Effects:
          For all edges in polys in polyareas, make quads in Model
          extending those edges by depth in the negative z direction.
          The application data will be the data of the face that the edge
          is part of.
        """
    
        for pa in polyareas.polyareas:
            back_poly = _ExtrudePoly(mdl, pa.poly, depth, pa.data, True)
            back_holes = []
            for p in pa.holes:
                back_holes.append(_ExtrudePoly(mdl, p, depth, pa.data, False))
            if cap_back:
                qpa = triquad.QuadrangulateFaceWithHoles(back_poly, back_holes,
                  polyareas.points)
                # need to reverse each poly to get normals pointing down
                for i, p in enumerate(qpa):
                    t = list(p)
                    t.reverse()
                    qpa[i] = tuple(t)
                mdl.faces.extend(qpa)
                mdl.face_data.extend([pa.data] * len(qpa))
    
    
    def _ExtrudePoly(mdl, poly, depth, data, isccw):
        """Extrude the poly by -depth in z
    
        Arguments:
          mdl: geom.Model - where to do extrusion
          poly: list of vertex indices
          depth: float
          data: application data
          isccw: True if counter-clockwise
        Side Effects
          For all edges in poly, make quads in Model
          extending those edges by depth in the negative z direction.
          The application data will be the data of the face that the edge
          is part of.
        Returns:
          list of int - vertices for extruded poly
        """
    
        if len(poly) < 2:
            return
        extruded_poly = []
        points = mdl.points
    
            incr = -1
        for i, v in enumerate(poly):
            vnext = poly[(i + incr) % len(poly)]
            (x0, y0, z0) = points.pos[v]
            (x1, y1, z1) = points.pos[vnext]
            vextrude = points.AddPoint((x0, y0, z0 - depth))
            vnextextrude = points.AddPoint((x1, y1, z1 - depth))
            if isccw:
                sideface = [v, vextrude, vnextextrude, vnext]
            else:
                sideface = [v, vnext, vnextextrude, vextrude]
            mdl.faces.append(sideface)
            mdl.face_data.append(data)
            extruded_poly.append(vextrude)
        return extruded_poly
    
    
    
    def BevelPolyAreaInModel(mdl, polyarea,
    
        bevel_amount, bevel_pitch, quadrangulate, as_percent):
        """Bevel the interior of polyarea in model.
    
        This does smart beveling: advancing edges are merged
        rather than doing an 'overlap'.  Advancing edges that
        hit an opposite edge result in a split into two beveled areas.
    
        If the polyarea is not in the xy plane, do the work in a
        transformed model, and then transfer the changes back.
    
        Arguments:
          mdl: geom.Model - where to do bevel
          polyarea geom.PolyArea - area to bevel into
          bevel_amount: float - if > 0, amount of bevel
          bevel_pitch: float - if > 0, angle in radians of bevel
          quadrangulate: bool - should n-gons be quadrangulated?
          as_percent: bool - if True, interpret amount as percent of max
        Side Effects:
          Faces and points are added to model to model the
          bevel and the interior of the polyareas.
        """
    
        pa_norm = polyarea.Normal()
        if pa_norm == (0.0, 0.0, 1.0):
            m = mdl
            pa_rot = polyarea
    
            (pa_rot, inv_rot, inv_map) = _RotatedPolyAreaToXY(polyarea, pa_norm)
            # don't have to add the original faces into model, just their points.
            m = geom.Model()
            m.points = pa_rot.points
        vspeed = math.tan(bevel_pitch)
        off = offset.Offset(pa_rot, 0.0, vspeed)
        if as_percent:
            bevel_amount = bevel_amount * off.MaxAmount() / 100.0
        off.Build(bevel_amount)
        inner_pas = AddOffsetFacesToModel(m, off, polyarea.data)
        for pa in inner_pas.polyareas:
            if quadrangulate:
                if len(pa.poly) == 0:
                    continue
                qpa = triquad.QuadrangulateFaceWithHoles(pa.poly, pa.holes,
                    pa.points)
                m.faces.extend(qpa)
                m.face_data.extend([pa.data] * len(qpa))
            else:
                m.faces.append(pa.poly)
                m.face_data.append(pa.data)
        if m != mdl:
            _AddTransformedPolysToModel(mdl, m.faces, m.points, m.face_data,
                 inv_rot, inv_map)
    
    
    def AddOffsetFacesToModel(mdl, off, data=None):
        """Add the faces due to an offset into model.
    
        Returns the remaining interiors of the offset as a PolyAreas.
    
        Args:
          mdl: geom.Model - model to add offset faces into
          off: offset.Offset
          data: any - application data to be copied to the faces
        Returns:
          geom.PolyAreas
        """
    
        mdl.points = off.polyarea.points
        assert(len(mdl.points.pos) == 0 or len(mdl.points.pos[0]) == 3)
        o = off
        ostack = []
        while o:
            if o.endtime != 0.0:
                for face in o.facespokes:
                    n = len(face)
                    for i, spoke in enumerate(face):
                        nextspoke = face[(i + 1) % n]
                        v0 = spoke.origin
                        v1 = nextspoke.origin
                        v2 = nextspoke.dest
                        v3 = spoke.dest
                        if v2 == v3:
                            mface = [v0, v1, v2]
                        else:
                            mface = [v0, v1, v2, v3]
                        mdl.faces.append(mface)
                        mdl.face_data.append(data)
            ostack.extend(o.inneroffsets)
            if ostack:
                o = ostack.pop()
            else:
                o = None
        return off.InnerPolyAreas()
    
    
    def BevelSelectionInModel(mdl, bevel_amount, bevel_pitch, quadrangulate,
            as_region, as_percent):
        """Bevel all the faces in the model, perhaps as one region.
    
        If as_region is False, each face is beveled individually,
        otherwise regions of contiguous faces are merged into
        PolyAreas and beveled as a whole.
    
        TODO: something if extracted PolyAreas are not approximately
        planar.
    
        Args:
          mdl: geom.Model
          bevel_amount: float - amount to inset
          bevel_pitch: float - angle of bevel side
          quadrangulate: bool - should insides be quadrangulated?
          as_region: bool - should faces be merged into regions?
          as_percent: bool - should amount be interpreted as a percent
              of the maximum amount (if True) or an absolute amount?
        Side effect:
          Beveling faces will be added to the model
        """
    
        pas = []
        if as_region:
            pas = RegionToPolyAreas(mdl.faces, mdl.points, mdl.face_data)
    
            for f, face in enumerate(mdl.faces):
                pas.append(geom.PolyArea(mdl.points, face, [],
                    mdl.face_data[f]))
        for pa in pas:
            BevelPolyAreaInModel(mdl, pa,
                bevel_amount, bevel_pitch, quadrangulate, as_percent)
    
    
    def RegionToPolyAreas(faces, points, data):
        """Find polygonal outlines induced by union of faces.
    
        Finds the polygons formed by boundary edges (those not
        sharing an edge with another face in region_faces), and
        turns those into PolyAreas.
        In the general case, there will be holes inside.
        We want to associate data with the region PolyAreas.
        Just choose a representative element of data[] when
        more than one face is combined into a PolyArea.
    
        Args:
          faces: list of list of int - each sublist is a face (indices into points)
          points: geom.Points - gives coordinates for vertices
          data: list of any - parallel to faces, app data to put in PolyAreas
        Returns:
          list of geom.PolyArea
        """
    
        ans = []
        (edges, vtoe) = _GetEdgeData(faces)
        (face_adj, is_interior_edge) = _GetFaceGraph(faces, edges, vtoe, points)
        (components, ftoc) = _FindFaceGraphComponents(faces, face_adj)
        for c in range(len(components)):
            boundary_edges = set()
            betodata = dict()
            vstobe = dict()
            for e, ((vs, ve), f) in enumerate(edges):
                if ftoc[f] != c or is_interior_edge[e]:
                    continue
                boundary_edges.add(e)
                # vstobe[v] is set of edges leaving v
                # (could be more than one if boundary touches itself at a vertex)
                if vs in vstobe:
                    vstobe[vs].append(e)
                else:
                    vstobe[vs] = [e]
                betodata[(vs, ve)] = data[f]
            polys = []
            poly_data = []
            while boundary_edges:
                e = boundary_edges.pop()
                ((vstart, ve), face_i) = edges[e]
                poly = [vstart, ve]
                datum = betodata[(vstart, ve)]
                while ve != vstart:
                    if ve not in vstobe:
                        print("whoops, couldn't close boundary")
                        break
                    nextes = vstobe[ve]
                    if len(nextes) == 1:
                        nexte = nextes[0]
                    else:
                        # find a next edge with face index face_i
                        # TODO: this is not guaranteed to work,
                        # as continuation edge may have been for a different
                        # face that is now combined with face_i by erasing
                        # interior edges. Find a better algorithm here.
                        nexte = -1
                        for ne_cand in nextes:
                            if edges[ne_cand][1] == face_i:
                                nexte = ne_cand
                                break
                        if nexte == -1:
                            # case mentioned in TODO may have happened;
                            # just choose any nexte - may mess things up
                            nexte = nextes[0]
                    ((_, ve), face_i) = edges[nexte]
                    if nexte not in boundary_edges:
                        print("whoops, nexte not a boundary edge", nexte)
                        break
                    boundary_edges.remove(nexte)
                    if ve != vstart:
                        poly.append(ve)
                polys.append(poly)
                poly_data.append(datum)
            if len(polys) == 0:
                # can happen if an entire closed polytope is given
                # at least until we do an edge check
                return []
            elif len(polys) == 1:
                ans.append(geom.PolyArea(points, polys[0], [], poly_data[0]))
            else:
                outerf = _FindOuterPoly(polys, points, faces)
                pa = geom.PolyArea(points, polys[outerf], [], poly_data[outerf])
                pa.holes = [polys[i] for i in range(len(polys)) if i != outerf]
                ans.append(pa)
        return ans
    
        """Find edges from faces, and some lookup dictionaries.
    
        Args:
          faces: list of list of int - each a closed CCW polygon of vertex indices
        Returns:
          (list of ((int, int), int), dict{ int->list of int}) -
            list elements are ((startv, endv), face index)
            dict maps vertices to edge indices
        """
    
        edges = []
        vtoe = dict()
        for findex, f in enumerate(faces):
            nf = len(f)
            for i, v in enumerate(f):
                endv = f[(i + 1) % nf]
                edges.append(((v, endv), findex))
                eindex = len(edges) - 1
                if v in vtoe:
                    vtoe[v].append(eindex)
                else:
                    vtoe[v] = [eindex]
        return (edges, vtoe)
    
    
    
    def _GetFaceGraph(faces, edges, vtoe, points):
    
        """Find the face adjacency graph.
    
        Faces are adjacent if they share an edge,
        and the shared edge goes in the reverse direction,
        and if the angle between them isn't too large.
    
        Args:
          faces: list of list of int
          edges: list of ((int, int), int) - see _GetEdgeData
          vtoe: dict{ int->list of int } - see _GetEdgeData
          points: geom.Points
        Returns:
          (list of  list of int, list of bool) -
            first list: each sublist is adjacent face indices for each face
            second list: maps edge index to True if it separates adjacent faces
        """
    
        face_adj = [[] for i in range(len(faces))]
        is_interior_edge = [False] * len(edges)
        for e, ((vs, ve), f) in enumerate(edges):
    
            for other in vtoe[ve]:
                ((_, we), g) = edges[other]
    
                if we == vs:
                    # face g is adjacent to face f
                    # TODO: angle check
                    if g not in face_adj[f]:
                        face_adj[f].append(g)
                        is_interior_edge[e] = True
                    # Don't bother with mirror relations, will catch later
        return (face_adj, is_interior_edge)
    
    
    
    def _FindFaceGraphComponents(faces, face_adj):
    
        """Partition faces into connected components.
    
        Args:
          faces: list of list of int
          face_adj: list of list of int - see _GetFaceGraph
        Returns:
          (list of list of int, list of int) -
            first list partitions face indices into separate lists,
                each a component
            second list maps face indices into their component index
        """
    
        if not faces:
            return ([], [])
        components = []
        ftoc = [-1] * len(faces)
        for i in range(len(faces)):
            if ftoc[i] == -1:
                compi = len(components)
                comp = []
                _FFGCSearch(i, faces, face_adj, ftoc, compi, comp)
                components.append(comp)
        return (components, ftoc)
    
    
    
    def _FFGCSearch(findex, faces, face_adj, ftoc, compi, comp):
    
        """Depth first search helper function for _FindFaceGraphComponents
    
        Searches recursively through all faces connected to findex, adding
        each face found to comp and setting ftoc for that face to compi.
        """
    
        comp.append(findex)
        ftoc[findex] = compi
        for otherf in face_adj[findex]:
            if ftoc[otherf] == -1:
                _FFGCSearch(otherf, faces, face_adj, ftoc, compi, comp)
    
    
    def _FindOuterPoly(polys, points, faces):
        """Assuming polys has one CCW-oriented face when looking
        down average normal of faces, return that one.
    
        Only one of the faces should have a normal whose dot product
        with the average normal of faces is positive.
    
        Args:
          polys: list of list of int - list of polys given by vertex indices
          points: geom.Points
          faces: list of list of int - original selected region, used to find
              average normal
        Returns:
          int - the index in polys of the outermost one
        """
    
        if len(polys) < 2:
            return 0
        fnorm = (0.0, 0.0, 0.0)
        for face in faces:
            if len(face) > 2:
                fnorm = geom.VecAdd(fnorm, geom.Newell(face, points))
        if fnorm == (0.0, 0.0, 0.0):
            return 0
        # fnorm is really a multiple of the normal, but fine for test below
        for i, poly in enumerate(polys):
            if len(poly) > 2:
                pnorm = geom.Newell(poly, points)
                if geom.VecDot(fnorm, pnorm) > 0:
                    return i
        print("whoops, couldn't find an outermost poly")
    
        return 0
    
    
    def _RotatedPolyAreaToXY(polyarea, norm):
    
        """Return a  PolyArea rotated to xy plane.
    
        Only the points in polyarea will be transferred.
    
        Args:
          polyarea: geom.PolyArea
          norm: the normal for polyarea
        Returns:
          (geom.PolyArea, (float, ..., float), dict{ int -> int }) - new PolyArea,
              4x3 inverse transform, dict mapping new verts to old ones
        """
    
        # find rotation matrix that takes norm to (0,0,1)
        (nx, ny, nz) = norm
        if abs(nx) < abs(ny) and abs(nx) < abs(nz):
            v = (vx, vy, vz) = geom.Norm3(0.0, nz, - ny)
        elif abs(ny) < abs(nz):
            v = (vx, vy, vz) = geom.Norm3(nz, 0.0, - nx)
        else:
            v = (vx, vy, vz) = geom.Norm3(ny, - nx, 0.0)
        (ux, uy, uz) = geom.Cross3(v, norm)
        rotmat = [ux, vx, nx, uy, vy, ny, uz, vz, nz, 0.0, 0.0, 0.0]
        # rotation matrices are orthogonal, so inverse is transpose
        invrotmat = [ux, uy, uz, vx, vy, vz, nx, ny, nz, 0.0, 0.0, 0.0]
        pointmap = dict()
        invpointmap = dict()
        newpoints = geom.Points()
        for poly in [polyarea.poly] + polyarea.holes:
            for v in poly:
                vcoords = polyarea.points.pos[v]
                newvcoords = geom.MulPoint3(vcoords, rotmat)
                newv = newpoints.AddPoint(newvcoords)
                pointmap[v] = newv
                invpointmap[newv] = v
        pa = geom.PolyArea(newpoints)
        pa.poly = [pointmap[v] for v in polyarea.poly]
        pa.holes = [[pointmap[v] for v in hole] for hole in polyarea.holes]
        pa.data = polyarea.data
        return (pa, invrotmat, invpointmap)
    
    
    def _AddTransformedPolysToModel(mdl, polys, points, poly_data,
            transform, pointmap):
        """Add (transformed) the points and faces to a model.
    
        Add polys to mdl.  The polys have coordinates given by indices
        into points.pos; those need to be transformed by multiplying by
        the transform matrix.
        The vertices may already exist in mdl.  Rather than relying on
        AddPoint to detect the duplicate (transform rounding error makes
        that dicey), the pointmap dictionar is used to map vertex indices
        in polys into those in mdl - if they exist already.
    
        Args:
          mdl: geom.Model - where to put new vertices, faces
          polys: list of list of int - each sublist a poly
          points: geom.Points - coords for vertices in polys
          poly_data: list of any - parallel to polys
          transform: (float, ..., float) - 12-tuple, a 4x3 transform matrix
          pointmap: dict { int -> int } - maps new vertex indices to old ones
        Side Effects:
          The model gets new faces and vertices, based on those in polys.
          We are allowed to modify pointmap, as it will be discarded after call.
        """
    
        for i, coords in enumerate(points.pos):
            if i not in pointmap:
                p = geom.MulPoint3(coords, transform)
                pointmap[i] = mdl.points.AddPoint(p)
        for i, poly in enumerate(polys):
            mpoly = [pointmap[v] for v in poly]
            mdl.faces.append(mpoly)
            mdl.face_data.append(poly_data[i])