Newer
Older
# SPDX-License-Identifier: GPL-2.0-or-later
# Copyright 2012 Paul Marshall.
# The Blender Edgetools is to bring CAD tools to Blender.
bl_info = {
"name": "EdgeTools",
"author": "Paul Marshall",
"version": (0, 9, 2),
"blender": (2, 80, 0),
"location": "View3D > Toolbar and View3D > Specials (W-key)",
"warning": "",
"description": "CAD style edge manipulation tools",
"doc_url": "https://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Modeling/EdgeTools",
"category": "Mesh",
}
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import bpy
import bmesh
from bpy.types import (
Operator,
Menu,
)
from math import acos, pi, radians, sqrt
from mathutils import Matrix, Vector
from mathutils.geometry import (
distance_point_to_plane,
interpolate_bezier,
intersect_point_line,
intersect_line_line,
intersect_line_plane,
)
from bpy.props import (
BoolProperty,
IntProperty,
FloatProperty,
EnumProperty,
)
"""
Blender EdgeTools
This is a toolkit for edge manipulation based on mesh manipulation
abilities of several CAD/CAE packages, notably CATIA's Geometric Workbench
from which most of these tools have a functional basis.
The GUI and Blender add-on structure shamelessly coded in imitation of the
LoopTools addon.
Examples:
- "Ortho" inspired from CATIA's line creation tool which creates a line of a
user specified length at a user specified angle to a curve at a chosen
point. The user then selects the plane the line is to be created in.
- "Shaft" is inspired from CATIA's tool of the same name. However, instead
of a curve around an axis, this will instead shaft a line, a point, or
a fixed radius about the selected axis.
- "Slice" is from CATIA's ability to split a curve on a plane. When
completed this be a Python equivalent with all the same basic
functionality, though it will sadly be a little clumsier to use due
to Blender's selection limitations.
Notes:
- Fillet operator and related functions removed as they didn't work
- Buggy parts have been hidden behind ENABLE_DEBUG global (set it to True)
Example: Shaft with more than two edges selected
Paul "BrikBot" Marshall
Created: January 28, 2012
Last Modified: October 6, 2012
Coded in IDLE, tested in Blender 2.6.
Search for "@todo" to quickly find sections that need work
Note: lijenstina - modified this script in preparation for merging
fixed the needless jumping to object mode for bmesh creation
causing the crash with the Slice > Rip operator
Removed the test operator since version 0.9.2
added general error handling
"""
# Enable debug
# Set to True to have the debug prints available
ENABLE_DEBUG = False
# Quick an dirty method for getting the sign of a number:
def sign(number):
return (number > 0) - (number < 0)
# is_parallel
# Checks to see if two lines are parallel
def is_parallel(v1, v2, v3, v4):
result = intersect_line_line(v1, v2, v3, v4)
return result is None
# Handle error notifications
def error_handlers(self, op_name, error, reports="ERROR", func=False):
if self and reports:
self.report({'WARNING'}, reports + " (See Console for more info)")
is_func = "Function" if func else "Operator"
print("\n[Mesh EdgeTools]\n{}: {}\nError: {}\n".format(is_func, op_name, error))
def flip_edit_mode():
bpy.ops.object.editmode_toggle()
bpy.ops.object.editmode_toggle()
# check the appropriate selection condition
# to prevent crashes with the index out of range errors
# pass the bEdges and bVerts based selection tables here
# types: Edge, Vertex, All
def is_selected_enough(self, bEdges, bVerts, edges_n=1, verts_n=0, types="Edge"):
check = False
try:
if bEdges and types == "Edge":
check = (len(bEdges) >= edges_n)
elif bVerts and types == "Vertex":
check = (len(bVerts) >= verts_n)
elif bEdges and bVerts and types == "All":
check = (len(bEdges) >= edges_n and len(bVerts) >= verts_n)
if check is False:
strings = "%s Vertices and / or " % verts_n if verts_n != 0 else ""
self.report({'WARNING'},
"Needs at least " + strings + "%s Edge(s) selected. "
"Operation Cancelled" % edges_n)
flip_edit_mode()
return check
except Exception as e:
error_handlers(self, "is_selected_enough", e,
"No appropriate selection. Operation Cancelled", func=True)
return False
return False
# is_axial
# This is for the special case where the edge is parallel to an axis.
# The projection onto the XY plane will fail so it will have to be handled differently
def is_axial(v1, v2, error=0.000002):
vector = v2 - v1
# Don't need to store, but is easier to read:
vec0 = vector[0] > -error and vector[0] < error
vec1 = vector[1] > -error and vector[1] < error
vec2 = vector[2] > -error and vector[2] < error
if (vec0 or vec1) and vec2:
return 'Z'
elif vec0 and vec1:
return 'Y'
return None
# is_same_co
# For some reason "Vector = Vector" does not seem to look at the actual coordinates
def is_same_co(v1, v2):
if len(v1) != len(v2):
return False
else:
for co1, co2 in zip(v1, v2):
if co1 != co2:
return False
return True
def is_face_planar(face, error=0.0005):
for v in face.verts:
d = distance_point_to_plane(v.co, face.verts[0].co, face.normal)
if ENABLE_DEBUG:
print("Distance: " + str(d))
if d < -error or d > error:
return False
return True
# other_joined_edges
# Starts with an edge. Then scans for linked, selected edges and builds a
# list with them in "order", starting at one end and moving towards the other
def order_joined_edges(edge, edges=[], direction=1):
if len(edges) == 0:
edges.append(edge)
edges[0] = edge
if ENABLE_DEBUG:
print(edge, end=", ")
print(edges, end=", ")
print(direction, end="; ")
# Robustness check: direction cannot be zero
if direction == 0:
direction = 1
newList = []
for e in edge.verts[0].link_edges:
if e.select and edges.count(e) == 0:
if direction > 0:
edges.insert(0, e)
newList.extend(order_joined_edges(e, edges, direction + 1))
newList.extend(edges)
else:
edges.append(e)
newList.extend(edges)
newList.extend(order_joined_edges(e, edges, direction - 1))
# This will only matter at the first level:
direction = direction * -1
for e in edge.verts[1].link_edges:
if e.select and edges.count(e) == 0:
if direction > 0:
edges.insert(0, e)
newList.extend(order_joined_edges(e, edges, direction + 2))
newList.extend(edges)
else:
edges.append(e)
newList.extend(edges)
newList.extend(order_joined_edges(e, edges, direction))
if ENABLE_DEBUG:
print(newList, end=", ")
print(direction)
return newList
# --------------- GEOMETRY CALCULATION METHODS --------------
# distance_point_line
# I don't know why the mathutils.geometry API does not already have this, but
# it is trivial to code using the structures already in place. Instead of
# returning a float, I also want to know the direction vector defining the
# distance. Distance can be found with "Vector.length"
def distance_point_line(pt, line_p1, line_p2):
int_co = intersect_point_line(pt, line_p1, line_p2)
distance_vector = int_co[0] - pt
return distance_vector
# interpolate_line_line
# This is an experiment into a cubic Hermite spline (c-spline) for connecting
# two edges with edges that obey the general equation.
# This will return a set of point coordinates (Vectors)
#
# A good, easy to read background on the mathematics can be found at:
# http://cubic.org/docs/hermite.htm
#
# Right now this is . . . less than functional :P
# @todo
# - C-Spline and Bezier curves do not end on p2_co as they are supposed to.
# - B-Spline just fails. Epically.
# - Add more methods as I come across them. Who said flexibility was bad?
def interpolate_line_line(p1_co, p1_dir, p2_co, p2_dir, segments, tension=1,
typ='BEZIER', include_ends=False):
pieces = []
fraction = 1 / segments
# Form: p1, tangent 1, p2, tangent 2
if typ == 'HERMITE':
poly = [[2, -3, 0, 1], [1, -2, 1, 0],
[-2, 3, 0, 0], [1, -1, 0, 0]]
elif typ == 'BEZIER':
poly = [[-1, 3, -3, 1], [3, -6, 3, 0],
[1, 0, 0, 0], [-3, 3, 0, 0]]
p1_dir = p1_dir + p1_co
p2_dir = -p2_dir + p2_co
elif typ == 'BSPLINE':
# Supposed poly matrix for a cubic b-spline:
# poly = [[-1, 3, -3, 1], [3, -6, 3, 0],
# [-3, 0, 3, 0], [1, 4, 1, 0]]
# My own invention to try to get something that somewhat acts right
# This is semi-quadratic rather than fully cubic:
poly = [[0, -1, 0, 1], [1, -2, 1, 0],
[0, -1, 2, 0], [1, -1, 0, 0]]
if include_ends:
pieces.append(p1_co)
# Generate each point:
for i in range(segments - 1):
t = fraction * (i + 1)
if ENABLE_DEBUG:
print(t)
s = [t ** 3, t ** 2, t, 1]
h00 = (poly[0][0] * s[0]) + (poly[0][1] * s[1]) + (poly[0][2] * s[2]) + (poly[0][3] * s[3])
h01 = (poly[1][0] * s[0]) + (poly[1][1] * s[1]) + (poly[1][2] * s[2]) + (poly[1][3] * s[3])
h10 = (poly[2][0] * s[0]) + (poly[2][1] * s[1]) + (poly[2][2] * s[2]) + (poly[2][3] * s[3])
h11 = (poly[3][0] * s[0]) + (poly[3][1] * s[1]) + (poly[3][2] * s[2]) + (poly[3][3] * s[3])
pieces.append((h00 * p1_co) + (h01 * p1_dir) + (h10 * p2_co) + (h11 * p2_dir))
if include_ends:
pieces.append(p2_co)
# Return:
if len(pieces) == 0:
return None
else:
if ENABLE_DEBUG:
print(pieces)
return pieces
# intersect_line_face
# Calculates the coordinate of intersection of a line with a face. It returns
# the coordinate if one exists, otherwise None. It can only deal with tris or
# quads for a face. A quad does NOT have to be planar
"""
Quad math and theory:
A quad may not be planar. Therefore the treated definition of the surface is
that the surface is composed of all lines bridging two other lines defined by
the given four points. The lines do not "cross"
The two lines in 3-space can defined as:
┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐
│x1│ │a11│ │b11│ │x2│ │a21│ │b21│
│y1│ = (1-t1)│a12│ + t1│b12│, │y2│ = (1-t2)│a22│ + t2│b22│
│z1│ │a13│ │b13│ │z2│ │a23│ │b23│
└ ┘ └ ┘ └ ┘ └ ┘ └ ┘ └ ┘
Therefore, the surface is the lines defined by every point alone the two
lines with a same "t" value (t1 = t2). This is basically R = V1 + tQ, where
Q = V2 - V1 therefore R = V1 + t(V2 - V1) -> R = (1 - t)V1 + tV2:
┌ ┐ ┌ ┐ ┌ ┐
│x12│ │(1-t)a11 + t * b11│ │(1-t)a21 + t * b21│
│y12│ = (1 - t12)│(1-t)a12 + t * b12│ + t12│(1-t)a22 + t * b22│
│z12│ │(1-t)a13 + t * b13│ │(1-t)a23 + t * b23│
└ ┘ └ ┘ └ ┘
Now, the equation of our line can be likewise defined:
┌ ┐ ┌ ┐ ┌ ┐
│x3│ │a31│ │b31│
│y3│ = │a32│ + t3│b32│
│z3│ │a33│ │b33│
└ ┘ └ ┘ └ ┘
Now we just have to find a valid solution for the two equations. This should
be our point of intersection. Therefore, x12 = x3 -> x, y12 = y3 -> y,
z12 = z3 -> z. Thus, to find that point we set the equation defining the
surface as equal to the equation for the line:
┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐
│(1-t)a11 + t * b11│ │(1-t)a21 + t * b21│ │a31│ │b31│
(1 - t12)│(1-t)a12 + t * b12│ + t12│(1-t)a22 + t * b22│ = │a32│ + t3│b32│
│(1-t)a13 + t * b13│ │(1-t)a23 + t * b23│ │a33│ │b33│
└ ┘ └ ┘ └ ┘ └ ┘
This leaves us with three equations, three unknowns. Solving the system by
hand is practically impossible, but using Mathematica we are given an insane
series of three equations (not reproduced here for the sake of space: see
http://www.mediafire.com/file/cc6m6ba3sz2b96m/intersect_line_surface.nb and
http://www.mediafire.com/file/0egbr5ahg14talm/intersect_line_surface2.nb for
Mathematica computation).
Additionally, the resulting series of equations may result in a div by zero
exception if the line in question if parallel to one of the axis or if the
quad is planar and parallel to either the XY, XZ, or YZ planes. However, the
system is still solvable but must be dealt with a little differently to avaid
these special cases. Because the resulting equations are a little different,
we have to code them differently. 00Hence the special cases.
Tri math and theory:
A triangle must be planar (three points define a plane). So we just
have to make sure that the line intersects inside the triangle.
If the point is within the triangle, then the angle between the lines that
connect the point to the each individual point of the triangle will be
equal to 2 * PI. Otherwise, if the point is outside the triangle, then the
sum of the angles will be less.
"""
# @todo
# - Figure out how to deal with n-gons
# How the heck is a face with 8 verts defined mathematically?
# How do I then find the intersection point of a line with said vert?
# How do I know if that point is "inside" all the verts?
# I have no clue, and haven't been able to find anything on it so far
# Maybe if someone (actually reads this and) who knows could note?
def intersect_line_face(edge, face, is_infinite=False, error=0.000002):
int_co = None
# If we are dealing with a non-planar quad:
if len(face.verts) == 4 and not is_face_planar(face):
edgeA = face.edges[0]
edgeB = None
flipB = False
for i in range(len(face.edges)):
if face.edges[i].verts[0] not in edgeA.verts and \
face.edges[i].verts[1] not in edgeA.verts:
edgeB = face.edges[i]
break
# I haven't figured out a way to mix this in with the above. Doing so might remove a
# few extra instructions from having to be executed saving a few clock cycles:
for i in range(len(face.edges)):
if face.edges[i] == edgeA or face.edges[i] == edgeB:
continue
if ((edgeA.verts[0] in face.edges[i].verts and
edgeB.verts[1] in face.edges[i].verts) or
(edgeA.verts[1] in face.edges[i].verts and edgeB.verts[0] in face.edges[i].verts)):
flipB = True
break
# Define calculation coefficient constants:
# "xx1" is the x coordinate, "xx2" is the y coordinate, and "xx3" is the z coordinate
a11, a12, a13 = edgeA.verts[0].co[0], edgeA.verts[0].co[1], edgeA.verts[0].co[2]
b11, b12, b13 = edgeA.verts[1].co[0], edgeA.verts[1].co[1], edgeA.verts[1].co[2]
if flipB:
a21, a22, a23 = edgeB.verts[1].co[0], edgeB.verts[1].co[1], edgeB.verts[1].co[2]
b21, b22, b23 = edgeB.verts[0].co[0], edgeB.verts[0].co[1], edgeB.verts[0].co[2]
else:
a21, a22, a23 = edgeB.verts[0].co[0], edgeB.verts[0].co[1], edgeB.verts[0].co[2]
b21, b22, b23 = edgeB.verts[1].co[0], edgeB.verts[1].co[1], edgeB.verts[1].co[2]
a31, a32, a33 = edge.verts[0].co[0], edge.verts[0].co[1], edge.verts[0].co[2]
b31, b32, b33 = edge.verts[1].co[0], edge.verts[1].co[1], edge.verts[1].co[2]
# There are a bunch of duplicate "sub-calculations" inside the resulting
# equations for t, t12, and t3. Calculate them once and store them to
# reduce computational time:
m01 = a13 * a22 * a31
m02 = a12 * a23 * a31
m03 = a13 * a21 * a32
m04 = a11 * a23 * a32
m05 = a12 * a21 * a33
m06 = a11 * a22 * a33
m07 = a23 * a32 * b11
m08 = a22 * a33 * b11
m09 = a23 * a31 * b12
m10 = a21 * a33 * b12
m11 = a22 * a31 * b13
m12 = a21 * a32 * b13
m13 = a13 * a32 * b21
m14 = a12 * a33 * b21
m15 = a13 * a31 * b22
m16 = a11 * a33 * b22
m17 = a12 * a31 * b23
m18 = a11 * a32 * b23
m19 = a13 * a22 * b31
m20 = a12 * a23 * b31
m21 = a13 * a32 * b31
m22 = a23 * a32 * b31
m23 = a12 * a33 * b31
m24 = a22 * a33 * b31
m25 = a23 * b12 * b31
m26 = a33 * b12 * b31
m27 = a22 * b13 * b31
m28 = a32 * b13 * b31
m29 = a13 * b22 * b31
m30 = a33 * b22 * b31
m31 = a12 * b23 * b31
m32 = a32 * b23 * b31
m33 = a13 * a21 * b32
m34 = a11 * a23 * b32
m35 = a13 * a31 * b32
m36 = a23 * a31 * b32
m37 = a11 * a33 * b32
m38 = a21 * a33 * b32
m39 = a23 * b11 * b32
m40 = a33 * b11 * b32
m41 = a21 * b13 * b32
m42 = a31 * b13 * b32
m43 = a13 * b21 * b32
m44 = a33 * b21 * b32
m45 = a11 * b23 * b32
m46 = a31 * b23 * b32
m47 = a12 * a21 * b33
m48 = a11 * a22 * b33
m49 = a12 * a31 * b33
m50 = a22 * a31 * b33
m51 = a11 * a32 * b33
m52 = a21 * a32 * b33
m53 = a22 * b11 * b33
m54 = a32 * b11 * b33
m55 = a21 * b12 * b33
m56 = a31 * b12 * b33
m57 = a12 * b21 * b33
m58 = a32 * b21 * b33
m59 = a11 * b22 * b33
m60 = a31 * b22 * b33
m61 = a33 * b12 * b21
m62 = a32 * b13 * b21
m63 = a33 * b11 * b22
m64 = a31 * b13 * b22
m65 = a32 * b11 * b23
m66 = a31 * b12 * b23
m67 = b13 * b22 * b31
m68 = b12 * b23 * b31
m69 = b13 * b21 * b32
m70 = b11 * b23 * b32
m71 = b12 * b21 * b33
m72 = b11 * b22 * b33
n01 = m01 - m02 - m03 + m04 + m05 - m06
n02 = -m07 + m08 + m09 - m10 - m11 + m12 + m13 - m14 - m15 + m16 + m17 - m18 - \
m25 + m27 + m29 - m31 + m39 - m41 - m43 + m45 - m53 + m55 + m57 - m59
n03 = -m19 + m20 + m33 - m34 - m47 + m48
n04 = m21 - m22 - m23 + m24 - m35 + m36 + m37 - m38 + m49 - m50 - m51 + m52
n05 = m26 - m28 - m30 + m32 - m40 + m42 + m44 - m46 + m54 - m56 - m58 + m60
n06 = m61 - m62 - m63 + m64 + m65 - m66 - m67 + m68 + m69 - m70 - m71 + m72
n07 = 2 * n01 + n02 + 2 * n03 + n04 + n05
n08 = n01 + n02 + n03 + n06
# Calculate t, t12, and t3:
t = (n07 - sqrt(pow(-n07, 2) - 4 * (n01 + n03 + n04) * n08)) / (2 * n08)
# t12 can be greatly simplified by defining it with t in it:
# If block used to help prevent any div by zero error.
t12 = 0
if a31 == b31:
# The line is parallel to the z-axis:
if a32 == b32:
t12 = ((a11 - a31) + (b11 - a11) * t) / ((a21 - a11) + (a11 - a21 - b11 + b21) * t)
# The line is parallel to the y-axis:
elif a33 == b33:
t12 = ((a11 - a31) + (b11 - a11) * t) / ((a21 - a11) + (a11 - a21 - b11 + b21) * t)
# The line is along the y/z-axis but is not parallel to either:
else:
t12 = -(-(a33 - b33) * (-a32 + a12 * (1 - t) + b12 * t) + (a32 - b32) *
(-a33 + a13 * (1 - t) + b13 * t)) / (-(a33 - b33) *
((a22 - a12) * (1 - t) + (b22 - b12) * t) + (a32 - b32) *
((a23 - a13) * (1 - t) + (b23 - b13) * t))
elif a32 == b32:
# The line is parallel to the x-axis:
if a33 == b33:
t12 = ((a12 - a32) + (b12 - a12) * t) / ((a22 - a12) + (a12 - a22 - b12 + b22) * t)
# The line is along the x/z-axis but is not parallel to either:
else:
t12 = -(-(a33 - b33) * (-a31 + a11 * (1 - t) + b11 * t) + (a31 - b31) * (-a33 + a13 *
(1 - t) + b13 * t)) / (-(a33 - b33) * ((a21 - a11) * (1 - t) + (b21 - b11) * t) +
(a31 - b31) * ((a23 - a13) * (1 - t) + (b23 - b13) * t))
# The line is along the x/y-axis but is not parallel to either:
else:
t12 = -(-(a32 - b32) * (-a31 + a11 * (1 - t) + b11 * t) + (a31 - b31) * (-a32 + a12 *
(1 - t) + b12 * t)) / (-(a32 - b32) * ((a21 - a11) * (1 - t) + (b21 - b11) * t) +
(a31 - b31) * ((a22 - a21) * (1 - t) + (b22 - b12) * t))
# Likewise, t3 is greatly simplified by defining it in terms of t and t12:
# If block used to prevent a div by zero error.
t3 = 0
if a31 != b31:
t3 = (-a11 + a31 + (a11 - b11) * t + (a11 - a21) *
t12 + (a21 - a11 + b11 - b21) * t * t12) / (a31 - b31)
elif a32 != b32:
t3 = (-a12 + a32 + (a12 - b12) * t + (a12 - a22) *
t12 + (a22 - a12 + b12 - b22) * t * t12) / (a32 - b32)
elif a33 != b33:
t3 = (-a13 + a33 + (a13 - b13) * t + (a13 - a23) *
t12 + (a23 - a13 + b13 - b23) * t * t12) / (a33 - b33)
else:
if ENABLE_DEBUG:
print("The second edge is a zero-length edge")
return None
# Calculate the point of intersection:
x = (1 - t3) * a31 + t3 * b31
y = (1 - t3) * a32 + t3 * b32
z = (1 - t3) * a33 + t3 * b33
int_co = Vector((x, y, z))
if ENABLE_DEBUG:
print(int_co)
# If the line does not intersect the quad, we return "None":
if (t < -1 or t > 1 or t12 < -1 or t12 > 1) and not is_infinite:
int_co = None
elif len(face.verts) == 3:
p1, p2, p3 = face.verts[0].co, face.verts[1].co, face.verts[2].co
int_co = intersect_line_plane(edge.verts[0].co, edge.verts[1].co, p1, face.normal)
# Only check if the triangle is not being treated as an infinite plane:
# Math based from http://paulbourke.net/geometry/linefacet/
if int_co is not None and not is_infinite:
pA = p1 - int_co
pB = p2 - int_co
pC = p3 - int_co
# These must be unit vectors, else we risk a domain error:
pA.length = 1
pB.length = 1
pC.length = 1
aAB = acos(pA.dot(pB))
aBC = acos(pB.dot(pC))
aCA = acos(pC.dot(pA))
sumA = aAB + aBC + aCA
# If the point is outside the triangle:
if (sumA > (pi + error) and sumA < (pi - error)):
int_co = None
# This is the default case where we either have a planar quad or an n-gon
else:
int_co = intersect_line_plane(edge.verts[0].co, edge.verts[1].co,
face.verts[0].co, face.normal)
return int_co
# project_point_plane
# Projects a point onto a plane. Returns a tuple of the projection vector
# and the projected coordinate
def project_point_plane(pt, plane_co, plane_no):
if ENABLE_DEBUG:
print("project_point_plane was called")
proj_co = intersect_line_plane(pt, pt + plane_no, plane_co, plane_no)
proj_ve = proj_co - pt
if ENABLE_DEBUG:
print("project_point_plane: proj_co is {}\nproj_ve is {}".format(proj_co, proj_ve))
return (proj_ve, proj_co)
# ------------ CHAMPHER HELPER METHODS -------------
def is_planar_edge(edge, error=0.000002):
angle = edge.calc_face_angle()
return ((angle < error and angle > -error) or
(angle < (180 + error) and angle > (180 - error)))
# ------------- EDGE TOOL METHODS -------------------
# Extends an "edge" in two directions:
# - Requires two vertices to be selected. They do not have to form an edge
# - Extends "length" in both directions
class Extend(Operator):
bl_idname = "mesh.edgetools_extend"
bl_label = "Extend"
bl_description = "Extend the selected edges of vertex pairs"
bl_options = {'REGISTER', 'UNDO'}
di1: BoolProperty(
name="Forwards",
description="Extend the edge forwards",
default=True
)
di2: BoolProperty(
name="Backwards",
description="Extend the edge backwards",
default=False
)
length: FloatProperty(
name="Length",
description="Length to extend the edge",
min=0.0, max=1024.0,
default=1.0
)
def draw(self, context):
layout = self.layout
row = layout.row(align=True)
row.prop(self, "di1", toggle=True)
row.prop(self, "di2", toggle=True)
layout.prop(self, "length")
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
def execute(self, context):
try:
me = context.object.data
bm = bmesh.from_edit_mesh(me)
bm.normal_update()
bEdges = bm.edges
bVerts = bm.verts
edges = [e for e in bEdges if e.select]
verts = [v for v in bVerts if v.select]
if not is_selected_enough(self, edges, 0, edges_n=1, verts_n=0, types="Edge"):
return {'CANCELLED'}
if len(edges) > 0:
for e in edges:
vector = e.verts[0].co - e.verts[1].co
vector.length = self.length
if self.di1:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = e.verts[1].co - vector
newE = bEdges.new((e.verts[1], v))
bEdges.ensure_lookup_table()
else:
v.co = e.verts[0].co + vector
newE = bEdges.new((e.verts[0], v))
bEdges.ensure_lookup_table()
if self.di2:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = e.verts[0].co + vector
newE = bEdges.new((e.verts[0], v))
bEdges.ensure_lookup_table()
else:
v.co = e.verts[1].co - vector
newE = bEdges.new((e.verts[1], v))
bEdges.ensure_lookup_table()
else:
vector = verts[0].co - verts[1].co
vector.length = self.length
if self.di1:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = verts[1].co - vector
e = bEdges.new((verts[1], v))
bEdges.ensure_lookup_table()
else:
v.co = verts[0].co + vector
e = bEdges.new((verts[0], v))
bEdges.ensure_lookup_table()
if self.di2:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = verts[0].co + vector
e = bEdges.new((verts[0], v))
bEdges.ensure_lookup_table()
else:
v.co = verts[1].co - vector
e = bEdges.new((verts[1], v))
bEdges.ensure_lookup_table()
bmesh.update_edit_mesh(me)
except Exception as e:
error_handlers(self, "mesh.edgetools_extend", e,
reports="Extend Operator failed", func=False)
return {'CANCELLED'}
return {'FINISHED'}
# Creates a series of edges between two edges using spline interpolation.
# This basically just exposes existing functionality in addition to some
# other common methods: Hermite (c-spline), Bezier, and b-spline. These
# alternates I coded myself after some extensive research into spline theory
#
# @todo Figure out what's wrong with the Blender bezier interpolation
class Spline(Operator):
bl_idname = "mesh.edgetools_spline"
bl_label = "Spline"
bl_description = "Create a spline interplopation between two edges"
bl_options = {'REGISTER', 'UNDO'}
alg: EnumProperty(
name="Spline Algorithm",
items=[('Blender', "Blender", "Interpolation provided through mathutils.geometry"),
('Hermite', "C-Spline", "C-spline interpolation"),
('Bezier', "Bezier", "Bezier interpolation"),
('B-Spline', "B-Spline", "B-Spline interpolation")],
default='Bezier'
)
segments: IntProperty(
name="Segments",
description="Number of segments to use in the interpolation",
min=2, max=4096,
soft_max=1024,
default=32
)
flip1: BoolProperty(
name="Flip Edge",
description="Flip the direction of the spline on Edge 1",
default=False
)
flip2: BoolProperty(
name="Flip Edge",
description="Flip the direction of the spline on Edge 2",
default=False
)
ten1: FloatProperty(
name="Tension",
description="Tension on Edge 1",
min=-4096.0, max=4096.0,
soft_min=-8.0, soft_max=8.0,
default=1.0
)
ten2: FloatProperty(
name="Tension",
description="Tension on Edge 2",
min=-4096.0, max=4096.0,
soft_min=-8.0, soft_max=8.0,
default=1.0
)
def draw(self, context):
layout = self.layout
layout.prop(self, "alg")
layout.prop(self, "segments")
layout.label(text="Edge 1:")
split = layout.split(factor=0.8, align=True)
split.prop(self, "ten1")
split.prop(self, "flip1", text="Flip1", toggle=True)
layout.label(text="Edge 2:")
split = layout.split(factor=0.8, align=True)
split.prop(self, "ten2")
split.prop(self, "flip2", text="Flip2", toggle=True)
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
def execute(self, context):
try:
me = context.object.data
bm = bmesh.from_edit_mesh(me)
bm.normal_update()
bEdges = bm.edges
bVerts = bm.verts
seg = self.segments
edges = [e for e in bEdges if e.select]
if not is_selected_enough(self, edges, 0, edges_n=2, verts_n=0, types="Edge"):
return {'CANCELLED'}
verts = [edges[v // 2].verts[v % 2] for v in range(4)]
if self.flip1:
v1 = verts[1]
p1_co = verts[1].co
p1_dir = verts[1].co - verts[0].co
else:
v1 = verts[0]
p1_co = verts[0].co
p1_dir = verts[0].co - verts[1].co
if self.ten1 < 0:
p1_dir = -1 * p1_dir
p1_dir.length = -self.ten1
else:
p1_dir.length = self.ten1
if self.flip2:
v2 = verts[3]
p2_co = verts[3].co
p2_dir = verts[2].co - verts[3].co
else:
v2 = verts[2]
p2_co = verts[2].co
p2_dir = verts[3].co - verts[2].co
if self.ten2 < 0:
p2_dir = -1 * p2_dir
p2_dir.length = -self.ten2
else:
p2_dir.length = self.ten2
# Get the interploted coordinates:
if self.alg == 'Blender':
pieces = interpolate_bezier(
p1_co, p1_dir, p2_dir, p2_co, self.segments
)
elif self.alg == 'Hermite':
pieces = interpolate_line_line(
p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'HERMITE'
)
elif self.alg == 'Bezier':
pieces = interpolate_line_line(
p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'BEZIER'
)
elif self.alg == 'B-Spline':
pieces = interpolate_line_line(
p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'BSPLINE'
)
verts = []
verts.append(v1)
# Add vertices and set the points:
for i in range(seg - 1):
v = bVerts.new()
v.co = pieces[i]
bVerts.ensure_lookup_table()
verts.append(v)
verts.append(v2)
# Connect vertices:
for i in range(seg):
e = bEdges.new((verts[i], verts[i + 1]))
bEdges.ensure_lookup_table()
bmesh.update_edit_mesh(me)
except Exception as e:
error_handlers(self, "mesh.edgetools_spline", e,
reports="Spline Operator failed", func=False)
return {'CANCELLED'}
return {'FINISHED'}
# Creates edges normal to planes defined between each of two edges and the
# normal or the plane defined by those two edges.
# - Select two edges. The must form a plane.
# - On running the script, eight edges will be created. Delete the
# extras that you don't need.
# - The length of those edges is defined by the variable "length"
#
# @todo Change method from a cross product to a rotation matrix to make the
# angle part work.
# --- todo completed 2/4/2012, but still needs work ---
# @todo Figure out a way to make +/- predictable
# - Maybe use angle between edges and vector direction definition?
# --- TODO COMPLETED ON 2/9/2012 ---
class Ortho(Operator):
bl_idname = "mesh.edgetools_ortho"
bl_label = "Angle Off Edge"
bl_description = "Creates new edges within an angle from vertices of selected edges"
bl_options = {'REGISTER', 'UNDO'}
vert1: BoolProperty(
name="Vertice 1",
description="Enable edge creation for Vertice 1",
default=True
)
vert2: BoolProperty(
name="Vertice 2",
description="Enable edge creation for Vertice 2",
default=True
)
vert3: BoolProperty(
name="Vertice 3",
description="Enable edge creation for Vertice 3",
default=True
)
vert4: BoolProperty(
name="Vertice 4",
description="Enable edge creation for Vertice 4",
default=True
)
pos: BoolProperty(
name="Positive",
description="Enable creation of positive direction edges",
default=True
)
neg: BoolProperty(
name="Negative",
description="Enable creation of negative direction edges",
default=True
)
angle: FloatProperty(
name="Angle",
description="Define the angle off of the originating edge",
min=0.0, max=180.0,
default=90.0
)
length: FloatProperty(
name="Length",
description="Length of created edges",
min=0.0, max=1024.0,
default=1.0
)
# For when only one edge is selected (Possible feature to be testd):
plane: EnumProperty(
name="Plane",
items=[("XY", "X-Y Plane", "Use the X-Y plane as the plane of creation"),
("XZ", "X-Z Plane", "Use the X-Z plane as the plane of creation"),
("YZ", "Y-Z Plane", "Use the Y-Z plane as the plane of creation")],
default="XY"
)
def draw(self, context):
layout = self.layout
layout.label(text="Creation:")
split = layout.split()
col = split.column()
col.prop(self, "vert1", toggle=True)
col.prop(self, "vert2", toggle=True)
col = split.column()
col.prop(self, "vert3", toggle=True)
col.prop(self, "vert4", toggle=True)
layout.label(text="Direction:")
row = layout.row(align=False)