Skip to content
Snippets Groups Projects
Blocks.py 67.4 KiB
Newer Older
# GPL # "authors": dudecon, jambay

# Module notes:
#
# Grout needs to be implemented.
# consider removing wedge crit for small "c" and "cl" values
# wrap around for openings on radial stonework?
# auto-clip wall edge to SMALL for radial and domes.
# unregister doesn't release all references.
# repeat for opening doesn't distribute evenly when radialized - see wrap around
# if opening width == indent*2 the edge blocks fail (row of blocks cross opening).
# if openings overlap fills inverse with blocks - see h/v slots.
# Negative grout width creates a pair of phantom blocks, separated by grout
# width, inside the edges.
# if block width variance is 0, and edging is on, right edge blocks create a "vertical seam"
from math import (
        fmod, sqrt,
        sin, cos, atan,
        pi as PI,
        )

# Set to True to enable debug_prints
DEBUG = False
# A few constants
# for values that must be != 0; see UI options/variables - sort of a bug to be fixed
NOTZERO = 0.01
# General masonry Settings
# ------------------------
settings = {
    'w': 1.2, 'wv': 0.3, 'h': .6, 'hv': 0.3, 'd': 0.3, 'dv': 0.1,
    'g': 0.1, 'gv': 0.07, 'gd': 0.01, 'gdv': 0.0, 'b': 0, 'bv': 0,
    'f': 0.0, 'fv': 0.0, 't': 0.0, 'sdv': 0.1, 'hwt': 0.5, 'aln': 0,
    'wm': 0.8, 'hm': 0.3, 'dm': 0.1,
    'woff': 0.0, 'woffv': 0.0, 'eoff': 0.3, 'eoffv': 0.0, 'rwhl': 1,
    'hb': 0, 'ht': 0, 'ge': 0, 'physics': 0
    }
"""
    settings DOCUMENTATION:
    'w':width 'wv':widthVariation
    'h':height 'hv':heightVariation
    'd':depth 'dv':depthVariation
    'g':grout 'gv':groutVariation 'gd':groutDepth 'gdv':groutDepthVariation
    'b':bevel 'bv':bevelVariation
    'f':flawSize 'fv':flawSizeVariation 'ff':flawFraction
    't':taper
    'sdv':subdivision(distance or angle)
    'hwt':row height effect on block widths in the row (0=no effect,
          1=1:1 relationship, negative values allowed, 0.5 works well)
    'aln':alignment(0=none, 1=rows w/features, 2=features w/rows)
         (currently unused)
    'wm':width minimum 'hm':height minimum 'dm':depth minimum
    'woff':row start offset(fraction of width)
    'woffv':width offset variation(fraction of width)
    'eoff':edge offset 'eoffv':edge offset variation
    'rwhl':row height lock(1 is all blocks in row have same height)
    'hb':bottom row height 'ht': top row height 'ge': grout the edges
    'physics': set up for physics
"""
# ------------------------
dims = {
    's': 0, 'e': PI * 3 / 2, 'b': 0.1, 't': 12.3
    }  # radial
"""
    dims DOCUMENTATION:
    's':start x or theta 'e':end x or theta 'b':bottom z or r 't':top z or r
    'w' = e-s and h = t-b; calculated to optimize for various operations/usages
    dims = {'s':-12, 'e':15, 'w':27, 'b':-15., 't':15., 'h':30}
    dims = {'s':-bayDim/2, 'e':bayDim/2, 'b':-5., 't':10.} # bay settings?
"""

# ------------------------
radialized = 0  # Radiating from one point - round/disc; instead of square
slope = 0       # Warp/slope; curved over like a vaulted tunnel

# 'bigblock': merge adjacent blocks into single large blocks
bigBlock = 0    # Merge blocks

# Gaps in blocks for various apertures
# ------------------------
# openingSpecs = []
openingSpecs = [
    {'w': 0.5, 'h': 0.5, 'x': 0.8, 'z': 2.7, 'rp': 1, 'b': 0.0,
     'v': 0, 'vl': 0, 't': 0, 'tl': 0}
    ]
"""
    openingSpecs DOCUMENTATION:
    'w': opening width, 'h': opening height,
    'x': horizontal position, 'z': vertical position,
    'rp': make multiple openings, with a spacing of x,
    'b': bevel the opening, inside only, like an arrow slit.
    'v': height of the top arch, 'vl':height of the bottom arch,
    't': thickness of the top arch, 'tl': thickness of the bottom arch
"""

# Add blocks to make platforms
# ------------------------
shelfSpecs = {
    'w': 0.5, 'h': 0.5, 'd': 0.3, 'x': 0.8, 'z': 2.7
    }
"""
    shelfSpecs DOCUMENTATION:
    'w': block width, 'h': block height, 'd': block depth (shelf size; offset from wall)
    'x': horizontal start position, 'z': vertical start position
"""

# Add blocks to make steps
# ------------------------

stepSpecs = {
    'x': 0.0, 'z': -10, 'w': 10.0, 'h': 10.0,
    'v': 0.7, 't': 1.0, 'd': 1.0
    }
"""
    stepSpecs DOCUMENTATION:
    'x': horizontal start position, 'z': vertical start position,
    'w': step area width, 'h': step area height,
    'v': riser height, 't': tread width, 'd': block depth (step size; offset from wall)
"""
stepLeft = 0
shelfBack = 0
stepOnly = 0
stepBack = 0


# switchable prints
def debug_prints(func="", text="Message", var=None):
    global DEBUG
    if DEBUG:
        print("\n[{}]\nmessage: {}".format(func, text))
        if var:
            print("Error: ", var)


# pass variables just like for the regular prints
def debug_print_vars(*args, **kwargs):
    global DEBUG
    if DEBUG:
        print(*args, **kwargs)
# easier way to get to the random function
def rnd():
    return random()

# random number from -0.5 to 0.5
def rndc():
    return (random() - 0.5)
# random number from -1.0 to 1.0
def rndd():
    return (random() - 0.5) * 2.0
# Opening Test suite
# opening test function

def test(TestN=13):
    dims = {'s': -29., 'e': 29., 'b': -6., 't': TestN * 7.5}
    openingSpecs = []
    for i in range(TestN):
        x = (random() - 0.5) * 6
        z = i * 7.5
        v = .2 + i * (3. / TestN)
        vl = 3.2 - i * (3. / TestN)
        t = 0.3 + random()
        tl = 0.3 + random()
        rn = random() * 2
        openingSpecs += [{'w': 3.1 + rn, 'h': 0.3 + rn, 'x': float(x),
                          'z': float(z), 'rp': 0, 'b': 0.,
                          'v': float(v), 'vl': float(vl),
                          't': float(t), 'tl': float(tl)}]
# dims, openingSpecs = test(15)
# For filling a linear space with divisions
def fill(left, right, avedst, mindst=0.0, dev=0.0, pad=(0.0, 0.0), num=0,
         center=0):
    __doc__ = """\
    Fills a linear range with points and returns an ordered list of those points
    including the end points.

    left: the lower boundary
    right: the upper boundary
    avedst: the average distance between points
    mindst: the minimum distance between points
    dev: the maximum random deviation from avedst
    pad: tends to move the points near the bounds right (positive) or
        left (negative).
        element 0 pads the lower bounds, element 1 pads the upper bounds
    num: substitutes a numerical limit for the right limit.  fill will then make
        a num+1 element list
    center: flag to center the elements in the range, 0 == disabled
    curpos = left + pad[0]

    # Set offset by average spacing, then add blocks (fall through);
    # if not at right edge.
    if center:
        curpos += ((right - left - mindst * 2) % avedst) / 2 + mindst
        if curpos - poslist[-1] < mindst:
            curpos = poslist[-1] + mindst + rnd() * dev / 2
        if (right - curpos < mindst) or (right - curpos < mindst - pad[1]):
        else:
            poslist.append(curpos)
    # unused... for now.
        while idx < num + 1:
            curpos += avedst + rndd() * dev
            if curpos - poslist[-1] < mindst:
                curpos = poslist[-1] + mindst + rnd() * dev / 2
            poslist.append(curpos)
            idx += 1

        return poslist

    # make block edges
    else:
        while True:  # loop for blocks
            curpos += avedst + rndd() * dev
            if curpos - poslist[-1] < mindst:
                curpos = poslist[-1] + mindst + rnd() * dev / 2
            if (right - curpos < mindst) or (right - curpos < mindst - pad[1]):
            else:
                poslist.append(curpos)
# For generating block geometry
def MakeABlock(bounds, segsize, vll=0, Offsets=None, FaceExclude=[],
               bevel=0, xBevScl=1):
    __doc__ = """\
    MakeABlock returns lists of points and faces to be made into a square
            cornered block, subdivided along the length, with optional bevels.
    bounds: a list of boundary positions:
        0:left, 1:right, 2:bottom, 3:top, 4:back, 5:front
    segsize: the maximum size before lengthwise subdivision occurs
    vll: the number of vertexes already in the mesh. len(mesh.verts) should
            give this number.
    Offsets: list of coordinate delta values.
        Offsets are lists, [x,y,z] in
            [
            0:left_bottom_back,
            1:left_bottom_front,
            2:left_top_back,
            3:left_top_front,
            4:right_bottom_back,
            5:right_bottom_front,
            6:right_top_back,
            7:right_top_front,
            ]
    FaceExclude: list of faces to exclude from the faces list.  see bounds above for indices
    xBevScl: how much to divide the end (+- x axis) bevel dimensions.  Set to current average
    radius to compensate for angular distortion on curved blocks
    """

    slices = fill(bounds[0], bounds[1], segsize, segsize, center=1)
    points = []
    faces = []

    if Offsets is None:
        points.append([slices[0], bounds[4], bounds[2]])
        points.append([slices[0], bounds[5], bounds[2]])
        points.append([slices[0], bounds[5], bounds[3]])
        points.append([slices[0], bounds[4], bounds[3]])
            points.append([x, bounds[4], bounds[2]])
            points.append([x, bounds[5], bounds[2]])
            points.append([x, bounds[5], bounds[3]])
            points.append([x, bounds[4], bounds[3]])
        points.append([slices[-1], bounds[4], bounds[2]])
        points.append([slices[-1], bounds[5], bounds[2]])
        points.append([slices[-1], bounds[5], bounds[3]])
        points.append([slices[-1], bounds[4], bounds[3]])
        points.append([slices[0] + Offsets[0][0], bounds[4] + Offsets[0][1], bounds[2] + Offsets[0][2]])
        points.append([slices[0] + Offsets[1][0], bounds[5] + Offsets[1][1], bounds[2] + Offsets[1][2]])
        points.append([slices[0] + Offsets[3][0], bounds[5] + Offsets[3][1], bounds[3] + Offsets[3][2]])
        points.append([slices[0] + Offsets[2][0], bounds[4] + Offsets[2][1], bounds[3] + Offsets[2][2]])

        for x in slices[1: -1]:
            xwt = (x - bounds[0]) / (bounds[1] - bounds[0])
            points.append([x + Offsets[0][0] * (1 - xwt) + Offsets[4][0] * xwt,
                          bounds[4] + Offsets[0][1] * (1 - xwt) + Offsets[4][1] * xwt,
                          bounds[2] + Offsets[0][2] * (1 - xwt) + Offsets[4][2] * xwt])
            points.append([x + Offsets[1][0] * (1 - xwt) + Offsets[5][0] * xwt,
                          bounds[5] + Offsets[1][1] * (1 - xwt) + Offsets[5][1] * xwt,
                          bounds[2] + Offsets[1][2] * (1 - xwt) + Offsets[5][2] * xwt])
            points.append([x + Offsets[3][0] * (1 - xwt) + Offsets[7][0] * xwt,
                          bounds[5] + Offsets[3][1] * (1 - xwt) + Offsets[7][1] * xwt,
                          bounds[3] + Offsets[3][2] * (1 - xwt) + Offsets[7][2] * xwt])
            points.append([x + Offsets[2][0] * (1 - xwt) + Offsets[6][0] * xwt,
                          bounds[4] + Offsets[2][1] * (1 - xwt) + Offsets[6][1] * xwt,
                          bounds[3] + Offsets[2][2] * (1 - xwt) + Offsets[6][2] * xwt])

        points.append([slices[-1] + Offsets[4][0], bounds[4] + Offsets[4][1], bounds[2] + Offsets[4][2]])
        points.append([slices[-1] + Offsets[5][0], bounds[5] + Offsets[5][1], bounds[2] + Offsets[5][2]])
        points.append([slices[-1] + Offsets[7][0], bounds[5] + Offsets[7][1], bounds[3] + Offsets[7][2]])
        points.append([slices[-1] + Offsets[6][0], bounds[4] + Offsets[6][1], bounds[3] + Offsets[6][2]])

    faces.append([vll, vll + 3, vll + 2, vll + 1])

    for x in range(len(slices) - 1):
        faces.append([vll, vll + 1, vll + 5, vll + 4])
        vll += 1
        faces.append([vll, vll + 1, vll + 5, vll + 4])
        vll += 1
        faces.append([vll, vll + 1, vll + 5, vll + 4])
        vll += 1
        faces.append([vll, vll - 3, vll + 1, vll + 4])
        vll += 1

    faces.append([vll, vll + 1, vll + 2, vll + 3])

# For generating Keystone Geometry

def MakeAKeystone(xpos, width, zpos, ztop, zbtm, thick, bevel, vll=0, FaceExclude=[], xBevScl=1):
    __doc__ = """\
    MakeAKeystone returns lists of points and faces to be made into a
    square cornered keystone, with optional bevels.
    xpos: x position of the centerline
    width: x width of the keystone at the widest point (discounting bevels)
    zpos: z position of the widest point
    ztop: distance from zpos to the top
    zbtm: distance from zpos to the bottom
    thick: thickness
    bevel: the amount to raise the back vertex to account for arch beveling
    vll: the number of vertexes already in the mesh. len(mesh.verts) should give this number
    faceExclude: list of faces to exclude from the faces list.
                 0:left, 1:right, 2:bottom, 3:top, 4:back, 5:front
    xBevScl: how much to divide the end (+- x axis) bevel dimensions.
    Set to current average radius to compensate for angular distortion on curved blocks
    """

    points = []
    faces = []
    faceinclude = [1 for x in range(6)]
    for x in FaceExclude:
        faceinclude[x] = 0
    Wid = width / 2.0
    Thk = thick / 2.0

    # The front top point
    points.append([xpos, Thk, Top])
    # The front left point
    points.append([xpos - Wid, Thk, zpos])
    # The front bottom point
    points.append([xpos, Thk, Btm])
    # The front right point
    points.append([xpos + Wid, Thk, zpos])
        MirrorPoints.append([i[0], -i[1], i[2]])
    points += MirrorPoints
    points[6][2] += bevel

    faces.append([3, 2, 1, 0])
    faces.append([4, 5, 6, 7])
    faces.append([4, 7, 3, 0])
    faces.append([5, 4, 0, 1])
    faces.append([6, 5, 1, 2])
    faces.append([7, 6, 2, 3])
    # Offset the vertex numbers by the number of vertices already in the list
        for j in range(len(faces[i])):
            faces[i][j] += vll
# for finding line/circle intercepts

def circ(offs=0., r=1.):
    __doc__ = """\
    offs is the distance perpendicular to the line to the center of the circle
    r is the radius of the circle
    circ returns the distance parallel to the line to the center of the circle at the intercept.
    if offs > r:
        return None
    elif offs == r:
        return 0.
    else:
        return sqrt(r ** 2 - offs ** 2)

# class openings in the wall

class opening:
    __doc__ = """\
    This is the class for holding the data for the openings in the wall.
    It has methods for returning the edges of the opening for any given position value,
    as well as bevel settings and top and bottom positions.
    It stores the 'style' of the opening, and all other pertinent information.
    """
    # x = 0. # x position of the opening
    # z = 0. # x position of the opening
    # w = 0. # width of the opening
    # h = 0. # height of the opening
    r = 0    # top radius of the arch (derived from 'v')
    rl = 0   # lower radius of the arch (derived from 'vl')
    rt = 0   # top arch thickness
    rtl = 0  # lower arch thickness
    ts = 0   # Opening side thickness, if greater than average width, replaces it.
    c = 0    # top arch corner position (for low arches), distance from the top of the straight sides
    cl = 0   # lower arch corner position (for low arches), distance from the top of the straight sides
    # form = 0  # arch type (unused for now)
    # b = 0.    # back face bevel distance, like an arrow slit
    v = 0.   # top arch height
    vl = 0.  # lower arch height
    # variable "s" is used for "side" in the "edge" function.
    # it is a signed int, multiplied by the width to get + or - of the center

    def btm(self):
        if self.vl <= self.w / 2:
            return self.z - self.h / 2 - self.vl - self.rtl
        else:
            return self.z - sqrt((self.rl + self.rtl) ** 2 - (self.rl - self.w / 2) ** 2) - self.h / 2
        if self.v <= self.w / 2:
            return self.z + self.h / 2 + self.v + self.rt
        else:
            return sqrt((self.r + self.rt) ** 2 - (self.r - self.w / 2) ** 2) + self.z + self.h / 2
    # crits returns the critical split points, or discontinuities, used for making rows
        if self.vl > 0:  # for lower arch
            # add the top point if it is pointed
            # if self.vl >= self.w/2.: critlist.append(self.btm())
            if self.vl < self.w / 2.:  # else: for low arches, with wedge blocks under them
                # critlist.append(self.btm())
                critlist.append(self.z - self.h / 2 - self.cl)
        if self.h > 0:  # if it has a height, append points at the top and bottom of the main square section
            critlist += [self.z - self.h / 2, self.z + self.h / 2]
        else:  # otherwise, append just one in the center
            critlist.append(self.z)

        if self.v > 0:  # for the upper arch
            if self.v < self.w / 2:  # add the splits for the upper wedge blocks, if needed
                critlist.append(self.z + self.h / 2 + self.c)
                # critlist.append(self.top())
            # otherwise just add the top point, if it is pointed
            # else: critlist.append(self.top())

        return critlist

    # get the side position of the opening.
    # ht is the z position; s is the side: 1 for right, -1 for left
    # if the height passed is above or below the opening, return None
    def edgeS(self, ht, s):
        # set the row radius: 1 for standard wall (flat)
        if radialized:
            if slope:
                r1 = abs(dims['t'] * sin(ht * PI / (dims['t'] * 2)))
            else:
                r1 = abs(ht)
        else:
            r1 = 1
        # Go through all the options, and return the correct value
        if ht < self.btm():  # too low
        elif ht > self.top():  # too high
            return None

        # Check for circ returning None - prevent TypeError (script failure) with float.
        # in this range, pass the lower arch info
        elif ht <= self.z - self.h / 2 - self.cl:
            if self.vl > self.w / 2:
                circVal = circ(ht - self.z + self.h / 2, self.rl + self.rtl)
                if circVal is None:
                else:
                    return self.x + s * (self.w / 2. - self.rl + circVal) / r1
                circVal = circ(ht - self.z + self.h / 2 + self.vl - self.rl, self.rl + self.rtl)
                if circVal is None:
                else:
                    return self.x + s * circVal / r1
        # in this range, pass the top arch info
        elif ht >= self.z + self.h / 2 + self.c:
            if self.v > self.w / 2:
                circVal = circ(ht - self.z - self.h / 2, self.r + self.rt)
                if circVal is None:
                else:
                    return self.x + s * (self.w / 2. - self.r + circVal) / r1
                circVal = circ(ht - (self.z + self.h / 2 + self.v - self.r), self.r + self.rt)
                if circVal is None:
                else:
                    return self.x + s * circVal / r1
        # in this range pass the lower corner edge info
        elif ht <= self.z - self.h / 2:
            d = sqrt(self.rtl ** 2 - self.cl ** 2)
            if self.cl > self.rtl / sqrt(2.):
                return self.x + s * (self.w / 2 + (self.z - self.h / 2 - ht) * d / self.cl) / r1
            else:
                return self.x + s * (self.w / 2 + d) / r1
        # in this range pass the upper corner edge info
        elif ht >= self.z + self.h / 2:
            d = sqrt(self.rt ** 2 - self.c ** 2)
            if self.c > self.rt / sqrt(2.):
                return self.x + s * (self.w / 2 + (ht - self.z - self.h / 2) * d / self.c) / r1
            else:
                return self.x + s * (self.w / 2 + d) / r1
        # in this range, pass the middle info (straight sides)
        else:
            return self.x + s * self.w / 2 / r1

    # get the top or bottom of the opening
    # ht is the x position; s is the side: 1 for top, -1 for bottom
    def edgeV(self, ht, s):
        dist = abs(self.x - ht)

        def radialAdjust(dist, sideVal):
            # take the distance and adjust for radial geometry, return dist
                    dist = dist * abs(dims['t'] * sin(sideVal * PI / (dims['t'] * 2)))
        if s > 0:  # and (dist <= self.edgeS(self.z + self.h / 2 + self.c, 1) - self.x):  # check top down
            # hack for radialized masonry, import approx Z instead of self.top()
            dist = radialAdjust(dist, self.top())

            # no arch on top, flat
            if not self.r:
                return self.z + self.h / 2
            # pointed arch on top
            elif self.v > self.w / 2:
                circVal = circ(dist - self.w / 2 + self.r, self.r + self.rt)
                if circVal is None:
                else:
                    return self.z + self.h / 2 + circVal
            # domed arch on top
                circVal = circ(dist, self.r + self.rt)
                if circVal is None:
                else:
                    return self.z + self.h / 2 + self.v - self.r + circVal
        else:  # and (dist <= self.edgeS(self.z - self.h / 2 - self.cl, 1) - self.x):  # check bottom up
            # hack for radialized masonry, import approx Z instead of self.top()
            dist = radialAdjust(dist, self.btm())

            # no arch on bottom
            if not self.rl:
                return self.z - self.h / 2
            # pointed arch on bottom
            elif self.vl > self.w / 2:
                circVal = circ(dist - self.w / 2 + self.rl, self.rl + self.rtl)
                if circVal is None:
                else:
                    return self.z - self.h / 2 - circVal
            # old conditional? if (dist-self.w / 2 + self.rl) <= (self.rl + self.rtl):
            # domed arch on bottom
                circVal = circ(dist, self.rl + self.rtl)   # dist-self.w / 2 + self.rl
                if circVal is None:
                else:
                    return self.z - self.h / 2 - self.vl + self.rl - circVal
        # and this never happens - but, leave it as failsafe :)
        debug_prints(func="opening.EdgeV",
                     text="Got all the way out of the edgeV!  Not good!")
        debug_print_vars("opening x = ", self.x, ", opening z = ", self.z)

        if ht > (self.z + self.h / 2):
            return 0.0
        if ht < (self.z - self.h / 2):
            return 0.0
            if slope:
                r1 = abs(dims['t'] * sin(ht * PI / (dims['t'] * 2)))
            else:
                r1 = abs(ht)
        else:
            r1 = 1
        bevel = self.b / r1
        return bevel

    def __init__(self, xpos, zpos, width, height, archHeight=0, archThk=0,
                 archHeightLower=0, archThkLower=0, bevel=0, edgeThk=0):
        self.x = float(xpos)
        self.z = float(zpos)
        self.w = float(width)
        self.h = float(height)
        self.rt = archThk
        self.rtl = archThkLower
        self.v = archHeight
        self.vl = archHeightLower
        if self.w <= 0:
            self.w = SMALL
        # find the upper arch radius
        if archHeight >= width / 2:
            self.r = (self.v ** 2) / self.w + self.w / 4
        elif archHeight <= 0:
            # No arches
            self.r = 0
            self.v = 0
        else:
            # Two arches
            self.r = (self.w ** 2) / (8 * self.v) + self.v / 2.
            self.c = self.rt * cos(atan(self.w / (2 * (self.r - self.v))))
        # find the lower arch radius
        if archHeightLower >= width / 2:
            self.rl = (self.vl ** 2) / self.w + self.w / 4
        elif archHeightLower <= 0:
            self.rl = 0
            self.vl = 0
        else:
            self.rl = (self.w ** 2) / (8 * self.vl) + self.vl / 2.
            self.cl = self.rtl * cos(atan(self.w / (2 * (self.rl - self.vl))))
        # self.form = something?

# class for the whole wall boundaries; a sub-class of "opening"
class openingInvert(opening):
    # this is supposed to switch the sides of the opening
    # so the wall will properly enclose the whole wall.

    def edgeS(self, ht, s):
        return opening.edgeS(self, ht, -s)

    def edgeV(self, ht, s):
        return opening.edgeV(self, ht, -s)

class rowOb:
    __doc__ = """\
    This is the class for holding the data for individual rows of blocks.
    each row is required to have some edge blocks, and can also have
    intermediate sections of "normal" blocks.
    """
    radius = 1
    EdgeOffset = 0.

    def FillBlocks(self):
        # Set the radius variable, in the case of radial geometry
        if radialized:
            if slope:
                self.radius = dims['t'] * (sin(self.z * PI / (dims['t'] * 2)))
            else:
                self.radius = self.z
        # initialize internal variables from global settings

        SetH = settings['h']
        SetHwt = settings['hwt']
        SetWid = settings['w']
        SetWidMin = settings['wm']
        SetWidVar = settings['wv']
        SetGrt = settings['g']
        SetGrtVar = settings['gv']
        SetRowHeightLink = settings['rwhl']
        SetDepth = settings['d']
        SetDepthVar = settings['dv']

        # height weight, used for making shorter rows have narrower blocks, and vice-versa
        hwt = ((self.h / SetH - 1) * SetHwt + 1)

        # set variables for persistent values: loop optimization, readability, single ref for changes.

        avgDist = hwt * SetWid / self.radius
        minDist = SetWidMin / self.radius
        deviation = hwt * SetWidVar / self.radius
        grtOffset = SetGrt / (2 * self.radius)
        grt = (SetGrt + rndc() * SetGrtVar) / (self.radius)
        ThisBlockHeight = self.h + rndc() * (1 - SetRowHeightLink) * SetGrtVar
        ThisBlockDepth = rndd() * SetDepthVar + SetDepth
            divs = fill(segment[0] + grtOffset, segment[1] - grtOffset, avgDist, minDist, deviation)
            # loop through the divisions, adding blocks for each one
            for i in range(len(divs) - 1):
                ThisBlockx = (divs[i] + divs[i + 1]) / 2
                ThisBlockw = divs[i + 1] - divs[i] - grt

                self.BlocksNorm.append([ThisBlockx, self.z, ThisBlockw, ThisBlockHeight, ThisBlockDepth, None])

                if SetDepthVar:  # vary depth
                    ThisBlockDepth = rndd() * SetDepthVar + SetDepth
                if SetGrtVar:  # vary grout
                    grt = (SetGrt + rndc() * SetGrtVar) / (self.radius)
                    ThisBlockHeight = self.h + rndc() * (1 - SetRowHeightLink) * SetGrtVar
    def __init__(self, centerheight, rowheight, edgeoffset=0.):
        self.z = float(centerheight)
        self.h = float(rowheight)
        self.EdgeOffset = float(edgeoffset)

    # THIS INITIALIZATION IS IMPORTANT!  OTHERWISE ALL OBJECTS WILL HAVE THE SAME LISTS!
        self.BlocksEdge = []
        self.RowSegments = []
        self.BlocksNorm = []


def arch(ra, rt, x, z, archStart, archEnd, bevel, bevAngle, vll):
    __doc__ = """\
    Makes a list of faces and vertexes for arches.
    ra: the radius of the arch, to the center of the bricks
    rt: the thickness of the arch
    x: x center location of the circular arc, as if the arch opening were centered on x = 0
    z: z center location of the arch
    anglebeg: start angle of the arch, in radians, from vertical?
    angleend: end angle of the arch, in radians, from vertical?
    bevel: how much to bevel the inside of the arch.
    vll: how long is the vertex list already?
    """
    avlist = []
    aflist = []

    # initialize internal variables for global settings
    SetGrt = settings['g']
    SetGrtVar = settings['gv']
    SetDepth = settings['d']
    SetDepthVar = settings['dv']

    # Init loop variables

    def bevelEdgeOffset(offsets, bevel, side):
        """
        Take the block offsets and modify it for the correct bevel.

        offsets = the offset list. See MakeABlock
        bevel = how much to offset the edge
        side = -1 for left (right side), 1 for right (left side)
        """
        left = (0, 2, 3)
        right = (4, 6, 7)
        if side == 1:
            pointsToAffect = right
        else:
            pointsToAffect = left
        for num in pointsToAffect:
            offsets[num] = offsets[num][:]
            offsets[num][0] += -bevel * side

    ArchInner = ra - rt / 2
    ArchOuter = ra + rt / 2 - SetGrt + rndc() * SetGrtVar
    DepthBack = - SetDepth / 2 - rndc() * SetDepthVar
    DepthFront = SetDepth / 2 + rndc() * SetDepthVar
    if radialized:
        subdivision = settings['sdv']
    else:
        subdivision = 0.12
    grt = (SetGrt + rndc() * SetGrtVar) / (2 * ra)  # init grout offset for loop
    # set up the offsets, it will be the same for every block
    offsets = ([[0] * 2 + [bevel]] + [[0] * 3] * 3) * 2
    # make the divisions in the "length" of the arch
    divs = fill(archStart, archEnd, settings['w'] / ra, settings['wm'] / ra, settings['wv'] / ra)
    for i in range(len(divs) - 1):
            bevelEdgeOffset(ThisOffset, bevAngle, - 1)
        elif i == len(divs) - 2:
            ThisOffset = offsets[:]
            bevelEdgeOffset(ThisOffset, bevAngle, 1)
        else:
            ThisOffset = offsets

        geom = MakeABlock(
                    [divs[i] + grt, divs[i + 1] - grt, ArchInner, ArchOuter, DepthBack, DepthFront],
                    subdivision, len(avlist) + vll, ThisOffset, [], None, ra
                    )
        if SetDepthVar:  # vary depth
            DepthBack = -SetDepth / 2 - rndc() * SetDepthVar
            DepthFront = SetDepth / 2 + rndc() * SetDepthVar
        if SetGrtVar:  # vary grout
            grt = (settings['g'] + rndc() * SetGrtVar) / (2 * ra)
            ArchOuter = ra + rt / 2 - SetGrt + rndc() * SetGrtVar
    for i, vert in enumerate(avlist):
        v0 = vert[2] * sin(vert[0]) + x
        v2 = vert[2] * cos(vert[0]) + z
        if radialized == 1:
            if slope == 1:
                r1 = dims['t'] * (sin(v2 * PI / (dims['t'] * 2)))
            else:
                r1 = v2
            v0 = v0 / r1
        avlist[i] = [v0, v1, v2]

    return (avlist, aflist)
    The 'sketch' function creates a list of openings from the general specifications passed to it.
    It takes curved and domed walls into account, placing the openings at the appropriate angular locations
    """
    boundlist = []
    for x in openingSpecs:
        if x['rp']:
            if radialized:
                r1 = x['z']
            else:
                r1 = 1
            if x['x'] > (x['w'] + settings['wm']):
                spacing = x['x'] / r1
            else:
                spacing = (x['w'] + settings['wm']) / r1
            minspacing = (x['w'] + settings['wm']) / r1
            divs = fill(dims['s'], dims['e'], spacing, minspacing, center=1)
            for posidx in range(len(divs) - 2):
                boundlist.append(opening(divs[posidx + 1], x['z'], x['w'], x['h'],
                                        x['v'], x['t'], x['vl'], x['tl'], x['b']))
        else:
            boundlist.append(opening(x['x'], x['z'], x['w'], x['h'], x['v'], x['t'], x['vl'], x['tl'], x['b']))
        # check for overlapping edges?

    return boundlist


def wedgeBlocks(row, opening, leftPos, rightPos, edgeBinary, r1):
    __doc__ = """\
    Makes wedge blocks for the left and right sides, depending
    example:
    wedgeBlocks(row, LeftWedgeEdge, LNerEdge, LEB, r1)
    wedgeBlocks(row, RNerEdge, RightWedgeEdge, REB, r1)
    """
    wedgeEdges = fill(leftPos, rightPos, settings['w'] / r1, settings['wm'] / r1,
                      settings['wv'] / r1)
    for i in range(len(wedgeEdges) - 1):
        x = (wedgeEdges[i + 1] + wedgeEdges[i]) / 2
        grt = (settings['g'] + rndd() * settings['gv']) / r1
        w = wedgeEdges[i + 1] - wedgeEdges[i] - grt
        ThisBlockDepth = rndd() * settings['dv'] + settings['d']
        # edgeV may return "None" - causing TypeError for math op.
        # use 0 until wedgeBlocks operation worked out
        edgeVal = opening.edgeV(x - w / 2, edgeBinary)
        if edgeVal is None:
            edgeVal = 0.0
        LeftVertOffset = -(row.z - (row.h / 2) * edgeBinary - edgeVal)
        # edgeV may return "None" - causing TypeError for math op.
        # use 0 until wedgeBlocks operation worked out
        edgeVal = opening.edgeV(x + w / 2, edgeBinary)
        if edgeVal is None:
            edgeVal = 0.0
        RightVertOffset = -(row.z - (row.h / 2) * edgeBinary - edgeVal)
        # Wedges are on top = off,  blank,  off,  blank
        # Wedges are on btm = blank,  off,  blank,  off
        ThisBlockOffsets = [[0, 0, LeftVertOffset]] * 2 + [[0] * 3] * 2 + [[0, 0, RightVertOffset]] * 2
        # Insert or append "blank" for top or bottom wedges.
        if edgeBinary == 1:
            ThisBlockOffsets = ThisBlockOffsets + [[0] * 3] * 2
        else:
            ThisBlockOffsets = [[0] * 3] * 2 + ThisBlockOffsets
        row.BlocksEdge.append([x, row.z, w, row.h, ThisBlockDepth, ThisBlockOffsets])
def bevelBlockOffsets(offsets, bevel, side):
    """
    Take the block offsets and modify it for the correct bevel.

    offsets = the offset list. See MakeABlock
    bevel = how much to offset the edge
    side = -1 for left (right side), 1 for right (left side)
    """
    if side == 1:
        pointsToAffect = (0, 2)  # right
    else:
        pointsToAffect = (4, 6)  # left
    for num in pointsToAffect:
        offsets[num] = offsets[num][:]
        offsets[num][0] += bevel * side

def rowProcessing(row, Thesketch, WallBoundaries):
    __doc__ = """\
    Take row and opening data and process a single row, adding edge and fill blocks to the row data.
    """
    # set end blocks
    # check for openings, record top and bottom of row for right and left of each
    # if both top and bottom intersect create blocks on each edge, appropriate to the size of the overlap
    # if only one side intersects, run fill to get edge positions, but this should never happen

    if radialized:  # this checks for radial stonework, and sets the row radius if required
        if slope:
            r1 = abs(dims['t'] * sin(row.z * PI / (dims['t'] * 2)))
        else:
            r1 = abs(row.z)
    else:
        r1 = 1

    # set the edge grout thickness, especially with radial stonework in mind
    edgrt = settings['ge'] * (settings['g'] / 2 + rndc() * settings['gv']) / (2 * r1)

    # Sets up a list of  intersections of top of row with openings,
    # from left to right [left edge of opening,  right edge of opening,  etc...]
    # initially just the left and right edge of the wall
    edgetop = [[dims['s'] + row.EdgeOffset / r1 + edgrt, WallBoundaries],
               [dims['e'] + row.EdgeOffset / r1 - edgrt, WallBoundaries]]
    # Same as edgetop,  but for the bottms of the rows
    edgebtm = [[dims['s'] + row.EdgeOffset / r1 + edgrt, WallBoundaries],
               [dims['e'] + row.EdgeOffset / r1 - edgrt, WallBoundaries]]

    # set up some useful values for the top and bottom of the rows.
    rowTop = row.z + row.h / 2
    rowBtm = row.z - row.h / 2
        # check the top and bottom of the row, looking at the opening from the right
        e = [hole.edgeS(rowTop, -1), hole.edgeS(rowBtm, -1)]

        # If either one hit the opening, make split points for the left side of the opening.
        if e[0] or e[1]:
            e += [hole.edgeS(rowTop, 1), hole.edgeS(rowBtm, 1)]

            # If one of them missed for some reason, set that value to
            # the middle of the opening.
            for i, pos in enumerate(e):
                if pos is None:
                    e[i] = hole.x

            # add the intersects to the list of edge points
            edgetop.append([e[0], hole])
            edgetop.append([e[2], hole])
            edgebtm.append([e[1], hole])
            edgebtm.append([e[3], hole])

    # We want to make the walls in order, so sort the intersects.
    # This is where you would want to remove edge points that are out of order
    # so that you don't get the "oddity where overlapping openings
    # create blocks inversely" problem

    # Note: sort ended up comparing function pointers
    # if both Openings and Slots were enabled with Repeats in one of them
    try:
        edgetop.sort(key=lambda x: x[0])
        edgebtm.sort(key=lambda x: x[0])
    except Exception as ex:
        debug_prints(func="rowProcessing",
                     text="Sorting has failed", var=ex)
    # these two loops trim the edges to the limits of the wall.
    # This way openings extending outside the wall don't enlarge the wall.
            if ((edgetop[-1][0] > dims['e'] + row.EdgeOffset / r1) or
              (edgebtm[-1][0] > dims['e'] + row.EdgeOffset / r1)):
            else:
                break
        except IndexError:
            break
    # still trimming the edges...
            if ((edgetop[0][0] < dims['s'] + row.EdgeOffset / r1) or
              (edgebtm[0][0] < dims['s'] + row.EdgeOffset / r1)):
            else:
                break
        except IndexError:
            break

    # make those edge blocks and rows!  Wooo!
    # This loop goes through each section, (a pair of points in edgetop)
    # and places the edge blocks and inbetween normal block zones into the row object
    for OpnSplitNo in range(int(len(edgetop) / 2)):
        # left edge is edge<x>[2*OpnSplitNo], right edge edgex[2*OpnSplitNo+1]
        leftEdgeIndex = 2 * OpnSplitNo
        rightEdgeIndex = 2 * OpnSplitNo + 1

        # get the openings, to save time and confusion
        leftOpening = edgetop[leftEdgeIndex][1]
        rightOpening = edgetop[rightEdgeIndex][1]

        # find the difference between the edge top and bottom on both sides
        LTop = edgetop[leftEdgeIndex][0]
        LBtm = edgebtm[leftEdgeIndex][0]
        RTop = edgetop[rightEdgeIndex][0]
        RBtm = edgebtm[rightEdgeIndex][0]
        LDiff = LBtm - LTop
        RDiff = RTop - RBtm
        # which is further out on each side, top or bottom?
            LNerEdge = LBtm  # the nearer edge left
            LEB = 1          # Left Edge Boolean, set to 1 if furthest edge is top, -1 if it is bottom
            RNerEdge = RBtm  # the nearer edge right
            REB = 1  # Right Edge Boolean, set to 1 if furthest edge is top, -1 if it is bottom
            REB = -1  # Right Edge Boolean, set to 1 if furthest edge is top, -1 if it is bottom
        # The space between the closest edges of the openings in this section of the row
        # The mid point between the nearest edges
        InnerMid = (RNerEdge + LNerEdge) / 2
        # maximum distance to span with one block
        MaxWid = (settings['w'] + settings['wv']) / r1
        # check the left and right sides for wedge blocks
        # Check and run the left edge first
        # find the edge of the correct side, offset for minimum block height.  The LEB decides top or bottom
        ZPositionCheck = row.z + (row.h / 2 - settings['hm']) * LEB

        # edgeS may return "None"
        LeftWedgeEdge = leftOpening.edgeS(ZPositionCheck, 1)

        if (abs(LDiff) > AveWid) or (not LeftWedgeEdge):
            # make wedge blocks
            if not LeftWedgeEdge:
                LeftWedgeEdge = leftOpening.x
            wedgeBlocks(row, leftOpening, LeftWedgeEdge, LNerEdge, LEB, r1)
            # set the near and far edge settings to vertical, so the other edge blocks don't interfere
            LTop, LBtm = LNerEdge, LNerEdge
        # Now do the wedge blocks for the right, same drill... repeated code?
        # find the edge of the correct side, offset for minimum block height.  The REB decides top or bottom
        ZPositionCheck = row.z + (row.h / 2 - settings['hm']) * REB

        # edgeS may return "None"
        RightWedgeEdge = rightOpening.edgeS(ZPositionCheck, -1)
        if (abs(RDiff) > AveWid) or (not RightWedgeEdge):
            # make wedge blocks
            if not RightWedgeEdge:
                RightWedgeEdge = rightOpening.x
            wedgeBlocks(row, rightOpening, RNerEdge, RightWedgeEdge, REB, r1)
            # set the near and far edge settings to vertical, so the other edge blocks don't interfere
            RTop, RBtm = RNerEdge, RNerEdge
        # Check to see if the edges are close enough toegther to warrant a single block filling it
            # if this is true, then this row is just one block!
            x = (LNerEdge + RNerEdge) / 2.
            ThisBlockDepth = rndd() * settings['dv'] + settings['d']
            BtmOff = LBtm - LNerEdge
            TopOff = LTop - LNerEdge
            ThisBlockOffsets = [[BtmOff, 0, 0]] * 2 + [[TopOff, 0, 0]] * 2
            BtmOff = RBtm - RNerEdge
            TopOff = RTop - RNerEdge
            ThisBlockOffsets += [[BtmOff, 0, 0]] * 2 + [[TopOff, 0, 0]] * 2
            bevel = leftOpening.edgeBev(rowTop)
            bevelBlockOffsets(ThisBlockOffsets, bevel, 1)
            bevel = rightOpening.edgeBev(rowTop)
            bevelBlockOffsets(ThisBlockOffsets, bevel, -1)
            row.BlocksEdge.append([x, row.z, w, row.h, ThisBlockDepth, ThisBlockOffsets])
            continue

        # it's not one block, must be two or more
        # set up the offsets for the left
        BtmOff = LBtm - LNerEdge
        TopOff = LTop - LNerEdge
        leftOffsets = [[BtmOff, 0, 0]] * 2 + [[TopOff, 0, 0]] * 2 + [[0] * 3] * 4
        bevelL = leftOpening.edgeBev(rowTop)
        bevelBlockOffsets(leftOffsets, bevelL, 1)
        # and now for the right
        BtmOff = RBtm - RNerEdge
        TopOff = RTop - RNerEdge
        rightOffsets = [[0] * 3] * 4 + [[BtmOff, 0, 0]] * 2 + [[TopOff, 0, 0]] * 2
        bevelR = rightOpening.edgeBev(rowTop)
        bevelBlockOffsets(rightOffsets, bevelR, -1)
        # check to see if it is only two blocks
        if (InnerDiff < MaxWid * 2):
            # this row is just two blocks! Left block, then right block
            # div is the x position of the dividing point between the two bricks
            div = InnerMid + (rndd() * settings['wv']) / r1
            # set the grout distance, since we need grout separation between the blocks
            grt = (settings['g'] + rndc() * settings['gv']) / r1
            # set the x position and width for the left block
            x = (div + LNerEdge) / 2 - grt / 4
            w = (div - LNerEdge) - grt / 2
            ThisBlockDepth = rndd() * settings['dv'] + settings['d']
            # For reference: EdgeBlocks = [[x, z, w, h, d, [corner offset matrix]], [etc.]]
            row.BlocksEdge.append([x, row.z, w, row.h, ThisBlockDepth, leftOffsets])
            # Initialize for the block on the right side
            x = (div + RNerEdge) / 2 + grt / 4
            w = (RNerEdge - div) - grt / 2
            ThisBlockDepth = rndd() * settings['dv'] + settings['d']
            row.BlocksEdge.append([x, row.z, w, row.h, ThisBlockDepth, rightOffsets])
        # program should only get here if there are more than two blocks in the row, and no wedge blocks
        # make Left edge block
        # set the grout
        grt = (settings['g'] + rndc() * settings['gv']) / r1
        # set the x position and width for the left block
        widOptions = [settings['w'], bevelL + settings['wm'], leftOpening.ts]
        baseWid = max(widOptions)
        w = (rndd() * settings['wv'] + baseWid + row. EdgeOffset)
        widOptions[0] = settings['wm']
        widOptions[2] = w
        w = max(widOptions) / r1 - grt
        x = w / 2 + LNerEdge + grt / 2
        BlockRowL = x + w / 2
        ThisBlockDepth = rndd() * settings['dv'] + settings['d']
        row.BlocksEdge.append([x, row.z, w, row.h, ThisBlockDepth, leftOffsets])

        # make Right edge block
        # set the grout
        grt = (settings['g'] + rndc() * settings['gv']) / r1
        # set the x position and width for the left block
        widOptions = [settings['w'], bevelR + settings['wm'], rightOpening.ts]
        baseWid = max(widOptions)
        w = (rndd() * settings['wv'] + baseWid + row.EdgeOffset)
        widOptions[0] = settings['wm']
        widOptions[2] = w
        w = max(widOptions) / r1 - grt
        x = RNerEdge - w / 2 - grt / 2
        BlockRowR = x - w / 2
        ThisBlockDepth = rndd() * settings['dv'] + settings['d']
        row.BlocksEdge.append([x, row.z, w, row.h, ThisBlockDepth, rightOffsets])
        row.RowSegments.append([BlockRowL, BlockRowR])
def plan(Thesketch, oldrows=0):
    __doc__ = """\
    The 'plan' function takes the data generated by the sketch function and the global settings
    and creates a list of blocks.
    It passes out a list of row heights, edge positions, edge blocks, and rows of blocks.
    """
    # if we were passed a list of rows already, use those; else make a list.
    if oldrows:
        rows = oldrows
        # rows holds the important information common to all rows
        # rows = [list of row objects]
        # splits are places where we NEED a row division, to accomidate openings
        # add a split for the bottom row
        splits = [dims['b'] + settings['hb']]
        # add a split for each critical point on each opening
        for hole in Thesketch:
            splits += hole.crits()
        # and, a split for the top row
        splits.append(dims['t'] - settings['ht'])
        # divs are the normal old row divisions, add them between the top and bottom split
        divs = fill(splits[0], splits[-1], settings['h'], settings['hm'] + settings['g'], settings['hv'])[1: -1]
        # remove the divisions that are too close to the splits, so we don't get tiny thin rows
        for i in range(len(divs) - 1, -1, -1):
            for j in range(len(splits)):
                diff = abs(divs[i] - splits[j])
                if diff < (settings['h'] - settings['hv'] + settings['g']):
        # now merge the divs and splits lists
        # add bottom and/or top points, if bottom and/or top row heights are more than zero
        if settings['hb'] > 0:
            divs.insert(0, dims['b'])
        if settings['ht'] > 0:
            divs.append(dims['t'])
        # trim the rows to the bottom and top of the wall
        if divs[0] < dims['b']:
            divs[:1] = []
        if divs[-1] > dims['t']:
            divs[-1:] = []
        # now, make the data for each row
        # rows = [[center height,row height,edge offset],[etc.]]
        divCount = len(divs) - 1  # number of divs to check
        divCheck = 0              # current div entry
            RowZ = (divs[divCheck] + divs[divCheck + 1]) / 2
            RowHeight = divs[divCheck + 1] - divs[divCheck] - settings['g'] + rndc() * \
                        settings['rwhl'] * settings['gv']
            EdgeOffset = settings['eoff'] * (fmod(divCheck, 2) - 0.5) + settings['eoffv'] * rndd()

            # if row height is too shallow: delete next div entry, decrement total, and recheck current entry.
            if RowHeight < settings['hm']:
                del(divs[divCheck + 1])
                divCount -= 1  # Adjust count for removed div entry.
                continue

            rows.append(rowOb(RowZ, RowHeight, EdgeOffset))

            divCheck += 1  # on to next div entry
    # set up a special opening object to handle the edges of the wall
    x = (dims['s'] + dims['e']) / 2
    z = (dims['t'] + dims['b']) / 2
    w = (dims['e'] - dims['s'])
    h = (dims['t'] - dims['b'])
    WallBoundaries = openingInvert(x, z, w, h)
    # Go over each row in the list, set up edge blocks and block sections
    for rownum in range(len(rows)):
        rowProcessing(rows[rownum], Thesketch, WallBoundaries)

    # now return the things everyone needs
    # return [rows,edgeBlocks,blockRows,Asketch]
    return [rows, Thesketch]


def archGeneration(hole, vlist, flist, sideSign):
    __doc__ = """\
    Makes arches for the top and bottom, depending on sideSign
    example, Lower arch:
    archGeneration(hole, vlist, flist, -1)
    example, Upper arch:
    archGeneration(hole, vlist, flist, 1)
    hole is the opening object that the arch is for
    add the faces to flist
    sideSign is + or - 1, for the top or bottom arch. Other values may cause errors.
    """

    # working arrays for vectors and faces
    avlist = []
    aflist = []

    # Top (1) or bottom (-1)
    if sideSign == -1:
        r = hole.rl    # radius of the arch
        rt = hole.rtl  # thickness of the arch (stone height)
        v = hole.vl    # height of the arch
        r = hole.r     # radius of the arch
        rt = hole.rt   # thickness of the arch (stone height)
        v = hole.v     # height of the arch
    ra = r + rt / 2    # average radius of the arch
    x = hole.x
    w = hole.w
    h = hole.h
    z = hole.z
    bev = hole.b
    sideSignInv = -sideSign

    if v > w / 2:       # two arcs, to make a pointed arch
        zpos = z + (h / 2) * sideSign
        xoffset = r - w / 2
        # left side top, right side bottom
        # angles reference straight up, and are in radians
        bevHt = sqrt(bevRad ** 2 - (bevRad - (w / 2 + bev)) ** 2)
        midHalfAngle = atan(v / (r - w / 2))
        midHalfAngleBevel = atan(bevHt / (r - w / 2))
        bevelAngle = midHalfAngle - midHalfAngleBevel
        anglebeg = (PI / 2) * (sideSignInv)
        angleend = (PI / 2) * (sideSignInv) + midHalfAngle
        avlist, aflist = arch(ra, rt, (xoffset) * (sideSign), zpos, anglebeg, angleend, bev, bevelAngle, len(vlist))
        for i, vert in enumerate(avlist):
            avlist[i] = [vert[0] + hole.x, vert[1], vert[2]]
        # right side top, left side bottom
        # angles reference straight up, and are in radians
        anglebeg = (PI / 2) * (sideSign) - midHalfAngle
        angleend = (PI / 2) * (sideSign)
        avlist, aflist = arch(ra, rt, (xoffset) * (sideSignInv), zpos, anglebeg, angleend, bev, bevelAngle, len(vlist))
        for i, vert in enumerate(avlist):
            avlist[i] = [vert[0] + hole.x, vert[1], vert[2]]
        # keystone
        Dpth = settings['d'] + rndc() * settings['dv']
        Grout = settings['g'] + rndc() * settings['gv']
        angleBevel = (PI / 2) * (sideSign) - midHalfAngle
        Wdth = (rt - Grout - bev) * 2 * sin(angleBevel) * sideSign  # note, sin may be negative
        MidZ = ((sideSign) * (bevHt + h / 2.0) + z) + (rt - Grout - bev) \
                * cos(angleBevel)  # note, cos may come out negative
        nearCorner = sideSign * (MidZ - z) - v - h / 2

        if sideSign == 1:
            TopHt = hole.top() - MidZ - Grout
            BtmHt = nearCorner
        else:
            BtmHt = - (hole.btm() - MidZ) - Grout
        # set the amount to bevel the keystone
        keystoneBevel = (bevHt - v) * sideSign
            avlist, aflist = MakeAKeystone(x, Wdth, MidZ, TopHt, BtmHt, Dpth, keystoneBevel, len(vlist))
                for i, vert in enumerate(avlist):
                    if slope:
                        r1 = dims['t'] * sin(vert[2] * PI / (dims['t'] * 2))
                    else:
                        r1 = vert[2]
                    avlist[i] = [((vert[0] - hole.x) / r1) + hole.x, vert[1], vert[2]]
        # remove "debug note" once bevel is finalized.
        else:
            debug_prints(func="archGeneration",
                         text="Keystone was too narrow - " + str(Wdth))
    else:  # only one arc - curve not peak.
        # bottom (sideSign -1) arch has poorly sized blocks...
        zpos = z + (sideSign * (h / 2 + v - r))  # single arc positioning
        # angles reference straight up, and are in radians
        if sideSign == -1:
            angleOffset = PI
        else:
            angleOffset = 0.0
        if v < w / 2:
            halfangle = atan(w / (2 * (r - v)))

            anglebeg = angleOffset - halfangle
            angleend = angleOffset + halfangle
        else:
            anglebeg = angleOffset - PI / 2
            angleend = angleOffset + PI / 2
        avlist, aflist = arch(ra, rt, 0, zpos, anglebeg, angleend, bev, 0.0, len(vlist))
        for i, vert in enumerate(avlist):
            avlist[i] = [vert[0] + x, vert[1], vert[2]]
        # Make the Side Stones
        grt = (settings['g'] + rndc() * settings['gv'])
        width = sqrt(rt ** 2 - c ** 2) - grt

        if c > settings['hm'] + grt and c < width + grt:
            if radialized:
                subdivision = settings['sdv'] * (zpos + (h / 2) * sideSign)
            else:
                subdivision = settings['sdv']
            # set the height of the block, it should be as high as the max corner position, minus grout
            height = c - grt * (0.5 + c / (width + grt))
            # the vertical offset for the short side of the block
            voff = sideSign * (settings['hm'] - height)
            xstart = w / 2
            zstart = z + sideSign * (h / 2 + grt / 2)
            woffset = width * (settings['hm'] + grt / 2) / (c - grt / 2)
            depth = rndd() * settings['dv'] + settings['d']
                offsets = [[0] * 3] * 6 + [[0] * 2 + [voff]] * 2
                topSide = zstart + height
                offsets = [[0] * 3] * 4 + [[0] * 2 + [voff]] * 2 + [[0] * 3] * 2
                btmSide = zstart - height
            # Do some stuff to incorporate bev here
            bevelBlockOffsets(offsets, bev, -1)

            avlist, aflist = MakeABlock(
                                    [x - xstart - width, x - xstart - woffset, btmSide, topSide,
                                    -depth / 2, depth / 2], subdivision, len(vlist),
                                    Offsets=offsets, xBevScl=1
                                    )
            # top didn't use radialized in prev version;
            # just noting for clarity - may need to revise for "sideSign == 1"
                for i, vert in enumerate(avlist):
                    avlist[i] = [((vert[0] - x) / vert[2]) + x, vert[1], vert[2]]
            # keep sizing same - neat arches = master masons :)
            #           grt = (settings['g'] + rndc()*settings['gv'])
            #           height = c - grt*(0.5 + c/(width + grt))
            # if grout varies may as well change width too... width = sqrt(rt**2 - c**2) - grt
            #           voff = sideSign * (settings['hm'] - height)
            #           woffset = width*(settings['hm'] + grt/2)/(c - grt/2)
                offsets = [[0] * 3] * 2 + [[0] * 2 + [voff]] * 2 + [[0] * 3] * 4
                topSide = zstart + height
                offsets = [[0] * 2 + [voff]] * 2 + [[0] * 3] * 6
                btmSide = zstart - height
            # Do some stuff to incorporate bev here
            bevelBlockOffsets(offsets, bev, 1)

            avlist, aflist = MakeABlock(
                                    [x + xstart + woffset, x + xstart + width, btmSide, topSide,
                                    -depth / 2, depth / 2], subdivision, len(vlist),
                                    Offsets=offsets, xBevScl=1
                                    )
            # top didn't use radialized in prev version;
            # just noting for clarity - may need to revise for "sideSign == 1"
                for i, vert in enumerate(avlist):
                    avlist[i] = [((vert[0] - x) / vert[2]) + x, vert[1], vert[2]]

            vlist += avlist
            flist += aflist
    return None


def build(Aplan):
    __doc__ = """\
    Build creates the geometry for the wall, based on the
    "Aplan" object from the "plan" function.  If physics is
    enabled, then it make a number of individual blocks with
    physics interaction enabled.  Otherwise it creates
    geometry for the blocks, arches, etc. of the wall.
    """
    vlist = []
    flist = []
    rows = Aplan[0]

    # all the edge blocks, redacted
    # AllBlocks = [[x, z, w, h, d, [corner offset matrix]], [etc.]]
    # loop through each row, adding the normal old blocks
    for rowidx in range(len(rows)):
        rows[rowidx].FillBlocks()

    AllBlocks = []

    #  If the wall is set to merge blocks, check all the blocks to see if you can merge any
    # seems to only merge vertical, should do horizontal too
        for rowidx in range(len(rows) - 1):
                if slope:
                    r1 = dims['t'] * sin(abs(rows[rowidx].z) * PI / (dims['t'] * 2))
                else:
                    r1 = abs(rows[rowidx].z)
            else:
                r1 = 1
            idxThis = len(rows[rowidx].BlocksNorm[:]) - 1
            idxThat = len(rows[rowidx + 1].BlocksNorm[:]) - 1

            while True:
                # end loop when either array idx wraps
                if idxThis < 0 or idxThat < 0:
                    break

                blockThis = rows[rowidx].BlocksNorm[idxThis]
                blockThat = rows[rowidx + 1].BlocksNorm[idxThat]
                # seems to only merge vertical, should do horizontal too...
                cx, cz, cw, ch, cd = blockThis[:5]
                ox, oz, ow, oh, od = blockThat[:5]

                if (abs(cw - ow) < Tolerance) and (abs(cx - ox) < Tolerance):
                    if cw > ow:
                        BlockW = ow
                    else:
                        BlockW = cw
                    AllBlocks.append([(cx + ox) / 2, (cz + oz + (oh - ch) / 2) / 2,
                                     BlockW, abs(cz - oz) + (ch + oh) / 2, (cd + od) / 2, None])
                    rows[rowidx + 1].BlocksNorm.pop(idxThat)
                elif cx > ox:
                    idxThis -= 1
                else:
                    idxThat -= 1

    # Add blocks to create a "shelf/platform".
    # Does not account for openings (crosses gaps - which is a good thing)
    if shelfExt:
        SetGrtOff = settings['g'] / 2  # half grout for block size modifier

        # Use wall block settings for shelf
        SetBW = settings['w']
        SetBWVar = settings['wv']
        SetBWMin = settings['wm']
        SetBH = settings['h']

        # Shelf area settings
        ShelfLft = shelfSpecs['x']
        ShelfBtm = shelfSpecs['z']
        ShelfEnd = ShelfLft + shelfSpecs['w']
        ShelfTop = ShelfBtm + shelfSpecs['h']
        ShelfThk = shelfSpecs['d'] * 2  # use double-depth due to offsets to position at cursor.

        # Use "corners" to adjust position so not centered on depth.
        # Facing shelf, at cursor (middle of wall blocks)
        # - this way no gaps between platform and wall face due to wall block depth.
        wallDepth = settings['d'] / 2  # offset by wall depth so step depth matches UI setting :)
        if shelfBack:  # place blocks on backside of wall
            ShelfOffsets = [
                    [0, ShelfThk / 2, 0], [0, wallDepth, 0],
                    [0, ShelfThk / 2, 0], [0, wallDepth, 0],
                    [0, ShelfThk / 2, 0], [0, wallDepth, 0],
                    [0, ShelfThk / 2, 0], [0, wallDepth, 0]
                    ]
            ShelfOffsets = [
                    [0, -wallDepth, 0], [0, -ShelfThk / 2, 0],
                    [0, -wallDepth, 0], [0, -ShelfThk / 2, 0],
                    [0, -wallDepth, 0], [0, -ShelfThk / 2, 0],
                    [0, -wallDepth, 0], [0, -ShelfThk / 2, 0]
                    ]

    # Add blocks for each "shelf row" in area
        while ShelfBtm < ShelfTop:

            # Make blocks for each row - based on rowOb::fillblocks
            # Does not vary grout.
            divs = fill(ShelfLft, ShelfEnd, SetBW, SetBWMin, SetBWVar)

            # loop through the row divisions, adding blocks for each one
            for i in range(len(divs) - 1):
                ThisBlockx = (divs[i] + divs[i + 1]) / 2
                ThisBlockw = divs[i + 1] - divs[i] - SetGrtOff

                AllBlocks.append([ThisBlockx, ShelfBtm, ThisBlockw, SetBH, ShelfThk, ShelfOffsets])

            ShelfBtm += SetBH + SetGrtOff  # moving up to next row...

    # Add blocks to create "steps".
    # Does not account for openings (crosses gaps - which is a good thing)
    if stepMod:
        SetGrtOff = settings['g'] / 2  # half grout for block size modifier

        # Vary block width by wall block variations.
        SetWidVar = settings['wv']
        SetWidMin = settings['wm']

        StepXMod = stepSpecs['t']  # width of step/tread, also sets basic block size.
        StepZMod = stepSpecs['v']

        StepLft = stepSpecs['x']
        StepRt = stepSpecs['x'] + stepSpecs['w']
        StepBtm = stepSpecs['z'] + StepZMod / 2  # Start offset for centered blocks
        StepWide = stepSpecs['w']
        StepTop = StepBtm + stepSpecs['h']
        StepThk = stepSpecs['d'] * 2  # use double-depth due to offsets to position at cursor.

        # Use "corners" to adjust steps so not centered on depth.
        # Facing steps, at cursor (middle of wall blocks)
        # - this way no gaps between steps and wall face due to wall block depth.
        # Also, will work fine as stand-alone if not used with wall (try block depth 0 and see what happens).
        wallDepth = settings['d'] / 2
        if stepBack:  # place blocks on backside of wall
            StepOffsets = [
                    [0, StepThk / 2, 0], [0, wallDepth, 0],
                    [0, StepThk / 2, 0], [0, wallDepth, 0],
                    [0, StepThk / 2, 0], [0, wallDepth, 0],
                    [0, StepThk / 2, 0], [0, wallDepth, 0]
                    ]
            StepOffsets = [
                    [0, -wallDepth, 0], [0, -StepThk / 2, 0],
                    [0, -wallDepth, 0], [0, -StepThk / 2, 0],
                    [0, -wallDepth, 0], [0, -StepThk / 2, 0],
                    [0, -wallDepth, 0], [0, -StepThk / 2, 0]
                    ]

    # Add steps for each "step row" in area (neg width is interesting but prevented)
        while StepBtm < StepTop and StepWide > 0:

            # Make blocks for each step row - based on rowOb::fillblocks
            # Does not vary grout.

            if stepOnly:  # "cantilevered steps"
                if stepLeft:
                    stepStart = StepRt - StepXMod
                else:
                    stepStart = StepLft

                AllBlocks.append([stepStart, StepBtm, StepXMod, StepZMod, StepThk, StepOffsets])
            else:
                divs = fill(StepLft, StepRt, StepXMod, SetWidMin, SetWidVar)

                # loop through the row divisions, adding blocks for each one
                for i in range(len(divs) - 1):
                    ThisBlockx = (divs[i] + divs[i + 1]) / 2
                    ThisBlockw = divs[i + 1] - divs[i] - SetGrtOff

                    AllBlocks.append([ThisBlockx, StepBtm, ThisBlockw, StepZMod, StepThk, StepOffsets])

            StepBtm += StepZMod + SetGrtOff  # moving up to next row...
            StepWide -= StepXMod             # reduce step width

            # adjust side limit depending on direction of steps
            if stepLeft:
                StepRt -= StepXMod   # move in from right
                StepLft += StepXMod  # move in from left
    # Copy all the blocks out of the rows
    for row in rows:
        AllBlocks += row.BlocksEdge
        AllBlocks += row.BlocksNorm

    # This loop makes individual blocks for each block specified in the plan
        x, z, w, h, d, corners = block
            if slope:
                r1 = dims['t'] * sin(z * PI / (dims['t'] * 2))
            else:
                r1 = z
        else:
            r1 = 1
        geom = MakeABlock([x - w / 2, x + w / 2, z - h / 2, z + h / 2, -d / 2, d / 2],
                          settings['sdv'], len(vlist),
                          corners, None, settings['b'] + rndd() * settings['bv'], r1)
        vlist += geom[0]
        flist += geom[1]

    # This loop makes Arches for every opening specified in the plan.
    for hole in Aplan[1]:
        # lower arch stones
        if hole.vl > 0 and hole.rtl > (settings['g'] + settings['hm']):  # make lower arch blocks
            archGeneration(hole, vlist, flist, -1)

        # top arch stones
        if hole.v > 0 and hole.rt > (settings['g'] + settings['hm']):    # make upper arch blocks
    # Warp all the points for domed stonework
        for i, vert in enumerate(vlist):
            vlist[i] = [vert[0], (dims['t'] + vert[1]) * cos(vert[2] * PI / (2 * dims['t'])),
                        (dims['t'] + vert[1]) * sin(vert[2] * PI / (2 * dims['t']))]
    # Warp all the points for radial stonework
        for i, vert in enumerate(vlist):
            vlist[i] = [vert[2] * cos(vert[0]), vert[2] * sin(vert[0]), vert[1]]
# The main function
def createWall(radial, curve, openings, mergeBlox, shelf, shelfSide,
        steps, stepDir, stepBare, stepSide):
    __doc__ = """\
    Call all the functions you need to make a wall, return the verts and faces.
    """
    global radialized
    global slope
    global openingSpecs
    global bigBlock
    global shelfExt
    global stepMod
    global stepLeft
    global shelfBack
    global stepOnly
    global stepBack

    # set all the working variables from passed parameters

    radialized = radial
    slope = curve
    openingSpecs = openings
    bigBlock = mergeBlox
    shelfExt = shelf
    stepMod = steps
    stepLeft = stepDir
    shelfBack = shelfSide
    stepOnly = stepBare
    stepBack = stepSide

    asketch = sketch()
    aplan = plan(asketch, 0)

    return build(aplan)