Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
bl_addon_info = {
'name': 'Add Mesh: Archimedean Solids',
'author': 'Buerbaum Martin (Pontiac)',
'version': '0.1',
'blender': (2, 5, 3),
'location': 'View3D > Add > Mesh > Archimedean Solids',
'description': 'Adds various archimedean solids to the Add Mesh menu',
'url':
'http://wiki.blender.org/index.php/Extensions:2.5/Py/' \
'Scripts/Add_Mesh/', # @todo Create wiki page and fix this link.
'category': 'Add Mesh'}
import bpy
from math import sqrt
from mathutils import *
from bpy.props import *
# Stores the values of a list of properties and the
# operator id in a property group ('recall_op') inside the object.
# Could (in theory) be used for non-objects.
# Note: Replaces any existing property group with the same name!
# ob ... Object to store the properties in.
# op ... The operator that should be used.
# op_args ... A dictionary with valid Blender
# properties (operator arguments/parameters).
def store_recall_properties(ob, op, op_args):
if ob and op and op_args:
recall_properties = {}
# Add the operator identifier and op parameters to the properties.
recall_properties['op'] = op.bl_idname
recall_properties['args'] = op_args
# Store new recall properties.
ob['recall'] = recall_properties
# Apply view rotation to objects if "Align To" for
# new objects was set to "VIEW" in the User Preference.
def apply_object_align(context, ob):
obj_align = bpy.context.user_preferences.edit.object_align
if (context.space_data.type == 'VIEW_3D'
and obj_align == 'VIEW'):
view3d = context.space_data
region = view3d.region_3d
viewMatrix = region.view_matrix
rot = viewMatrix.rotation_part()
ob.rotation_euler = rot.invert().to_euler()
# Create a new mesh (object) from verts/edges/faces.
# verts/edges/faces ... List of vertices/edges/faces for the
# new mesh (as used in from_pydata).
# name ... Name of the new mesh (& object).
# edit ... Replace existing mesh data.
# Note: Using "edit" will destroy/delete existing mesh data.
def create_mesh_object(context, verts, edges, faces, name, edit):
scene = context.scene
obj_act = scene.objects.active
# Can't edit anything, unless we have an active obj.
if edit and not obj_act:
return None
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Make a mesh from a list of verts/edges/faces.
mesh.from_pydata(verts, edges, faces)
# Update mesh geometry after adding stuff.
mesh.update()
# Deselect all objects.
bpy.ops.object.select_all(action='DESELECT')
if edit:
# Replace geometry of existing object
# Use the active obj and select it.
ob_new = obj_act
ob_new.selected = True
if obj_act.mode == 'OBJECT':
# Get existing mesh datablock.
old_mesh = ob_new.data
# Set object data to nothing
ob_new.data = None
# Clear users of existing mesh datablock.
old_mesh.user_clear()
# Remove old mesh datablock if no users are left.
if (old_mesh.users == 0):
bpy.data.meshes.remove(old_mesh)
# Assign new mesh datablock.
ob_new.data = mesh
else:
# Create new object
ob_new = bpy.data.objects.new(name, mesh)
# Link new object to the given scene and select it.
scene.objects.link(ob_new)
ob_new.selected = True
# Place the object at the 3D cursor location.
ob_new.location = scene.cursor_location
apply_object_align(context, ob_new)
if obj_act and obj_act.mode == 'EDIT':
if not edit:
# We are in EditMode, switch to ObjectMode.
bpy.ops.object.mode_set(mode='OBJECT')
# Select the active object as well.
obj_act.selected = True
# Apply location of new object.
scene.update()
# Join new object into the active.
bpy.ops.object.join()
# Switching back to EditMode.
bpy.ops.object.mode_set(mode='EDIT')
ob_new = obj_act
else:
# We are in ObjectMode.
# Make the new object the active one.
scene.objects.active = ob_new
return ob_new
# A very simple "bridge" tool.
# Connects two equally long vertex rows with faces.
# Returns a list of the new faces (list of lists)
#
# vertIdx1 ... First vertex list (list of vertex indices).
# vertIdx2 ... Second vertex list (list of vertex indices).
# closed ... Creates a loop (first & last are closed).
# flipped ... Invert the normal of the face(s).
#
# Note: You can set vertIdx1 to a single vertex index to create
# a fan/star of faces.
# Note: If both vertex idx list are the same length they have
# to have at least 2 vertices.
def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
faces = []
if not vertIdx1 or not vertIdx2:
return None
if len(vertIdx1) < 2 and len(vertIdx2) < 2:
return None
fan = False
if (len(vertIdx1) != len(vertIdx2)):
if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
fan = True
else:
return None
total = len(vertIdx2)
if closed:
# Bridge the start with the end.
if flipped:
face = [
vertIdx1[0],
vertIdx2[0],
vertIdx2[total - 1]]
if not fan:
face.append(vertIdx1[total - 1])
faces.append(face)
else:
face = [vertIdx2[0], vertIdx1[0]]
if not fan:
face.append(vertIdx1[total - 1])
face.append(vertIdx2[total - 1])
faces.append(face)
# Bridge the rest of the faces.
for num in range(total - 1):
if flipped:
if fan:
face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
else:
face = [vertIdx2[num], vertIdx1[num],
vertIdx1[num + 1], vertIdx2[num + 1]]
faces.append(face)
else:
if fan:
face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
else:
face = [vertIdx1[num], vertIdx2[num],
vertIdx2[num + 1], vertIdx1[num + 1]]
faces.append(face)
return faces
def add_rhombicuboctahedron(quad_size=sqrt(2.0) / (1.0 + sqrt(2) / 2.0)):
faces = []
verts = []
size = 2.0
# Top & bottom faces (quads)
face_top = []
face_bot = []
for z, up in [(size / 2.0, True), (-size / 2.0, False)]:
face = []
face.append(len(verts))
verts.append(Vector((quad_size / 2.0, quad_size / 2.0, z)))
face.append(len(verts))
verts.append(Vector((quad_size / 2.0, -quad_size / 2.0, z)))
face.append(len(verts))
verts.append(Vector((-quad_size / 2.0, -quad_size / 2.0, z)))
face.append(len(verts))
verts.append(Vector((-quad_size / 2.0, quad_size / 2.0, z)))
if up:
# Top face (quad)
face_top = face
else:
# Bottom face (quad)
face_bot = face
edgeloop_up = []
edgeloop_low = []
for z, up in [(quad_size / 2.0, True), (-quad_size / 2.0, False)]:
edgeloop = []
edgeloop.append(len(verts))
verts.append(Vector((size / 2.0, quad_size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((size / 2.0, -quad_size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((quad_size / 2.0, -size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((-quad_size / 2.0, -size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((-size / 2.0, -quad_size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((-size / 2.0, quad_size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((-quad_size / 2.0, size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((quad_size / 2.0, size / 2.0, z)))
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
if up:
# Upper 8-sider
edgeloop_up = edgeloop
else:
# Lower 8-sider
edgeloop_low = edgeloop
face_top_idx = len(faces)
faces.append(face_top)
faces.append(face_bot)
faces_middle = createFaces(edgeloop_low, edgeloop_up, closed=True)
faces.extend(faces_middle)
# Upper Quads
faces.append([edgeloop_up[0], face_top[0], face_top[1], edgeloop_up[1]])
faces.append([edgeloop_up[2], face_top[1], face_top[2], edgeloop_up[3]])
faces.append([edgeloop_up[4], face_top[2], face_top[3], edgeloop_up[5]])
faces.append([edgeloop_up[6], face_top[3], face_top[0], edgeloop_up[7]])
# Upper Tris
faces.append([face_top[0], edgeloop_up[0], edgeloop_up[7]])
faces.append([face_top[1], edgeloop_up[2], edgeloop_up[1]])
faces.append([face_top[2], edgeloop_up[4], edgeloop_up[3]])
faces.append([face_top[3], edgeloop_up[6], edgeloop_up[5]])
# Lower Quads
faces.append([edgeloop_low[0], edgeloop_low[1], face_bot[1], face_bot[0]])
faces.append([edgeloop_low[2], edgeloop_low[3], face_bot[2], face_bot[1]])
faces.append([edgeloop_low[4], edgeloop_low[5], face_bot[3], face_bot[2]])
faces.append([edgeloop_low[6], edgeloop_low[7], face_bot[0], face_bot[3]])
# Lower Tris
faces.append([face_bot[0], edgeloop_low[7], edgeloop_low[0]])
faces.append([face_bot[1], edgeloop_low[1], edgeloop_low[2]])
faces.append([face_bot[2], edgeloop_low[3], edgeloop_low[4]])
faces.append([face_bot[3], edgeloop_low[5], edgeloop_low[6]])
# Invert face normal
f = faces[face_top_idx]
faces[face_top_idx] = [f[0]] + list(reversed(f[1:]))
return verts, faces
# Returns the middle location of a _regular_ polygon.
def get_polygon_center(verts, ngons):
faces = []
for f in ngons:
loc = Vector((0.0, 0.0, 0.0))
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
for vert_idx in f:
loc = loc + Vector(verts[vert_idx])
loc = loc / len(f)
vert_idx_new = len(verts)
verts.append(loc)
face_star = createFaces([vert_idx_new], f, closed=True)
faces.extend(face_star)
return verts, faces
def subdivide_edge_2_cuts(v1, v2, edgelength_middle):
v1 = Vector(v1)
v2 = Vector(v2)
length = (v2 - v1).length
vn = (v2 - v1).normalize()
edgelength_1a_b2 = (length - edgelength_middle) / 2.0
va = v1 + vn * edgelength_1a_b2
vb = v1 + vn * (edgelength_1a_b2 + edgelength_middle)
return (va, vb)
def add_truncated_tetrahedron(hexagon_side=2.0 * sqrt(2.0) / 3.0,
star_ngons=False):
verts = []
faces = []
# Vertices of a simple Tetrahedron
verts_tet = [
(1.0, 1.0, -1.0), # tip 0
(-1.0, 1.0, 1.0), # tip 1
(1.0, -1.0, 1.0), # tip 2
(-1.0, -1.0, -1.0)] # tip 3
# Calculate truncated vertices
tri0 = []
tri1 = []
tri2 = []
tri3 = []
va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[1], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri0.append(va_idx)
tri1.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[2], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri0.append(va_idx)
tri2.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[3], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri0.append(va_idx)
tri3.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_tet[1], verts_tet[2], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri1.append(va_idx)
tri2.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_tet[1], verts_tet[3], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri1.append(va_idx)
tri3.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_tet[2], verts_tet[3], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri2.append(va_idx)
tri3.append(vb_idx)
# Hexagon polygons (n-gons)
ngon012 = [tri0[1], tri0[0], tri1[0], tri1[1], tri2[1], tri2[0]]
ngon031 = [tri0[0], tri0[2], tri3[0], tri3[1], tri1[2], tri1[0]]
ngon023 = [tri0[2], tri0[1], tri2[0], tri2[2], tri3[2], tri3[0]]
ngon132 = [tri1[1], tri1[2], tri3[1], tri3[2], tri2[2], tri2[1]]
if star_ngons:
# Create stars from hexagons
verts, faces_star = get_polygon_center(verts,
[ngon012, ngon031, ngon023, ngon132])
faces.extend(faces_star)
else:
# Create quads from hexagons
(quad1, quad2) = (
[ngon012[0], ngon012[1], ngon012[2], ngon012[3]],
[ngon012[0], ngon012[3], ngon012[4], ngon012[5]])
faces.extend([quad1, quad2])
(quad1, quad2) = (
[ngon031[0], ngon031[1], ngon031[2], ngon031[3]],
[ngon031[0], ngon031[3], ngon031[4], ngon031[5]])
faces.extend([quad1, quad2])
(quad1, quad2) = (
[ngon023[0], ngon023[1], ngon023[2], ngon023[3]],
[ngon023[0], ngon023[3], ngon023[4], ngon023[5]])
faces.extend([quad1, quad2])
(quad1, quad2) = (
[ngon132[0], ngon132[1], ngon132[2], ngon132[3]],
[ngon132[0], ngon132[3], ngon132[4], ngon132[5]])
faces.extend([quad1, quad2])
# Invert face normals
tri1 = [tri1[0]] + list(reversed(tri1[1:]))
tri3 = [tri3[0]] + list(reversed(tri3[1:]))
# Tri faces
faces.extend([tri0, tri1, tri2, tri3])
return verts, faces
class AddRhombicuboctahedron(bpy.types.Operator):
'''Add a mesh for a thombicuboctahedron.'''
bl_idname = 'mesh.primitive_thombicuboctahedron_add'
bl_label = 'Add Rhombicuboctahedron'
bl_description = 'Create a mesh for a thombicuboctahedron.'
bl_options = {'REGISTER', 'UNDO'}
# edit - Whether to add or update.
edit = BoolProperty(name='',
description='',
default=False,
options={'HIDDEN'})
quad_size = FloatProperty(name="Quad Size",
description="Size of the orthogonal quad faces.",
min=0.01,
max=1.99,
default=sqrt(2.0) / (1.0 + sqrt(2) / 2.0))
def execute(self, context):
props = self.properties
verts, faces = add_rhombicuboctahedron(props.quad_size)
obj = create_mesh_object(context, verts, [], faces,
'Rhombicuboctahedron', props.edit)
# Store 'recall' properties in the object.
recall_args_list = {
'edit': True,
'quad_size': props.quad_size}
store_recall_properties(obj, self, recall_args_list)
return {'FINISHED'}
class AddTruncatedTetrahedron(bpy.types.Operator):
'''Add a mesh for a truncated tetrahedron.'''
bl_idname = 'mesh.primitive_truncated_tetrahedron_add'
bl_label = 'Add Truncated Tetrahedron'
bl_description = 'Create a mesh for a truncated tetrahedron.'
bl_options = {'REGISTER', 'UNDO'}
# edit - Whether to add or update.
edit = BoolProperty(name='',
description='',
default=False,
options={'HIDDEN'})
hexagon_side = FloatProperty(name='Hexagon Side',
description='One length of the hexagon side' \
' (on the original tetrahedron edge).',
min=0.01,
max=2.0 * sqrt(2.0) - 0.01,
default=2.0 * sqrt(2.0) / 3.0)
star_ngons = BoolProperty(name='Star N-Gon',
description='Create star-shaped hexagons.',
default=False)
def execute(self, context):
props = self.properties
verts, faces = add_truncated_tetrahedron(
props.hexagon_side,
props.star_ngons)
obj = create_mesh_object(context, verts, [], faces,
'TrTetrahedron', props.edit)
# Store 'recall' properties in the object.
recall_args_list = {
'edit': True,
'hexagon_side': props.hexagon_side,
'star_ngons': props.star_ngons}
store_recall_properties(obj, self, recall_args_list)
return {'FINISHED'}
class INFO_MT_mesh_archimedean_solids_add(bpy.types.Menu):
# Define the "Archimedean Solids" menu
bl_idname = "INFO_MT_mesh_archimedean_solids_add"
bl_label = "Archimedean Solids"
def draw(self, context):
layout = self.layout
layout.operator_context = 'INVOKE_REGION_WIN'
layout.operator("mesh.primitive_truncated_tetrahedron_add",
text="Truncated Tetrahedron")
layout.operator("mesh.primitive_thombicuboctahedron_add",
text="Rhombicuboctahedron")
import space_info
# Define "Archimedean Solids" menu
menu_func = (lambda self, context: self.layout.menu(
"INFO_MT_mesh_archimedean_solids_add", icon="PLUGIN"))
def register():
# Register the operators/menus.
bpy.types.register(AddRhombicuboctahedron)
bpy.types.register(AddTruncatedTetrahedron)
bpy.types.register(INFO_MT_mesh_archimedean_solids_add)
# Add "Archimedean Solids" menu to the "Add Mesh" menu
space_info.INFO_MT_mesh_add.append(menu_func)
def unregister():
# Unregister the operators/menus.
bpy.types.unregister(AddRhombicuboctahedron)
bpy.types.unregister(AddTruncatedTetrahedron)
bpy.types.unregister(INFO_MT_mesh_archimedean_solids_add)
# Remove "Archimedean Solids" menu from the "Add Mesh" menu.
space_info.INFO_MT_mesh_add.remove(menu_func)
if __name__ == "__main__":
register()