Skip to content
Snippets Groups Projects
render.py 27.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • Luca Bonavita's avatar
    Luca Bonavita committed
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    import bpy
    
    import subprocess
    import os
    import sys
    import time
    import math
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    import platform as pltfrm
    if pltfrm.architecture()[0] == '64bit':
        bitness = 64
    else:
        bitness = 32
    
    
    def write_pov(filename, scene=None, info_callback=None):
        file = open(filename, 'w')
    
        # Only for testing
        if not scene:
            scene = bpy.data.scenes[0]
    
        render = scene.render
        world = scene.world
    
        def uniqueName(name, nameSeq):
    
            if name not in nameSeq:
                return name
    
            name_orig = name
            i = 1
            while name in nameSeq:
                name = '%s_%.3d' % (name_orig, i)
                i += 1
    
            return name
    
        def writeMatrix(matrix):
            file.write('\tmatrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n' %\
            (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]))
    
        def writeObjectMaterial(material):
            if material and material.transparency_method == 'RAYTRACE':
                file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)
    
                # Other interior args
                # fade_distance 2
                # fade_power [Value]
                # fade_color
    
                # dispersion
                # dispersion_samples
    
        materialNames = {}
        DEF_MAT_NAME = 'Default'
    
        def writeMaterial(material):
            # Assumes only called once on each material
    
            if material:
                name_orig = material.name
            else:
                name_orig = DEF_MAT_NAME
    
    
            name = materialNames[name_orig] = uniqueName(bpy.path.clean_name(name_orig), materialNames)
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
            file.write('#declare %s = finish {\n' % name)
    
            if material:
                file.write('\tdiffuse %.3g\n' % material.diffuse_intensity)
                file.write('\tspecular %.3g\n' % material.specular_intensity)
    
                file.write('\tambient %.3g\n' % material.ambient)
                #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value
    
                # map hardness between 0.0 and 1.0
                roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0)))
                # scale from 0.0 to 0.1
                roughness *= 0.1
                # add a small value because 0.0 is invalid
                roughness += (1 / 511.0)
    
                file.write('\troughness %.3g\n' % roughness)
    
                # 'phong 70.0 '
    
                if material.raytrace_mirror.enabled:
                    raytrace_mirror = material.raytrace_mirror
                    if raytrace_mirror.reflect_factor:
                        file.write('\treflection {\n')
                        file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
                        file.write('\t\tfresnel 1 falloff %.3g exponent %.3g metallic %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor, raytrace_mirror.reflect_factor))
    
            else:
                file.write('\tdiffuse 0.8\n')
                file.write('\tspecular 0.2\n')
    
    
            # This is written into the object
            '''
            if material and material.transparency_method=='RAYTRACE':
                'interior { ior %.3g} ' % material.raytrace_transparency.ior
            '''
    
            #file.write('\t\t\tcrand 1.0\n') # Sand granyness
            #file.write('\t\t\tmetallic %.6f\n' % material.spec)
            #file.write('\t\t\tphong %.6f\n' % material.spec)
            #file.write('\t\t\tphong_size %.6f\n' % material.spec)
            #file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness
    
            file.write('}\n')
    
        def exportCamera():
            camera = scene.camera
            matrix = camera.matrix_world
    
            # compute resolution
            Qsize = float(render.resolution_x) / float(render.resolution_y)
    
            file.write('camera {\n')
            file.write('\tlocation  <0, 0, 0>\n')
            file.write('\tlook_at  <0, 0, -1>\n')
            file.write('\tright <%s, 0, 0>\n' % - Qsize)
            file.write('\tup <0, 1, 0>\n')
    
            file.write('\tangle  %f \n' % (360.0 * math.atan(16.0 / camera.data.lens) / math.pi))
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    
    
            file.write('\trotate  <%.6f, %.6f, %.6f>\n' % tuple([math.degrees(e) for e in matrix.rotation_part().to_euler()]))
    
    Luca Bonavita's avatar
    Luca Bonavita committed
            file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
            file.write('}\n')
    
        def exportLamps(lamps):
            # Get all lamps
            for ob in lamps:
                lamp = ob.data
    
                matrix = ob.matrix_world
    
                color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy
    
                file.write('light_source {\n')
                file.write('\t< 0,0,0 >\n')
                file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color)
    
                if lamp.type == 'POINT': # Point Lamp
                    pass
                elif lamp.type == 'SPOT': # Spot
                    file.write('\tspotlight\n')
    
                    # Falloff is the main radius from the centre line
                    file.write('\tfalloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH
                    file.write('\tradius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))
    
                    # Blender does not have a tightness equivilent, 0 is most like blender default.
                    file.write('\ttightness 0\n') # 0:10f
    
                    file.write('\tpoint_at  <0, 0, -1>\n')
                elif lamp.type == 'SUN':
                    file.write('\tparallel\n')
                    file.write('\tpoint_at  <0, 0, -1>\n') # *must* be after 'parallel'
    
                elif lamp.type == 'AREA':
    
                    size_x = lamp.size
                    samples_x = lamp.shadow_ray_samples_x
                    if lamp.shape == 'SQUARE':
                        size_y = size_x
                        samples_y = samples_x
                    else:
                        size_y = lamp.size_y
                        samples_y = lamp.shadow_ray_samples_y
    
                    file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
                    if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED':
                        if lamp.jitter:
                            file.write('\tjitter\n')
                    else:
                        file.write('\tadaptive 1\n')
                        file.write('\tjitter\n')
    
                if lamp.shadow_method == 'NOSHADOW':
                    file.write('\tshadowless\n')
    
                file.write('\tfade_distance %.6f\n' % lamp.distance)
                file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
                writeMatrix(matrix)
    
                file.write('}\n')
    
        def exportMeta(metas):
    
            # TODO - blenders 'motherball' naming is not supported.
    
            for ob in metas:
                meta = ob.data
    
                file.write('blob {\n')
                file.write('\t\tthreshold %.4g\n' % meta.threshold)
    
                try:
                    material = meta.materials[0] # lame! - blender cant do enything else.
                except:
                    material = None
    
                for elem in meta.elements:
    
                    if elem.type not in ('BALL', 'ELLIPSOID'):
                        continue # Not supported
    
                    loc = elem.location
    
                    stiffness = elem.stiffness
                    if elem.negative:
                        stiffness = - stiffness
    
                    if elem.type == 'BALL':
    
                        file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))
    
                        # After this wecould do something simple like...
                        # 	"pigment {Blue} }"
                        # except we'll write the color
    
                    elif elem.type == 'ELLIPSOID':
                        # location is modified by scale
                        file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness))
                        file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))
    
                    if material:
                        diffuse_color = material.diffuse_color
    
                        if material.transparency and material.transparency_method == 'RAYTRACE':
                            trans = 1.0 - material.raytrace_transparency.filter
                        else:
                            trans = 0.0
    
                        file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
                            (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name]))
    
                    else:
                        file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME)		# Write the finish last.
    
                writeObjectMaterial(material)
    
                writeMatrix(ob.matrix_world)
    
                file.write('}\n')
    
        def exportMeshs(scene, sel):
    
            ob_num = 0
    
            for ob in sel:
                ob_num += 1
    
    
                if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE', 'LATTICE'):
    
    Luca Bonavita's avatar
    Luca Bonavita committed
    274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
                    continue
    
                me = ob.data
                me_materials = me.materials
    
                me = ob.create_mesh(scene, True, 'RENDER')
    
                if not me:
                    continue
    
                if info_callback:
                    info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))
    
                #if ob.type!='MESH':
                #	continue
                # me = ob.data
    
                matrix = ob.matrix_world
                try:
                    uv_layer = me.active_uv_texture.data
                except:
                    uv_layer = None
    
                try:
                    vcol_layer = me.active_vertex_color.data
                except:
                    vcol_layer = None
    
                faces_verts = [f.verts for f in me.faces]
                faces_normals = [tuple(f.normal) for f in me.faces]
                verts_normals = [tuple(v.normal) for v in me.verts]
    
                # quads incur an extra face
                quadCount = len([f for f in faces_verts if len(f) == 4])
    
                file.write('mesh2 {\n')
                file.write('\tvertex_vectors {\n')
                file.write('\t\t%s' % (len(me.verts))) # vert count
                for v in me.verts:
                    file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
                file.write('\n  }\n')
    
    
                # Build unique Normal list
                uniqueNormals = {}
                for fi, f in enumerate(me.faces):
                    fv = faces_verts[fi]
                    # [-1] is a dummy index, use a list so we can modify in place
                    if f.smooth: # Use vertex normals
                        for v in fv:
                            key = verts_normals[v]
                            uniqueNormals[key] = [-1]
                    else: # Use face normal
                        key = faces_normals[fi]
                        uniqueNormals[key] = [-1]
    
                file.write('\tnormal_vectors {\n')
                file.write('\t\t%d' % len(uniqueNormals)) # vert count
                idx = 0
                for no, index in uniqueNormals.items():
                    file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
                    index[0] = idx
                    idx += 1
                file.write('\n  }\n')
    
    
                # Vertex colours
                vertCols = {} # Use for material colours also.
    
                if uv_layer:
                    # Generate unique UV's
                    uniqueUVs = {}
    
                    for fi, uv in enumerate(uv_layer):
    
                        if len(faces_verts[fi]) == 4:
                            uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
                        else:
                            uvs = uv.uv1, uv.uv2, uv.uv3
    
                        for uv in uvs:
                            uniqueUVs[tuple(uv)] = [-1]
    
                    file.write('\tuv_vectors {\n')
                    #print unique_uvs
                    file.write('\t\t%s' % (len(uniqueUVs))) # vert count
                    idx = 0
                    for uv, index in uniqueUVs.items():
                        file.write(',\n\t\t<%.6f, %.6f>' % uv)
                        index[0] = idx
                        idx += 1
                    '''
                    else:
                        # Just add 1 dummy vector, no real UV's
                        file.write('\t\t1') # vert count
                        file.write(',\n\t\t<0.0, 0.0>')
                    '''
                    file.write('\n  }\n')
    
    
                if me.vertex_colors:
    
                    for fi, f in enumerate(me.faces):
                        material_index = f.material_index
                        material = me_materials[material_index]
    
                        if material and material.vertex_color_paint:
    
                            col = vcol_layer[fi]
    
                            if len(faces_verts[fi]) == 4:
                                cols = col.color1, col.color2, col.color3, col.color4
                            else:
                                cols = col.color1, col.color2, col.color3
    
                            for col in cols:
                                key = col[0], col[1], col[2], material_index # Material index!
                                vertCols[key] = [-1]
    
                        else:
                            if material:
                                diffuse_color = tuple(material.diffuse_color)
                                key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
                                vertCols[key] = [-1]
    
    
                else:
                    # No vertex colours, so write material colours as vertex colours
                    for i, material in enumerate(me_materials):
    
                        if material:
                            diffuse_color = tuple(material.diffuse_color)
                            key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
                            vertCols[key] = [-1]
    
    
                # Vert Colours
                file.write('\ttexture_list {\n')
                file.write('\t\t%s' % (len(vertCols))) # vert count
                idx = 0
                for col, index in vertCols.items():
    
                    if me_materials:
                        material = me_materials[col[3]]
                        material_finish = materialNames[material.name]
    
                        if material.transparency and material.transparency_method == 'RAYTRACE':
                            trans = 1.0 - material.raytrace_transparency.filter
                        else:
                            trans = 0.0
    
                    else:
                        material_finish = DEF_MAT_NAME # not working properly,
                        trans = 0.0
    
                    #print material.apl
                    file.write(',\n\t\ttexture { pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s}}' %
                                (col[0], col[1], col[2], 1.0 - material.alpha, trans, material_finish))
    
                    index[0] = idx
                    idx += 1
    
                file.write('\n  }\n')
    
                # Face indicies
                file.write('\tface_indices {\n')
                file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
                for fi, f in enumerate(me.faces):
                    fv = faces_verts[fi]
                    material_index = f.material_index
                    if len(fv) == 4:
                        indicies = (0, 1, 2), (0, 2, 3)
                    else:
                        indicies = ((0, 1, 2),)
    
                    if vcol_layer:
                        col = vcol_layer[fi]
    
                        if len(fv) == 4:
                            cols = col.color1, col.color2, col.color3, col.color4
                        else:
                            cols = col.color1, col.color2, col.color3
    
    
                    if not me_materials or me_materials[material_index] == None: # No materials
                        for i1, i2, i3 in indicies:
                            file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
                    else:
                        material = me_materials[material_index]
                        for i1, i2, i3 in indicies:
                            if me.vertex_colors and material.vertex_color_paint:
                                # Colour per vertex - vertex colour
    
                                col1 = cols[i1]
                                col2 = cols[i2]
                                col3 = cols[i3]
    
                                ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
                                ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
                                ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
                            else:
                                # Colour per material - flat material colour
                                diffuse_color = material.diffuse_color
                                ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]
    
                            file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
    
    
                file.write('\n  }\n')
    
                # normal_indices indicies
                file.write('\tnormal_indices {\n')
                file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
                for fi, fv in enumerate(faces_verts):
    
                    if len(fv) == 4:
                        indicies = (0, 1, 2), (0, 2, 3)
                    else:
                        indicies = ((0, 1, 2),)
    
                    for i1, i2, i3 in indicies:
                        if f.smooth:
                            file.write(',\n\t\t<%d,%d,%d>' %\
                            (uniqueNormals[verts_normals[fv[i1]]][0],\
                             uniqueNormals[verts_normals[fv[i2]]][0],\
                             uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
                        else:
                            idx = uniqueNormals[faces_normals[fi]][0]
                            file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count
    
                file.write('\n  }\n')
    
                if uv_layer:
                    file.write('\tuv_indices {\n')
                    file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
                    for fi, fv in enumerate(faces_verts):
    
                        if len(fv) == 4:
                            indicies = (0, 1, 2), (0, 2, 3)
                        else:
                            indicies = ((0, 1, 2),)
    
                        uv = uv_layer[fi]
                        if len(faces_verts[fi]) == 4:
                            uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
                        else:
                            uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)
    
                        for i1, i2, i3 in indicies:
                            file.write(',\n\t\t<%d,%d,%d>' %\
                            (uniqueUVs[uvs[i1]][0],\
                             uniqueUVs[uvs[i2]][0],\
                             uniqueUVs[uvs[i2]][0])) # vert count
                    file.write('\n  }\n')
    
                if me.materials:
                    material = me.materials[0] # dodgy
                    writeObjectMaterial(material)
    
                writeMatrix(matrix)
                file.write('}\n')
    
                bpy.data.meshes.remove(me)
    
        def exportWorld(world):
            if not world:
                return
    
            mist = world.mist
    
            if mist.use_mist:
                file.write('fog {\n')
                file.write('\tdistance %.6f\n' % mist.depth)
                file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,)))
                #file.write('\tfog_offset %.6f\n' % mist.start)
                #file.write('\tfog_alt 5\n')
                #file.write('\tturbulence 0.2\n')
                #file.write('\tturb_depth 0.3\n')
                file.write('\tfog_type 1\n')
                file.write('}\n')
    
        def exportGlobalSettings(scene):
    
            file.write('global_settings {\n')
    
            if scene.pov_radio_enable:
                file.write('\tradiosity {\n')
                file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout)
                file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample)
                file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness)
                file.write("\t\tcount %d\n" % scene.pov_radio_count)
                file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound)
                file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold)
                file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor)
                file.write("\t\tmedia %d\n" % scene.pov_radio_media)
                file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse)
                file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count)
                file.write("\t\tnormal %d\n" % scene.pov_radio_normal)
                file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit)
                file.write('\t}\n')
    
            if world:
                file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color))
    
            file.write('}\n')
    
    
        # Convert all materials to strings we can access directly per vertex.
        writeMaterial(None) # default material
    
        for material in bpy.data.materials:
            writeMaterial(material)
    
        exportCamera()
        #exportMaterials()
        sel = scene.objects
        exportLamps([l for l in sel if l.type == 'LAMP'])
        exportMeta([l for l in sel if l.type == 'META'])
        exportMeshs(scene, sel)
        exportWorld(scene.world)
        exportGlobalSettings(scene)
    
        file.close()
        
    
    
    def write_pov_ini(filename_ini, filename_pov, filename_image):
        scene = bpy.data.scenes[0]
        render = scene.render
    
        x = int(render.resolution_x * render.resolution_percentage * 0.01)
        y = int(render.resolution_y * render.resolution_percentage * 0.01)
    
        file = open(filename_ini, 'w')
    
        file.write('Input_File_Name="%s"\n' % filename_pov)
        file.write('Output_File_Name="%s"\n' % filename_image)
    
        file.write('Width=%d\n' % x)
        file.write('Height=%d\n' % y)
    
        # Needed for border render.
        '''
        file.write('Start_Column=%d\n' % part.x)
        file.write('End_Column=%d\n' % (part.x+part.w))
    
        file.write('Start_Row=%d\n' % (part.y))
        file.write('End_Row=%d\n' % (part.y+part.h))
        '''
    
        file.write('Display=0\n')
        file.write('Pause_When_Done=0\n')
        file.write('Output_File_Type=T\n') # TGA, best progressive loading
        file.write('Output_Alpha=1\n')
    
        if render.render_antialiasing:
            aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 1 assumed
            file.write('Antialias=1\n')
            file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
        else:
            file.write('Antialias=0\n')
    
        file.close()
    
    
    class PovrayRender(bpy.types.RenderEngine):
        bl_idname = 'POVRAY_RENDER'
        bl_label = "Povray"
        DELAY = 0.02
    
        def _export(self, scene):
            import tempfile
    
            self._temp_file_in = tempfile.mktemp(suffix='.pov')
            self._temp_file_out = tempfile.mktemp(suffix='.tga')
            self._temp_file_ini = tempfile.mktemp(suffix='.ini')
            '''
            self._temp_file_in = '/test.pov'
            self._temp_file_out = '/test.tga'
            self._temp_file_ini = '/test.ini'
            '''
    
            def info_callback(txt):
                self.update_stats("", "POVRAY: " + txt)
    
            write_pov(self._temp_file_in, scene, info_callback)
    
        def _render(self):
    
            try:
                os.remove(self._temp_file_out) # so as not to load the old file
            except:
                pass
    
            write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out)
    
            print ("***-STARTING-***")
    
            pov_binary = "povray"
    
            if sys.platform == 'win32':
                import winreg
                regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.6\\Windows')
    
                if bitness == 64:
                    pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64'
                else:
                    pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine'
    
            if 1:
                # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists
                try:
                    self._process = subprocess.Popen([pov_binary, self._temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
                except OSError:
                    # TODO, report api
                    print("POVRAY: could not execute '%s', possibly povray isn't installed" % pov_binary)
                    import traceback
                    traceback.print_exc()
                    print ("***-DONE-***")
                    return False
    
            else:
                # This works too but means we have to wait until its done
                os.system('%s %s' % (pov_binary, self._temp_file_ini))
    
            print ("***-DONE-***")
            return True
    
        def _cleanup(self):
            for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
                try:
                    os.remove(f)
                except:
                    pass
    
            self.update_stats("", "")
    
        def render(self, scene):
    
            self.update_stats("", "POVRAY: Exporting data from Blender")
            self._export(scene)
            self.update_stats("", "POVRAY: Parsing File")
    
            if not self._render():
                self.update_stats("", "POVRAY: Not found")
                return
    
            r = scene.render
    
            # compute resolution
            x = int(r.resolution_x * r.resolution_percentage * 0.01)
            y = int(r.resolution_y * r.resolution_percentage * 0.01)
    
            # Wait for the file to be created
            while not os.path.exists(self._temp_file_out):
                if self.test_break():
                    try:
                        self._process.terminate()
                    except:
                        pass
                    break
    
                if self._process.poll() != None:
                    self.update_stats("", "POVRAY: Failed")
                    break
    
                time.sleep(self.DELAY)
    
            if os.path.exists(self._temp_file_out):
    
                self.update_stats("", "POVRAY: Rendering")
    
                prev_size = -1
    
                def update_image():
                    result = self.begin_result(0, 0, x, y)
                    lay = result.layers[0]
                    # possible the image wont load early on.
                    try:
                        lay.load_from_file(self._temp_file_out)
                    except:
                        pass
                    self.end_result(result)
    
                # Update while povray renders
                while True:
    
                    # test if povray exists
                    if self._process.poll() is not None:
                        update_image()
                        break
    
                    # user exit
                    if self.test_break():
                        try:
                            self._process.terminate()
                        except:
                            pass
    
                        break
    
                    # Would be nice to redirect the output
                    # stdout_value, stderr_value = self._process.communicate() # locks
    
    
                    # check if the file updated
                    new_size = os.path.getsize(self._temp_file_out)
    
                    if new_size != prev_size:
                        update_image()
                        prev_size = new_size
    
                    time.sleep(self.DELAY)
    
            self._cleanup()