Newer
Older
Bastien Montagne
committed
# for ms in ob.material_slots:
# if ms.material is not None and ms.link == 'OBJECT':
Bastien Montagne
committed
# # If there is at least one material slot linked to the object
Bastien Montagne
committed
# # and not the data (mesh), always create a new, "private" data instance.
Bastien Montagne
committed
# return True
# return False
# For objects using local material(s) only!
# This is a mapping between a tuple (dataname, materialnames, ...), and the POV dataname.
Bastien Montagne
committed
# As only objects using:
# * The same data.
# * EXACTLY the same materials, in EXACTLY the same sockets.
# ... can share a same instance in POV export.
Bastien Montagne
committed
obmats2data = {}
Bastien Montagne
committed
def checkObjectMaterials(ob, name, dataname):
if hasattr(ob, 'material_slots'):
has_local_mats = False
key = [dataname]
for ms in ob.material_slots:
Bastien Montagne
committed
key.append(ms.material.name)
if ms.link == 'OBJECT' and not has_local_mats:
has_local_mats = True
else:
# Even if the slot is empty, it is important to grab it...
Bastien Montagne
committed
key.append("")
if has_local_mats:
# If this object uses local material(s), lets find if another object
# using the same data and exactly the same list of materials
# (in the same slots) has already been processed...
Bastien Montagne
committed
# Note that here also, we use object name as new, unique dataname for Pov.
key = tuple(key) # Lists are not hashable...
Bastien Montagne
committed
if key not in obmats2data:
obmats2data[key] = name
return obmats2data[key]
return None
data_ref = {}
Bastien Montagne
committed
def store(scene, ob, name, dataname, matrix):
# The Object needs to be written at least once but if its data is
# already in data_ref this has already been done.
Bastien Montagne
committed
# This func returns the "povray" name of the data, or None
Bastien Montagne
committed
# if no writing is needed.
if ob.is_modified(scene, 'RENDER'):
# Data modified.
# Create unique entry in data_ref by using object name
# (always unique in Blender) as data name.
data_ref[name] = [(name, MatrixAsPovString(matrix))]
return name
# Here, we replace dataname by the value returned by checkObjectMaterials, only if
# it is not evaluated to False (i.e. only if the object uses some local material(s)).
dataname = checkObjectMaterials(ob, name, dataname) or dataname
if dataname in data_ref:
# Data already known, just add the object instance.
data_ref[dataname].append((name, MatrixAsPovString(matrix)))
# No need to write data
return None
else:
# Data not yet processed, create a new entry in data_ref.
data_ref[dataname] = [(name, MatrixAsPovString(matrix))]
return dataname
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
def exportSmoke(smoke_obj_name):
#if LuxManager.CurrentScene.name == 'preview':
#return 1, 1, 1, 1.0
#else:
flowtype = -1
smoke_obj = bpy.data.objects[smoke_obj_name]
domain = None
# Search smoke domain target for smoke modifiers
for mod in smoke_obj.modifiers:
if mod.name == 'Smoke':
if mod.smoke_type == 'FLOW':
if mod.flow_settings.smoke_flow_type == 'BOTH':
flowtype = 2
else:
if mod.flow_settings.smoke_flow_type == 'SMOKE':
flowtype = 0
else:
if mod.flow_settings.smoke_flow_type == 'FIRE':
flowtype = 1
if mod.smoke_type == 'DOMAIN':
domain = smoke_obj
smoke_modifier = mod
eps = 0.000001
if domain is not None:
#if bpy.app.version[0] >= 2 and bpy.app.version[1] >= 71:
# Blender version 2.71 supports direct access to smoke data structure
set = mod.domain_settings
channeldata = []
for v in set.density_grid:
channeldata.append(v.real)
print(v.real)
## Usage en voxel texture:
# channeldata = []
# if channel == 'density':
# for v in set.density_grid:
# channeldata.append(v.real)
# if channel == 'fire':
# for v in set.flame_grid:
# channeldata.append(v.real)
resolution = set.resolution_max
big_res = []
big_res.append(set.domain_resolution[0])
big_res.append(set.domain_resolution[1])
big_res.append(set.domain_resolution[2])
if set.use_high_resolution:
big_res[0] = big_res[0] * (set.amplify + 1)
big_res[1] = big_res[1] * (set.amplify + 1)
big_res[2] = big_res[2] * (set.amplify + 1)
# else:
# p = []
##gather smoke domain settings
# BBox = domain.bound_box
# p.append([BBox[0][0], BBox[0][1], BBox[0][2]])
# p.append([BBox[6][0], BBox[6][1], BBox[6][2]])
# set = mod.domain_settings
# resolution = set.resolution_max
# smokecache = set.point_cache
# ret = read_cache(smokecache, set.use_high_resolution, set.amplify + 1, flowtype)
# res_x = ret[0]
# res_y = ret[1]
# res_z = ret[2]
# density = ret[3]
# fire = ret[4]
# if res_x * res_y * res_z > 0:
##new cache format
# big_res = []
# big_res.append(res_x)
# big_res.append(res_y)
# big_res.append(res_z)
# else:
# max = domain.dimensions[0]
# if (max - domain.dimensions[1]) < -eps:
# max = domain.dimensions[1]
# if (max - domain.dimensions[2]) < -eps:
# max = domain.dimensions[2]
# big_res = [int(round(resolution * domain.dimensions[0] / max, 0)),
# int(round(resolution * domain.dimensions[1] / max, 0)),
# int(round(resolution * domain.dimensions[2] / max, 0))]
# if set.use_high_resolution:
# big_res = [big_res[0] * (set.amplify + 1), big_res[1] * (set.amplify + 1),
# big_res[2] * (set.amplify + 1)]
# if channel == 'density':
# channeldata = density
# if channel == 'fire':
# channeldata = fire
# sc_fr = '%s/%s/%s/%05d' % (efutil.export_path, efutil.scene_filename(), bpy.context.scene.name, bpy.context.scene.frame_current)
# if not os.path.exists( sc_fr ):
# os.makedirs(sc_fr)
# smoke_filename = '%s.smoke' % bpy.path.clean_name(domain.name)
# smoke_path = '/'.join([sc_fr, smoke_filename])
# with open(smoke_path, 'wb') as smoke_file:
# # Binary densitygrid file format
# #
# # File header
# smoke_file.write(b'SMOKE') #magic number
# smoke_file.write(struct.pack('<I', big_res[0]))
# smoke_file.write(struct.pack('<I', big_res[1]))
# smoke_file.write(struct.pack('<I', big_res[2]))
# smoke_file.write(struct.pack('<%df'%len(channeldata), *channeldata))
# LuxLog('Binary SMOKE file written: %s' % (smoke_path))
#return big_res[0], big_res[1], big_res[2], channeldata
mydf3 = df3.df3(big_res[0],big_res[1],big_res[2])
sim_sizeX, sim_sizeY, sim_sizeZ = mydf3.size()
for x in range(sim_sizeX):
for y in range(sim_sizeY):
for z in range(sim_sizeZ):
mydf3.set(x, y, z, channeldata[((z * sim_sizeY + y) * sim_sizeX + x)])
mydf3.exportDF3(smokePath)
print('Binary smoke.df3 file written in preview directory')
if comments:
file.write("\n//--Smoke--\n\n")
# Note: We start with a default unit cube.
# This is mandatory to read correctly df3 data - otherwise we could just directly use bbox
# coordinates from the start, and avoid scale/translate operations at the end...
file.write("box{<0,0,0>, <1,1,1>\n")
file.write(" pigment{ rgbt 1 }\n")
file.write(" hollow\n")
file.write(" interior{ //---------------------\n")
file.write(" media{ method 3\n")
file.write(" emission <1,1,1>*1\n")# 0>1 for dark smoke to white vapour
file.write(" scattering{ 1, // Type\n")
file.write(" <1,1,1>*0.1\n")
file.write(" density{density_file df3 \"%s\"\n" % (smokePath))
file.write(" color_map {\n")
file.write(" [0.00 rgb 0]\n")
file.write(" [0.05 rgb 0]\n")
file.write(" [0.20 rgb 0.2]\n")
file.write(" [0.30 rgb 0.6]\n")
file.write(" [0.40 rgb 1]\n")
file.write(" [1.00 rgb 1]\n")
file.write(" } // end color_map\n")
file.write(" } // end of density\n")
file.write(" samples %i // higher = more precise\n" % resolution)
file.write(" } // end of media --------------------------\n")
file.write(" } // end of interior\n")
# START OF TRANSFORMATIONS
# Size to consider here are bbox dimensions (i.e. still in object space, *before* applying
# loc/rot/scale and other transformations (like parent stuff), aka matrix_world).
bbox = smoke_obj.bound_box
dim = [abs(bbox[6][0] - bbox[0][0]), abs(bbox[6][1] - bbox[0][1]), abs(bbox[6][2] - bbox[0][2])]
# We scale our cube to get its final size and shapes but still in *object* space (same as Blender's bbox).
file.write("scale<%.6g,%.6g,%.6g>\n" % (dim[0], dim[1], dim[2]))
# We offset our cube such that (0,0,0) coordinate matches Blender's object center.
file.write("translate<%.6g,%.6g,%.6g>\n" % (bbox[0][0], bbox[0][1], bbox[0][2]))
# We apply object's transformations to get final loc/rot/size in world space!
# Note: we could combine the two previous transformations with this matrix directly...
writeMatrix(global_matrix * smoke_obj.matrix_world)
# END OF TRANSFORMATIONS
#file.write(" interpolate 1\n")
#file.write(" frequency 0\n")
#file.write(" }\n")
Bastien Montagne
committed
ob_num = 0
Bastien Montagne
committed
# XXX I moved all those checks here, as there is no need to compute names
Bastien Montagne
committed
# for object we won't export here!
if (ob.type in {'LAMP', 'CAMERA', 'EMPTY',
'META', 'ARMATURE', 'LATTICE'}):
for mod in ob.modifiers:
if mod and hasattr(mod, 'smoke_type'):
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
smokeFlag=True
if (mod.smoke_type == 'DOMAIN'):
exportSmoke(ob.name)
break # don't render domain mesh or flow emitter mesh, skip to next object.
if not smokeFlag:
# Export Hair
renderEmitter = True
if hasattr(ob, 'particle_systems'):
renderEmitter = False
for pSys in ob.particle_systems:
if pSys.settings.use_render_emitter:
renderEmitter = True
for mod in [m for m in ob.modifiers if (m is not None) and (m.type == 'PARTICLE_SYSTEM')]:
if (pSys.settings.render_type == 'PATH') and mod.show_render and (pSys.name == mod.particle_system.name):
tstart = time.time()
texturedHair=0
if ob.active_material is not None:
pmaterial = ob.material_slots[pSys.settings.material - 1].material
for th in pmaterial.texture_slots:
if th and th.use:
if (th.texture.type == 'IMAGE' and th.texture.image) or th.texture.type != 'IMAGE':
if th.use_map_color_diffuse:
texturedHair=1
if pmaterial.strand.use_blender_units:
strandStart = pmaterial.strand.root_size
strandEnd = pmaterial.strand.tip_size
strandShape = pmaterial.strand.shape
else: # Blender unit conversion
strandStart = pmaterial.strand.root_size / 200.0
strandEnd = pmaterial.strand.tip_size / 200.0
strandShape = pmaterial.strand.shape
else:
pmaterial = "default" # No material assigned in blender, use default one
strandStart = 0.01
strandEnd = 0.01
strandShape = 0.0
# Set the number of particles to render count rather than 3d view display
pSys.set_resolution(scene, ob, 'RENDER')
steps = pSys.settings.draw_step
steps = 3 ** steps # or (power of 2 rather than 3) + 1 # Formerly : len(particle.hair_keys)
totalNumberOfHairs = ( len(pSys.particles) + len(pSys.child_particles) )
#hairCounter = 0
file.write('#declare HairArray = array[%i] {\n' % totalNumberOfHairs)
for pindex in range(0, totalNumberOfHairs):
#if particle.is_exist and particle.is_visible:
#hairCounter += 1
#controlPointCounter = 0
# Each hair is represented as a separate sphere_sweep in POV-Ray.
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
file.write('sphere_sweep{')
if pSys.settings.use_hair_bspline:
file.write('b_spline ')
file.write('%i,\n' % (steps + 2)) # +2 because the first point needs tripling to be more than a handle in POV
else:
file.write('linear_spline ')
file.write('%i,\n' % (steps))
#changing world coordinates to object local coordinates by multiplying with inverted matrix
initCo = ob.matrix_world.inverted()*(pSys.co_hair(ob, pindex, 0))
if ob.active_material is not None:
pmaterial = ob.material_slots[pSys.settings.material-1].material
for th in pmaterial.texture_slots:
if th and th.use and th.use_map_color_diffuse:
#treat POV textures as bitmaps
if (th.texture.type == 'IMAGE' and th.texture.image and th.texture_coords == 'UV' and ob.data.uv_textures != None): # or (th.texture.pov.tex_pattern_type != 'emulator' and th.texture_coords == 'UV' and ob.data.uv_textures != None):
image=th.texture.image
image_width = image.size[0]
image_height = image.size[1]
image_pixels = image.pixels[:]
uv_co = pSys.uv_on_emitter(mod, pSys.particles[pindex], pindex, 0)
x_co = round(uv_co[0] * (image_width - 1))
y_co = round(uv_co[1] * (image_height - 1))
pixelnumber = (image_width * y_co) + x_co
r = image_pixels[pixelnumber*4]
g = image_pixels[pixelnumber*4+1]
b = image_pixels[pixelnumber*4+2]
a = image_pixels[pixelnumber*4+3]
initColor=(r,g,b,a)
else:
#only overwrite variable for each competing texture for now
initColor=th.texture.evaluate((initCo[0],initCo[1],initCo[2]))
for step in range(0, steps):
co = pSys.co_hair(ob, pindex, step)
#for controlPoint in particle.hair_keys:
if pSys.settings.clump_factor != 0:
hDiameter = pSys.settings.clump_factor / 200.0 * random.uniform(0.5, 1)
elif step == 0:
hDiameter = strandStart
else:
hDiameter += (strandEnd-strandStart)/(pSys.settings.draw_step+1) #XXX +1 or not?
if step == 0 and pSys.settings.use_hair_bspline:
# Write three times the first point to compensate pov Bezier handling
file.write('<%.6g,%.6g,%.6g>,%.7g,\n' % (co[0], co[1], co[2], abs(hDiameter)))
file.write('<%.6g,%.6g,%.6g>,%.7g,\n' % (co[0], co[1], co[2], abs(hDiameter)))
#file.write('<%.6g,%.6g,%.6g>,%.7g' % (particle.location[0], particle.location[1], particle.location[2], abs(hDiameter))) # Useless because particle location is the tip, not the root.
#file.write(',\n')
#controlPointCounter += 1
#totalNumberOfHairs += len(pSys.particles)# len(particle.hair_keys)
# Each control point is written out, along with the radius of the
# hair at that point.
file.write('<%.6g,%.6g,%.6g>,%.7g' % (co[0], co[1], co[2], abs(hDiameter)))
# All coordinates except the last need a following comma.
if step != steps - 1:
file.write(',\n')
else:
if texturedHair:
# Write pigment and alpha (between Pov and Blender alpha 0 and 1 are reversed)
file.write('\npigment{ color rgbf < %.3g, %.3g, %.3g, %.3g> }\n' %(initColor[0], initColor[1], initColor[2], 1.0-initColor[3]))
# End the sphere_sweep declaration for this hair
file.write('}\n')
# All but the final sphere_sweep (each array element) needs a terminating comma.
if pindex != totalNumberOfHairs:
file.write(',\n')
else:
file.write('\n')
# End the array declaration.
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
if not texturedHair:
# Pick up the hair material diffuse color and create a default POV-Ray hair texture.
file.write('#ifndef (HairTexture)\n')
file.write(' #declare HairTexture = texture {\n')
file.write(' pigment {rgbt <%s,%s,%s,%s>}\n' % (pmaterial.diffuse_color[0], pmaterial.diffuse_color[1], pmaterial.diffuse_color[2], (pmaterial.strand.width_fade + 0.05)))
file.write(' }\n')
file.write('#end\n')
file.write('\n')
# Dynamically create a union of the hairstrands (or a subset of them).
# By default use every hairstrand, commented line is for hand tweaking test renders.
file.write('//Increasing HairStep divides the amount of hair for test renders.\n')
file.write('#ifndef(HairStep) #declare HairStep = 1; #end\n')
file.write('union{\n')
file.write(' #local I = 0;\n')
file.write(' #while (I < %i)\n' % totalNumberOfHairs)
file.write(' object {HairArray[I]')
if not texturedHair:
file.write(' texture{HairTexture}\n')
else:
file.write('\n')
# Translucency of the hair:
file.write(' hollow\n')
file.write(' double_illuminate\n')
file.write(' interior {\n')
file.write(' ior 1.45\n')
file.write(' media {\n')
file.write(' scattering { 1, 10*<0.73, 0.35, 0.15> /*extinction 0*/ }\n')
file.write(' absorption 10/<0.83, 0.75, 0.15>\n')
file.write(' samples 1\n')
file.write(' method 2\n')
file.write(' density {\n')
file.write(' color_map {\n')
file.write(' [0.0 rgb <0.83, 0.45, 0.35>]\n')
file.write(' [0.5 rgb <0.8, 0.8, 0.4>]\n')
file.write(' [1.0 rgb <1,1,1>]\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' #local I = I + HairStep;\n')
file.write(' #end\n')
writeMatrix(global_matrix * ob.matrix_world)
Bastien Montagne
committed
file.write('}')
print('Totals hairstrands written: %i' % totalNumberOfHairs)
print('Number of tufts (particle systems)', len(ob.particle_systems))
# Set back the displayed number of particles to preview count
pSys.set_resolution(scene, ob, 'PREVIEW')
if renderEmitter == False:
continue #don't render mesh, skip to next object.
#############################################
# Generating a name for object just like materials to be able to use it
# (baking for now or anything else).
# XXX I don't understand that: if we are here, sel if a non-empty iterable,
# so this condition is always True, IMO -- mont29
if sel:
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.data.name
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
name_orig = DEF_OBJ_NAME
dataname_orig = DEF_OBJ_NAME
name = string_strip_hyphen(bpy.path.clean_name(name_orig))
dataname = string_strip_hyphen(bpy.path.clean_name(dataname_orig))
## for slot in ob.material_slots:
## if slot.material is not None and slot.link == 'OBJECT':
## obmaterial = slot.material
#############################################
if info_callback:
info_callback("Object %2.d of %2.d (%s)" % (ob_num, len(sel), ob.name))
#if ob.type != 'MESH':
# continue
# me = ob.data
matrix = global_matrix * ob.matrix_world
povdataname = store(scene, ob, name, dataname, matrix)
if povdataname is None:
print("This is an instance")
continue
print("Writing Down First Occurence")
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
############################################Povray Primitives
# special exportCurves() function takes care of writing
# lathe, sphere_sweep, birail, and loft
if ob.type == 'CURVE' and (ob.pov.curveshape in
{'lathe', 'sphere_sweep', 'loft'}):
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'ISOSURFACE':
tabWrite("#declare %s = isosurface{ \n"% povdataname)
tabWrite("function{ \n")
textName = ob.pov.iso_function_text
if textName:
node_tree = bpy.context.scene.node_tree
for node in node_tree.nodes:
if node.bl_idname == "IsoPropsNode" and node.label == ob.name:
for inp in node.inputs:
if inp:
tabWrite("#declare %s = %.6g;\n"%(inp.name,inp.default_value))
text = bpy.data.texts[textName]
for line in text.lines:
split = line.body.split()
if split[0] != "#declare":
tabWrite("%s\n"%line.body)
else:
tabWrite("abs(x) - 2 + y")
tabWrite("}\n")
tabWrite("threshold %.6g\n"%ob.pov.threshold)
tabWrite("max_gradient %.6g\n"%ob.pov.max_gradient)
tabWrite("accuracy %.6g\n"%ob.pov.accuracy)
tabWrite("contained_by { ")
if ob.pov.contained_by == "sphere":
tabWrite("sphere {0,%.6g}}\n"%ob.pov.container_scale)
else:
tabWrite("box {-%.6g,%.6g}}\n"%(ob.pov.container_scale,ob.pov.container_scale))
if ob.pov.all_intersections:
tabWrite("all_intersections\n")
else:
if ob.pov.max_trace > 1:
tabWrite("max_trace %.6g\n"%ob.pov.max_trace)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
tabWrite("scale %.6g\n"%(1/ob.pov.container_scale))
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
if ob.pov.object_as == 'SUPERELLIPSOID':
tabWrite("#declare %s = superellipsoid{ <%.4f,%.4f>\n"%(povdataname,ob.pov.se_n2,ob.pov.se_n1))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SUPERTORUS':
rMajor = ob.pov.st_major_radius
rMinor = ob.pov.st_minor_radius
ring = ob.pov.st_ring
cross = ob.pov.st_cross
accuracy=ob.pov.st_accuracy
gradient=ob.pov.st_max_gradient
############Inline Supertorus macro
file.write("#macro Supertorus(RMj, RMn, MajorControl, MinorControl, Accuracy, MaxGradient)\n")
file.write(" #local CP = 2/MinorControl;\n")
file.write(" #local RP = 2/MajorControl;\n")
file.write(" isosurface {\n")
file.write(" function { pow( pow(abs(pow(pow(abs(x),RP) + pow(abs(z),RP), 1/RP) - RMj),CP) + pow(abs(y),CP) ,1/CP) - RMn }\n")
file.write(" threshold 0\n")
file.write(" contained_by {box {<-RMj-RMn,-RMn,-RMj-RMn>, < RMj+RMn, RMn, RMj+RMn>}}\n")
file.write(" #if(MaxGradient >= 1)\n")
file.write(" max_gradient MaxGradient\n")
file.write(" #else\n")
file.write(" evaluate 1, 10, 0.1\n")
file.write(" #end\n")
file.write(" accuracy Accuracy\n")
file.write(" }\n")
file.write("#end\n")
############
tabWrite("#declare %s = object{ Supertorus( %.4g,%.4g,%.4g,%.4g,%.4g,%.4g)\n"%(povdataname,rMajor,rMinor,ring,cross,accuracy,gradient))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PLANE':
tabWrite("#declare %s = plane{ <0,0,1>,1\n"%povdataname)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
if ob.pov.object_as == 'BOX':
tabWrite("#declare %s = box { -1,1\n"%povdataname)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CONE':
br = ob.pov.cone_base_radius
cr = ob.pov.cone_cap_radius
bz = ob.pov.cone_base_z
cz = ob.pov.cone_cap_z
tabWrite("#declare %s = cone { <0,0,%.4f>,%.4f,<0,0,%.4f>,%.4f\n"%(povdataname,bz,br,cz,cr))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CYLINDER':
tabWrite("#declare %s = cylinder { <0,0,1>,<0,0,-1>,1\n"%povdataname)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'HEIGHT_FIELD':
data = ""
filename = ob.pov.hf_filename
data += '"%s"'%filename
gamma = ' gamma %.4f'%ob.pov.hf_gamma
data += gamma
if ob.pov.hf_premultiplied:
data += ' premultiplied on'
if ob.pov.hf_smooth:
data += ' smooth'
if ob.pov.hf_water > 0:
data += ' water_level %.4f'%ob.pov.hf_water
#hierarchy = ob.pov.hf_hierarchy
tabWrite('#declare %s = height_field { %s\n'%(povdataname,data))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("translate <-0.5,0.5,0>\n")
tabWrite("scale <0,-1,0>\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
if ob.pov.object_as == 'SPHERE':
tabWrite("#declare %s = sphere { 0,%6f\n"%(povdataname,ob.pov.sphere_radius))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'TORUS':
tabWrite("#declare %s = torus { %.4f,%.4f\n"%(povdataname,ob.pov.torus_major_radius,ob.pov.torus_minor_radius))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PARAMETRIC':
tabWrite("#declare %s = parametric {\n"%povdataname)
tabWrite("function { %s }\n"%ob.pov.x_eq)
tabWrite("function { %s }\n"%ob.pov.y_eq)
tabWrite("function { %s }\n"%ob.pov.z_eq)
tabWrite("<%.4f,%.4f>, <%.4f,%.4f>\n"%(ob.pov.u_min,ob.pov.v_min,ob.pov.u_max,ob.pov.v_max))
if ob.pov.contained_by == "sphere":
tabWrite("contained_by { sphere{0, 2} }\n")
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
tabWrite("contained_by { box{-2, 2} }\n")
tabWrite("max_gradient %.6f\n"%ob.pov.max_gradient)
tabWrite("accuracy %.6f\n"%ob.pov.accuracy)
tabWrite("precompute 10 x,y,z\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'POLYCIRCLE':
#TODO write below macro Once:
#if write_polytocircle_macro_once == 0:
file.write("/****************************\n")
file.write("This macro was written by 'And'.\n")
file.write("Link:(http://news.povray.org/povray.binaries.scene-files/)\n")
file.write("****************************/\n")
file.write("//from math.inc:\n")
file.write("#macro VPerp_Adjust(V, Axis)\n")
file.write(" vnormalize(vcross(vcross(Axis, V), Axis))\n")
file.write("#end\n")
file.write("//Then for the actual macro\n")
file.write("#macro Shape_Slice_Plane_2P_1V(point1, point2, clip_direct)\n")
file.write("#local p1 = point1 + <0,0,0>;\n")
file.write("#local p2 = point2 + <0,0,0>;\n")
file.write("#local clip_v = vnormalize(clip_direct + <0,0,0>);\n")
file.write("#local direct_v1 = vnormalize(p2 - p1);\n")
file.write("#if(vdot(direct_v1, clip_v) = 1)\n")
file.write(' #error "Shape_Slice_Plane_2P_1V error: Can\'t decide plane"\n')
file.write("#end\n\n")
file.write("#local norm = -vnormalize(clip_v - direct_v1*vdot(direct_v1,clip_v));\n")
file.write("#local d = vdot(norm, p1);\n")
file.write("plane{\n")
file.write("norm, d\n")
file.write("}\n")
file.write("#end\n\n")
file.write("//polygon to circle\n")
file.write("#macro Shape_Polygon_To_Circle_Blending(_polygon_n, _side_face, _polygon_circumscribed_radius, _circle_radius, _height)\n")
file.write("#local n = int(_polygon_n);\n")
file.write("#if(n < 3)\n")
file.write(" #error ""\n")
file.write("#end\n\n")
file.write("#local front_v = VPerp_Adjust(_side_face, z);\n")
file.write("#if(vdot(front_v, x) >= 0)\n")
file.write(" #local face_ang = acos(vdot(-y, front_v));\n")
file.write("#else\n")
file.write(" #local face_ang = -acos(vdot(-y, front_v));\n")
file.write("#end\n")
file.write("#local polyg_ext_ang = 2*pi/n;\n")
file.write("#local polyg_outer_r = _polygon_circumscribed_radius;\n")
file.write("#local polyg_inner_r = polyg_outer_r*cos(polyg_ext_ang/2);\n")
file.write("#local cycle_r = _circle_radius;\n")
file.write("#local h = _height;\n")
file.write("#if(polyg_outer_r < 0 | cycle_r < 0 | h <= 0)\n")
file.write(' #error "error: each side length must be positive"\n')
file.write("#end\n\n")
file.write("#local multi = 1000;\n")
file.write("#local poly_obj =\n")
file.write("polynomial{\n")
file.write("4,\n")
file.write("xyz(0,2,2): multi*1,\n")
file.write("xyz(2,0,1): multi*2*h,\n")
file.write("xyz(1,0,2): multi*2*(polyg_inner_r-cycle_r),\n")
file.write("xyz(2,0,0): multi*(-h*h),\n")
file.write("xyz(0,0,2): multi*(-pow(cycle_r - polyg_inner_r, 2)),\n")
file.write("xyz(1,0,1): multi*2*h*(-2*polyg_inner_r + cycle_r),\n")
file.write("xyz(1,0,0): multi*2*h*h*polyg_inner_r,\n")
file.write("xyz(0,0,1): multi*2*h*polyg_inner_r*(polyg_inner_r - cycle_r),\n")
file.write("xyz(0,0,0): multi*(-pow(polyg_inner_r*h, 2))\n")
file.write("sturm\n")
file.write("}\n\n")
file.write("#local mockup1 =\n")
file.write("difference{\n")
file.write(" cylinder{\n")
file.write(" <0,0,0.0>,<0,0,h>, max(polyg_outer_r, cycle_r)\n")
file.write(" }\n\n")
file.write(" #for(i, 0, n-1)\n")
file.write(" object{\n")
file.write(" poly_obj\n")
file.write(" inverse\n")
file.write(" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n")
file.write(" }\n")
file.write(" object{\n")
file.write(" Shape_Slice_Plane_2P_1V(<polyg_inner_r,0,0>,<cycle_r,0,h>,x)\n")
file.write(" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n")
file.write(" }\n")
file.write(" #end\n")
file.write("}\n\n")
file.write("object{\n")
file.write("mockup1\n")
file.write("rotate <0, 0, degrees(face_ang)>\n")
file.write("}\n")
file.write("#end\n")
#Use the macro
ngon = ob.pov.polytocircle_ngon
ngonR = ob.pov.polytocircle_ngonR
circleR = ob.pov.polytocircle_circleR
tabWrite("#declare %s = object { Shape_Polygon_To_Circle_Blending(%s, z, %.4f, %.4f, 2) rotate x*180 translate z*1\n"%(povdataname,ngon,ngonR,circleR))
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
############################################else try to export mesh
else:
try:
me = ob.to_mesh(scene, True, 'RENDER')
except:
# happens when curves cant be made into meshes because of no-data
continue
importance = ob.pov.importance_value
me_materials = me.materials
me_faces = me.tessfaces[:]
if not me or not me_faces:
continue
uv_textures = me.tessface_uv_textures
if len(uv_textures) > 0:
if me.uv_textures.active and uv_textures.active.data:
uv_layer = uv_textures.active.data
uv_layer = None
try:
#vcol_layer = me.vertex_colors.active.data
vcol_layer = me.tessface_vertex_colors.active.data
except AttributeError:
vcol_layer = None
faces_verts = [f.vertices[:] for f in me_faces]
faces_normals = [f.normal[:] for f in me_faces]
verts_normals = [v.normal[:] for v in me.vertices]
# quads incur an extra face
quadCount = sum(1 for f in faces_verts if len(f) == 4)
# Use named declaration to allow reference e.g. for baking. MR
file.write("\n")
tabWrite("#declare %s =\n" % povdataname)
tabWrite("mesh2 {\n")
tabWrite("vertex_vectors {\n")
tabWrite("%d" % len(me.vertices)) # vert count
tabStr = tab * tabLevel
for v in me.vertices:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
file.write(", ")
file.write("<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
#tabWrite("<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
file.write("\n")
tabWrite("}\n")
# Build unique Normal list
uniqueNormals = {}
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
# [-1] is a dummy index, use a list so we can modify in place
if f.use_smooth: # Use vertex normals
for v in fv:
key = verts_normals[v]
uniqueNormals[key] = [-1]
else: # Use face normal
key = faces_normals[fi]
uniqueNormals[key] = [-1]
tabWrite("normal_vectors {\n")
tabWrite("%d" % len(uniqueNormals)) # vert count
idx = 0
tabStr = tab * tabLevel
for no, index in uniqueNormals.items():
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f, %.6f>" % no) # vert count
file.write("<%.6f, %.6f, %.6f>" % no) # vert count
index[0] = idx
idx += 1
file.write("\n")
tabWrite("}\n")
# Vertex colors
vertCols = {} # Use for material colors also.
if uv_layer:
# Generate unique UV's
uniqueUVs = {}
#n = 0
for fi, uv in enumerate(uv_layer):
if len(faces_verts[fi]) == 4:
uvs = uv_layer[fi].uv[0], uv_layer[fi].uv[1], uv_layer[fi].uv[2], uv_layer[fi].uv[3]
uvs = uv_layer[fi].uv[0], uv_layer[fi].uv[1], uv_layer[fi].uv[2]
for uv in uvs:
uniqueUVs[uv[:]] = [-1]
tabWrite("uv_vectors {\n")
#print unique_uvs
tabWrite("%d" % len(uniqueUVs)) # vert count
idx = 0
tabStr = tab * tabLevel
for uv, index in uniqueUVs.items():
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f>" % uv)
file.write(", ")
file.write("<%.6f, %.6f>" % uv)
index[0] = idx
idx += 1
'''
# Just add 1 dummy vector, no real UV's
tabWrite('1') # vert count
file.write(',\n\t\t<0.0, 0.0>')
'''
file.write("\n")
tabWrite("}\n")
if me.vertex_colors:
#Write down vertex colors as a texture for each vertex
tabWrite("texture_list {\n")
tabWrite("%d\n" % (((len(me_faces)-quadCount) * 3 )+ quadCount * 4)) # works only with tris and quad mesh for now
VcolIdx=0
if comments:
file.write("\n //Vertex colors: one simple pigment texture per vertex\n")
for fi, f in enumerate(me_faces):
# annoying, index may be invalid
material_index = f.material_index
try:
material = me_materials[material_index]
except:
material = None
if material: #and material.use_vertex_color_paint: #Always use vertex color when there is some for now
col = vcol_layer[fi]
if len(faces_verts[fi]) == 4:
cols = col.color1, col.color2, col.color3, col.color4
cols = col.color1, col.color2, col.color3
for col in cols:
key = col[0], col[1], col[2], material_index # Material index!
VcolIdx+=1
vertCols[key] = [VcolIdx]
if linebreaksinlists:
tabWrite("texture {pigment{ color rgb <%6f,%6f,%6f> }}\n" % (col[0], col[1], col[2]))
else:
tabWrite("texture {pigment{ color rgb <%6f,%6f,%6f> }}" % (col[0], col[1], col[2]))
tabStr = tab * tabLevel
else:
if material:
# Multiply diffuse with SSS Color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in zip(material.subsurface_scattering.color[:], material.diffuse_color[:])]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], \
material_index
vertCols[key] = [-1]
else:
diffuse_color = material.diffuse_color[:]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], \