Newer
Older
# GPL # Original Authors: Evan J. Rosky (syrux), Chichiri, Jace Priester #
import bpy
import random
import math
from bpy.types import (
Operator,
Menu,
)
from mathutils import (
Vector,
Quaternion,
)
# ################### Globals #################### #
doprots = True
# Datas in which we will build the new discombobulated mesh
nPolygons = []
nVerts = []
Verts = []
Polygons = []
dVerts = []
dPolygons = []
i_prots = [] # index of the top polygons on which we'll generate the doodads
i_dood_type = [] # type of doodad (given by index of the doodad obj)
# ############### Utility Functions ############### #
return random.random() * (b - a) + a
def randVertex(a, b, c, d, Verts):
"""Return a vector of a random vertex on a quad-polygon"""
A, B, C, D = a, b, c, d
else:
A, B, C, D = a, d, c, b
i = randnum(0.1, 0.9)
vecAB = Verts[B] - Verts[A]
E = Verts[A] + vecAB * i
vecDC = Verts[C] - Verts[D]
F = Verts[D] + vecDC * i
# ################## Protusions #################### #
def fill_older_datas(verts, polygon):
""" Specifically coded to be called by the function addProtusionToPolygon,
its sets up a tuple which contains the vertices from the base and the top of the protusions.
"""
temp_vertices = []
temp_vertices.append(verts[polygon[0]].copy())
temp_vertices.append(verts[polygon[1]].copy())
temp_vertices.append(verts[polygon[2]].copy())
temp_vertices.append(verts[polygon[3]].copy())
temp_vertices.append(verts[polygon[0]].copy())
temp_vertices.append(verts[polygon[1]].copy())
temp_vertices.append(verts[polygon[2]].copy())
temp_vertices.append(verts[polygon[3]].copy())
return temp_vertices
def extrude_top(temp_vertices, normal, height):
""" This function extrude the polygon composed of the four first members of the tuple
temp_vertices along the normal multiplied by the height of the extrusion.
"""
temp_vertices[0][j] += normal[j] * height
temp_vertices[1][j] += normal[j] * height
temp_vertices[2][j] += normal[j] * height
temp_vertices[3][j] += normal[j] * height
j += 1
def scale_top(temp_vertices, center, normal, height, scale_ratio):
""" This function scale the polygon composed of the four first members of the tuple temp_vertices. """
vec1 = [0, 0, 0]
vec2 = [0, 0, 0]
vec3 = [0, 0, 0]
vec4 = [0, 0, 0]
j = 0
while j < 3:
vec1[j] = temp_vertices[0][j] - center[j]
vec2[j] = temp_vertices[1][j] - center[j]
vec3[j] = temp_vertices[2][j] - center[j]
vec4[j] = temp_vertices[3][j] - center[j]
temp_vertices[0][j] = center[j] + vec1[j] * (1 - scale_ratio)
temp_vertices[1][j] = center[j] + vec2[j] * (1 - scale_ratio)
temp_vertices[2][j] = center[j] + vec3[j] * (1 - scale_ratio)
temp_vertices[3][j] = center[j] + vec4[j] * (1 - scale_ratio)
j += 1
def add_prot_polygons(temp_vertices):
""" Specifically coded to be called by addProtusionToPolygon, this function
put the data from the generated protusion at the end the tuples Verts and Polygons,
which will later used to generate the final mesh.
"""
global Verts
global Polygons
global i_prots
findex = len(Verts)
polygontop = [findex + 0, findex + 1, findex + 2, findex + 3]
polygon1 = [findex + 0, findex + 1, findex + 5, findex + 4]
polygon2 = [findex + 1, findex + 2, findex + 6, findex + 5]
polygon3 = [findex + 2, findex + 3, findex + 7, findex + 6]
polygon4 = [findex + 3, findex + 0, findex + 4, findex + 7]
i_prots.append(len(Polygons) - 1)
Polygons.append(polygon1)
Polygons.append(polygon2)
Polygons.append(polygon3)
Polygons.append(polygon4)
def addProtusionToPolygon(obpolygon, verts, minHeight, maxHeight, minTaper, maxTaper):
"""Create a protusion from the polygon "obpolygon" of the original object and use
several values sent by the user. It calls in this order the following functions:
- fill_older_data;
- extrude_top;
- scale_top;
- add_prot_polygons;
"""
# some useful variables
polygon = obpolygon.vertices
tVerts = list(fill_older_datas(verts, polygon)) # list of temp vertices
height = randnum(minHeight, maxHeight) # height of generated protusion
scale_ratio = randnum(minTaper, maxTaper)
# extrude the top polygon
extrude_top(tVerts, obpolygon.normal, height)
# Now, we scale, the top polygon along its normal
scale_top(tVerts, GetPolyCentroid(obpolygon, verts), obpolygon.normal, height, scale_ratio)
# Finally, we add the protusions to the list of polygons
add_prot_polygons(tVerts)
# ################# Divide a polygon ############### #
def divide_one(list_polygons, list_vertices, verts, polygon, findex):
""" called by divide_polygon, to generate a polygon from one polygon, maybe I could simplify this process """
temp_vertices = []
temp_vertices.append(verts[polygon[0]].copy())
temp_vertices.append(verts[polygon[1]].copy())
temp_vertices.append(verts[polygon[2]].copy())
temp_vertices.append(verts[polygon[3]].copy())
list_vertices += temp_vertices
list_polygons.append([findex + 0, findex + 1, findex + 2, findex + 3])
def divide_two(list_polygons, list_vertices, verts, polygon, findex):
""" called by divide_polygon, to generate two polygons from one polygon and
add them to the list of polygons and vertices which form the discombobulated mesh
"""
temp_vertices = []
temp_vertices.append(verts[polygon[0]].copy())
temp_vertices.append(verts[polygon[1]].copy())
temp_vertices.append(verts[polygon[2]].copy())
temp_vertices.append(verts[polygon[3]].copy())
temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2)
temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2)
list_vertices += temp_vertices
list_polygons.append([findex + 0, findex + 4, findex + 5, findex + 3])
list_polygons.append([findex + 1, findex + 2, findex + 5, findex + 4])
def divide_three(list_polygons, list_vertices, verts, polygon, findex, center):
""" called by divide_polygon, to generate three polygons from one polygon and
add them to the list of polygons and vertices which form the discombobulated mesh
"""
temp_vertices = []
temp_vertices.append(verts[polygon[0]].copy())
temp_vertices.append(verts[polygon[1]].copy())
temp_vertices.append(verts[polygon[2]].copy())
temp_vertices.append(verts[polygon[3]].copy())
temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2)
temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2)
temp_vertices.append((verts[polygon[1]] + verts[polygon[2]]) / 2)
temp_vertices.append(center.copy())
list_vertices += temp_vertices
list_polygons.append([findex + 0, findex + 4, findex + 5, findex + 3])
list_polygons.append([findex + 1, findex + 6, findex + 7, findex + 4])
list_polygons.append([findex + 6, findex + 2, findex + 5, findex + 7])
def divide_four(list_polygons, list_vertices, verts, polygon, findex, center):
""" called by divide_polygon, to generate four polygons from one polygon and
add them to the list of polygons and vertices which form the discombobulated mesh
"""
temp_vertices = []
temp_vertices.append(verts[polygon[0]].copy())
temp_vertices.append(verts[polygon[1]].copy())
temp_vertices.append(verts[polygon[2]].copy())
temp_vertices.append(verts[polygon[3]].copy())
temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2)
temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2)
temp_vertices.append((verts[polygon[1]] + verts[polygon[2]]) / 2)
temp_vertices.append((verts[polygon[0]] + verts[polygon[3]]) / 2)
temp_vertices.append(center.copy())
list_vertices += temp_vertices
list_polygons.append([findex + 0, findex + 4, findex + 7, findex + 8])
list_polygons.append([findex + 1, findex + 6, findex + 7, findex + 4])
list_polygons.append([findex + 6, findex + 2, findex + 5, findex + 7])
list_polygons.append([findex + 8, findex + 7, findex + 5, findex + 3])
def dividepolygon(obpolygon, verts, number):
"""Divide the poly into the wanted number of polygons"""
global nPolygons
global nVerts
poly = obpolygon.vertices
divide_one(nPolygons, nVerts, verts, poly, len(nVerts))
divide_two(nPolygons, nVerts, verts, poly, len(nVerts))
elif(number == 3):
divide_three(nPolygons, nVerts, verts, poly, len(nVerts), GetPolyCentroid(obpolygon, verts))
elif(number == 4):
divide_four(nPolygons, nVerts, verts, poly, len(nVerts), GetPolyCentroid(obpolygon, verts))
# ################## Discombobulate ################ #
def GetPolyCentroid(obpolygon, allvertcoords):
centroid = Vector((0, 0, 0))
centroid += Vector(allvertcoords[vindex])
centroid /= len(obpolygon.vertices)
def division(obpolygons, verts, sf1, sf2, sf3, sf4):
"""Function to divide each of the selected polygons"""
divide = []
if (sf1):
divide.append(1)
if (sf2):
divide.append(2)
if (sf3):
divide.append(3)
if (sf4):
divide.append(4)
if(poly.select is True and len(poly.vertices) == 4):
a = random.randint(0, len(divide) - 1)
dividepolygon(poly, verts, divide[a])
def protusion(obverts, obpolygons, minHeight, maxHeight, minTaper, maxTaper):
"""function to generate the protusions"""
verts = []
for vertex in obverts:
verts.append(vertex.co)
for polygon in obpolygons:
if(len(polygon.vertices) == 4):
addProtusionToPolygon(polygon, verts, minHeight, maxHeight, minTaper, maxTaper)
if (v1.x - 0.1 <= v2.x <= v1.x + 0.1 and
v1.y - 0.1 <= v2.y <= v1.y + 0.1 and
v1.z - 0.1 <= v2.z <= v1.z + 0.1):
def angle_between_nor(nor_orig, nor_result):
angle = math.acos(nor_orig.dot(nor_result))
axis = nor_orig.cross(nor_result).normalized()
q = Quaternion()
q.x = axis.x * math.sin(angle / 2)
q.y = axis.y * math.sin(angle / 2)
q.z = axis.z * math.sin(angle / 2)
q.w = math.cos(angle / 2)
def doodads(object1, mesh1, dmin, dmax):
"""function to generate the doodads"""
global dVerts
global dPolygons
i = 0
# on parcoure cette boucle pour ajouter des doodads a toutes les polygons
# english translation: this loops adds doodads to all polygons
while(i < len(object1.data.polygons)):
if object1.data.polygons[i].select is False:
doods_nbr = random.randint(dmin, dmax)
j = 0
while(j <= doods_nbr):
origin_dood = randVertex(object1.data.polygons[i].vertices[0], object1.data.polygons[i].vertices[1],
object1.data.polygons[i].vertices[2], object1.data.polygons[i].vertices[3], Verts)
type_dood = random.randint(0, len(bpy.context.scene.discomb.DISC_doodads) - 1)
polygons_add = []
verts_add = []
# First we have to apply scaling and rotation to the mesh
bpy.ops.object.select_pattern(pattern=bpy.context.scene.discomb.DISC_doodads[type_dood], extend=False)
bpy.context.scene.objects.active = bpy.data.objects[bpy.context.scene.discomb.DISC_doodads[type_dood]]
bpy.ops.object.transform_apply(rotation=True, scale=True)
for polygon in bpy.data.objects[bpy.context.scene.discomb.DISC_doodads[type_dood]].data.polygons:
for vertex in bpy.data.objects[bpy.context.scene.discomb.DISC_doodads[type_dood]].data.vertices:
verts_add.append(vertex.co.copy())
normal_original_polygon = object1.data.polygons[i].normal
nor_def = Vector((0.0, 0.0, 1.0))
qr = nor_def.rotation_difference(normal_original_polygon.normalized())
if(test_v2_near_v1(nor_def, -normal_original_polygon)):
qr = Quaternion((0.0, 0.0, 0.0, 0.0))
# qr = angle_between_nor(nor_def, normal_original_polygon)
for vertex in verts_add:
vertex.rotate(qr)
dPolygons.append([polygon[0] + findex, polygon[1] + findex, polygon[2] + findex, polygon[3] + findex])
i_dood_type.append(bpy.data.objects[bpy.context.scene.discomb.DISC_doodads[type_dood]].name)
for vertex in verts_add:
dVerts.append(vertex)
def protusions_repeat(object1, mesh1, r_prot):
for j in i_prots:
if j < len(object1.data.polygons):
object1.data.polygons[j].select = True
else:
print("Warning: hit end of polygons in object1")
# add material to discombobulated mesh
def setMatProt(discObj, origObj, sideProtMat, topProtMat):
# First we put the materials in their slots
bpy.ops.object.select_pattern(pattern=discObj.name, extend=False)
bpy.context.scene.objects.active = bpy.data.objects[discObj.name]
try:
origObj.material_slots[topProtMat]
origObj.material_slots[sideProtMat]
except:
return
bpy.ops.object.material_slot_add()
bpy.ops.object.material_slot_add()
discObj.material_slots[0].material = origObj.material_slots[topProtMat].material
discObj.material_slots[1].material = origObj.material_slots[sideProtMat].material
# Then we assign materials to protusions
for polygon in discObj.data.polygons:
if polygon.index in i_prots:
polygon.material_index = 0
else:
polygon.material_index = 1
def setMatDood(doodObj):
# First we add the materials slots
bpy.ops.object.select_pattern(pattern=doodObj.name, extend=False)
bpy.context.scene.objects.active = doodObj
for name in bpy.context.scene.discomb.DISC_doodads:
try:
bpy.ops.object.material_slot_add()
doodObj.material_slots[-1].material = bpy.data.objects[name].material_slots[0].material
for polygon in doodObj.data.polygons:
if i_dood_type[polygon.index] == name:
polygon.material_index = len(doodObj.material_slots) - 1
except:
print()
def clean_doodads():
current_doodads = list(bpy.context.scene.discomb.DISC_doodads)
for name in current_doodads:
if name not in bpy.data.objects:
bpy.context.scene.discomb.DISC_doodads.remove(name)
def discombobulate(minHeight, maxHeight, minTaper, maxTaper, sf1, sf2, sf3, sf4,
dmin, dmax, r_prot, sideProtMat, topProtMat, isLast):
global doprots
global nVerts
global nPolygons
global Verts
global Polygons
global dVerts
global dPolygons
global i_prots
bpy.ops.object.mode_set(mode="OBJECT")
# start by cleaning up doodads that don't exist anymore
clean_doodads()
# Create the discombobulated mesh
mesh = bpy.data.meshes.new("tmp")
object = bpy.data.objects.new("tmp", mesh)
bpy.context.scene.objects.link(object)
# init final verts and polygons tuple
nPolygons = []
nVerts = []
Polygons = []
Verts = []
dPolygons = []
dVerts = []
origObj = bpy.context.active_object
# There we collect the rotation, translation and scaling datas from the original mesh
to_translate = bpy.context.active_object.location
to_scale = bpy.context.active_object.scale
to_rotate = bpy.context.active_object.rotation_euler
# First, we collect all the informations we will need from the previous mesh
obverts = bpy.context.active_object.data.vertices
obpolygons = bpy.context.active_object.data.polygons
verts = []
for vertex in obverts:
verts.append(vertex.co)
division(obpolygons, verts, sf1, sf2, sf3, sf4)
# Fill in the discombobulated mesh with the new polygons
mesh.from_pydata(nVerts, [], nPolygons)
# Reload the datas
bpy.ops.object.select_all(action="DESELECT")
bpy.ops.object.select_pattern(pattern=object.name, extend=False)
bpy.context.scene.objects.active = bpy.data.objects[object.name]
obverts = bpy.context.active_object.data.vertices
obpolygons = bpy.context.active_object.data.polygons
protusion(obverts, obpolygons, minHeight, maxHeight, minTaper, maxTaper)
# Fill in the discombobulated mesh with the new polygons
mesh1 = bpy.data.meshes.new("discombobulated_object")
object1 = bpy.data.objects.new("discombobulated_mesh", mesh1)
bpy.context.scene.objects.link(object1)
mesh1.from_pydata(Verts, [], Polygons)
# Set the material's of discombobulated object
setMatProt(object1, origObj, sideProtMat, topProtMat)
bpy.ops.object.select_pattern(pattern=object1.name, extend=False)
bpy.context.scene.objects.active = bpy.data.objects[object1.name]
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.mesh.normals_make_consistent(inside=False)
bpy.ops.mesh.select_all(action='DESELECT')
bpy.ops.object.mode_set(mode='OBJECT')
# if(bpy.context.scene.repeatprot):
protusions_repeat(object1, mesh1, r_prot)
if(len(bpy.context.scene.discomb.DISC_doodads) != 0 and bpy.context.scene.discomb.dodoodads and isLast):
doodads(object1, mesh1, dmin, dmax)
mesh2 = bpy.data.meshes.new("dood_mesh")
object2 = bpy.data.objects.new("dood_obj", mesh2)
bpy.context.scene.objects.link(object2)
mesh2.from_pydata(dVerts, [], dPolygons)
object2.location = to_translate
object2.rotation_euler = to_rotate
object2.scale = to_scale
bpy.ops.object.select_pattern(pattern=object.name, extend=False)
bpy.context.scene.objects.active = bpy.data.objects[object.name]
bpy.ops.object.select_pattern(pattern=object1.name, extend=False)
bpy.context.scene.objects.active = bpy.data.objects[object1.name]
bpy.context.scene.update()
# translate, scale and rotate discombobulated results
object1.location = to_translate
object1.rotation_euler = to_rotate
object1.scale = to_scale
# set all polys to selected. this allows recursive discombobulating.
# ### Operators for selecting and deselecting an object as a doodad ### #
bl_idname = "object.discombobulate_set_doodad"
bl_label = "Discombobulate set doodad object"
bl_description = ("Save the Active Object as Doodad \n"
"Object has to be quads only")
bl_options = {'REGISTER'}
@classmethod
def poll(cls, context):
obj = bpy.context.active_object
if (obj is not None and obj.type == "MESH"):
mesh = obj.data
for polygon in mesh.polygons:
is_ok = len(polygon.vertices)
if is_ok != 4:
return False
return True
return False
obj_name = bpy.context.active_object.name
msg = "Object with this name already saved"
if obj_name not in bpy.context.scene.discomb.DISC_doodads:
bpy.context.scene.discomb.DISC_doodads.append(obj_name)
msg = "Saved Doodad object: {}".format(obj_name)
self.report({'INFO'}, message=msg)
def invoke(self, context, event):
self.execute(context)
return {'FINISHED'}
class unchooseDoodad(Operator):
bl_idname = "object.discombobulate_unset_doodad"
bl_label = "Discombobulate unset doodad object"
bl_description = "Remove the saved Doodad Object(s)"
bl_options = {'REGISTER'}
remove_all = bpy.props.BoolProperty(
name="Remove all Doodads",
default=False,
)
msg = ("No doodads to remove")
doodadery = bpy.context.scene.discomb.DISC_doodads
if len(doodadery) > 0:
if not self.remove_all:
name = bpy.context.active_object.name
if name in doodadery:
bpy.context.scene.discomb.DISC_doodads.remove(name)
msg = ("Removed Doodad object: {}".format(name))
else:
bpy.context.scene.discomb.DISC_doodads[:] = []
msg = "Removed all Doodads"
else:
msg = "No Doodads to Remove"
self.report({'INFO'}, message=msg)
def invoke(self, context, event):
self.execute(context)
return {'FINISHED'}
# ################## Interpolygon ################## #
class discombobulator(Operator):
bl_idname = "object.discombobulate"
bl_label = "Discombobulate"
bl_options = {'REGISTER', 'UNDO'}
def execute(self, context):
scn = context.scene.discomb
i = 0
while i < bpy.context.scene.discomb.repeatprot:
isLast = False
if i == scn.repeatprot - 1:
isLast = True
discombobulate(scn.minHeight, scn.maxHeight, scn.minTaper, scn.maxTaper, scn.subpolygon1,
scn.subpolygon2, scn.subpolygon3, scn.subpolygon4, scn.mindoodads, scn.maxdoodads,
scn.repeatprot, scn.sideProtMat, scn.topProtMat, isLast)
i += 1
class discombobulator_dodads_list(Menu):
bl_idname = "object.discombobulator_dodad_list"
bl_label = "List of saved Doodads"
bl_description = "List of the saved Doodad Object Names"
bl_options = {'REGISTER'}
def draw(self, context):
layout = self.layout
doodle = len(bpy.context.scene.discomb.DISC_doodads)
layout.label("Saved doodads : {}".format(doodle))
layout.separator()
if doodle > 0:
for name in bpy.context.scene.discomb.DISC_doodads:
layout.label(text=name)
class discombob_help(Menu):
bl_idname = "help.discombobulator"
bl_label = "Usage Information"
bl_description = "Help"
bl_options = {'REGISTER'}
def draw(self, context):
layout = self.layout
layout.label(text="Usage Information:", icon="INFO")
layout.separator()
layout.label(text="Quads only, not Triangles or Ngons", icon="ERROR")
layout.label("Works only with Mesh object that have faces")
layout.separator()
layout.label("Select a face or faces")
layout.label("Press Discombobulate to create greebles")
layout.label("In object mode, still needs a selection in Edit Mode")
layout.separator()
layout.label("Doodads - additional objects layered on the mesh surface")
layout.label("(Similar to dupliverts - but as one separate object)")
layout.separator()
layout.label(text="Limitations:", icon="MOD_EXPLODE")
layout.label("Be careful with the repeat protusions setting")
layout.label("(Runs reqursively)")
layout.label("If possible, avoid using on a high polycount base mesh")
layout.label("(It can run out of memory and take a long time to compute)")
class VIEW3D_OT_tools_discombobulate(Operator):
bl_idname = "discombobulate.ops"
bl_description = ("Easily add sci-fi details to a surface \n"
"Needs an existing active Mesh with Faces")
bl_options = {'REGISTER'}
executing = False
@classmethod
def poll(cls, context):
return (context.active_object is not None and
context.active_object.type == "MESH")
def draw(self, context):
layout = self.layout
row.menu('help.discombobulator', icon='INFO')
box = layout.box()
box.label("Protusions settings")
row = box.row()
row.prop(context.scene.discomb, 'doprots')
row.prop(context.scene.discomb, 'minHeight')
row.prop(context.scene.discomb, 'maxHeight')
row.prop(context.scene.discomb, 'minTaper')
row.prop(context.scene.discomb, 'maxTaper')
col1 = row.column(align=True)
col1.prop(context.scene.discomb, "subpolygon1")
col2 = row.column(align=True)
col2.prop(context.scene.discomb, "subpolygon2")
col3 = row.column(align=True)
col3.prop(context.scene.discomb, "subpolygon3")
col4 = row.column(align=True)
col4.prop(context.scene.discomb, "subpolygon4")
row.prop(context.scene.discomb, "repeatprot")
box = layout.box()
box.label("Doodads settings")
row = box.row()
is_doodad = context.scene.discomb.dodoodads
row.prop(context.scene.discomb, 'dodoodads')
row.enabled = is_doodad
row.prop(context.scene.discomb, "mindoodads")
row.enabled = is_doodad
row.prop(context.scene.discomb, "maxdoodads")
row.enabled = is_doodad
row.operator("object.discombobulate_set_doodad", text="Pick doodad")
splits = row.split(0.5)
splits.enabled = is_doodad
splits.operator("object.discombobulate_unset_doodad",
text="Remove active doodad").remove_all = False
splits.operator("object.discombobulate_unset_doodad",
text="Remove all doodads").remove_all = True
col = box.column(align=True)
doodle = len(bpy.context.scene.discomb.DISC_doodads)
col.enabled = (True if doodle > 0 else False)
col.menu("object.discombobulator_dodad_list",
text="List of saved Doodads ({})".format(doodle))
box = layout.box()
box.label("Materials settings")
row = box.row()
row.prop(context.scene.discomb, 'topProtMat')
row.prop(context.scene.discomb, "sideProtMat")
def invoke(self, context, event):
return context.window_manager.invoke_props_dialog(self, width=300)
def check(self, context):
return not self.executing
def execute(self, context):
self.executing = True
bpy.ops.object.discombobulate('INVOKE_DEFAULT')
return {'FINISHED'}