Skip to content
Snippets Groups Projects
scenography.py 34.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • # SPDX-License-Identifier: GPL-2.0-or-later
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
    
    # <pep8 compliant>
    
    """With respect to camera frame and optics distortions, also export environment
    
    with world, sky, atmospheric effects such as rainbows or smoke """
    
    import bpy
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
    import os
    from imghdr import what  # imghdr is a python lib to identify image file types
    from math import atan, pi, sqrt, degrees
    from . import df3_library  # for smoke rendering
    from .object_primitives import write_object_modifiers
    
    
    
    # -------- find image texture # used for export_world -------- #
    
    
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
        """Identify input image filetypes to transmit to POV."""
        # First use the below explicit extensions to identify image file prospects
        ext = {
            'JPG': "jpeg",
            'JPEG': "jpeg",
            'GIF': "gif",
            'TGA': "tga",
            'IFF': "iff",
            'PPM': "ppm",
            'PNG': "png",
            'SYS': "sys",
            'TIFF': "tiff",
            'TIF': "tiff",
            'EXR': "exr",
            'HDR': "hdr",
    
        }.get(os.path.splitext(img_f)[-1].upper(), "")
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
        # Then, use imghdr to really identify the filetype as it can be different
        if not ext:
            # maybe add a check for if path exists here?
            print(" WARNING: texture image has no extension")  # too verbose
    
    
            ext = what(img_f)  # imghdr is a python lib to identify image file types
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
        return ext
    
    
    def img_map(ts):
        """Translate mapping type from Blender UI to POV syntax and return that string."""
        image_map = ""
        texdata = bpy.data.textures[ts.texture]
        if ts.mapping == 'FLAT':
            image_map = "map_type 0 "
        elif ts.mapping == 'SPHERE':
            image_map = "map_type 1 "
        elif ts.mapping == 'TUBE':
            image_map = "map_type 2 "
    
    
        # map_type 3 and 4 in development (?) (ENV in pov 3.8)
        # for POV-Ray, currently they just seem to default back to Flat (type 0)
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
        # elif ts.mapping=="?":
        #    image_map = " map_type 3 "
        # elif ts.mapping=="?":
        #    image_map = " map_type 4 "
        if ts.use_interpolation:  # Available if image sampling class reactivated?
            image_map += " interpolate 2 "
        if texdata.extension == 'CLIP':
            image_map += " once "
        # image_map += "}"
        # if ts.mapping=='CUBE':
        #    image_map+= "warp { cubic } rotate <-90,0,180>"
        # no direct cube type mapping. Though this should work in POV 3.7
        # it doesn't give that good results(best suited to environment maps?)
        # if image_map == "":
        #    print(" No texture image  found ")
        return image_map
    
    
    def img_map_transforms(ts):
        """Translate mapping transformations from Blender UI to POV syntax and return that string."""
        # XXX TODO: unchecked textures give error of variable referenced before assignment XXX
        # POV-Ray "scale" is not a number of repetitions factor, but ,its
        # inverse, a standard scale factor.
        # 0.5 Offset is needed relatively to scale because center of the
        # scale is 0.5,0.5 in blender and 0,0 in POV
        # Strange that the translation factor for scale is not the same as for
        # translate.
        # TODO: verify both matches with other blender renderers / internal in previous versions.
        image_map_transforms = ""
        image_map_transforms = "scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>" % (
            ts.scale[0],
            ts.scale[1],
            ts.scale[2],
            ts.offset[0],
            ts.offset[1],
            ts.offset[2],
        )
        # image_map_transforms = (" translate <-0.5,-0.5,0.0> scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>" % \
        # ( 1.0 / ts.scale.x,
        # 1.0 / ts.scale.y,
        # 1.0 / ts.scale.z,
        # (0.5 / ts.scale.x) + ts.offset.x,
        # (0.5 / ts.scale.y) + ts.offset.y,
        # ts.offset.z))
        # image_map_transforms = (
        # "translate <-0.5,-0.5,0> "
        # "scale <-1,-1,1> * <%.4g,%.4g,%.4g> "
        # "translate <0.5,0.5,0> + <%.4g,%.4g,%.4g>" % \
        # (1.0 / ts.scale.x,
        # 1.0 / ts.scale.y,
        # 1.0 / ts.scale.z,
        # ts.offset.x,
        # ts.offset.y,
        # ts.offset.z)
        # )
        return image_map_transforms
    
    
    def img_map_bg(wts):
        """Translate world mapping from Blender UI to POV syntax and return that string."""
        tex = bpy.data.textures[wts.texture]
        image_mapBG = ""
        # texture_coords refers to the mapping of world textures:
    
        if wts.texture_coords in ['VIEW', 'GLOBAL']:
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
            image_mapBG = " map_type 0 "
        elif wts.texture_coords == 'ANGMAP':
            image_mapBG = " map_type 1 "
        elif wts.texture_coords == 'TUBE':
            image_mapBG = " map_type 2 "
    
        if tex.use_interpolation:
            image_mapBG += " interpolate 2 "
        if tex.extension == 'CLIP':
            image_mapBG += " once "
        # image_mapBG += "}"
        # if wts.mapping == 'CUBE':
        #   image_mapBG += "warp { cubic } rotate <-90,0,180>"
        # no direct cube type mapping. Though this should work in POV 3.7
        # it doesn't give that good results(best suited to environment maps?)
        # if image_mapBG == "":
        #    print(" No background texture image  found ")
        return image_mapBG
    
    
    def path_image(image):
        """Conform a path string to POV syntax to avoid POV errors."""
        return bpy.path.abspath(image.filepath, library=image.library).replace("\\", "/")
        # .replace("\\","/") to get only forward slashes as it's what POV prefers,
        # even on windows
    
    
    # end find image texture
    # -----------------------------------------------------------------------------
    
    
    def export_camera(scene, global_matrix, render, tab_write):
        """Translate camera from Blender UI to POV syntax and write to exported file."""
        camera = scene.camera
    
        # DH disabled for now, this isn't the correct context
        active_object = None  # bpy.context.active_object # does not always work  MR
        matrix = global_matrix @ camera.matrix_world
        focal_point = camera.data.dof.focus_distance
    
        # compute resolution
        q_size = render.resolution_x / render.resolution_y
        tab_write("#declare camLocation  = <%.6f, %.6f, %.6f>;\n" % matrix.translation[:])
        tab_write(
            "#declare camLookAt = <%.6f, %.6f, %.6f>;\n"
            % tuple([degrees(e) for e in matrix.to_3x3().to_euler()])
        )
    
        tab_write("camera {\n")
        if scene.pov.baking_enable and active_object and active_object.type == 'MESH':
            tab_write("mesh_camera{ 1 3\n")  # distribution 3 is what we want here
            tab_write("mesh{%s}\n" % active_object.name)
            tab_write("}\n")
            tab_write("location <0,0,.01>")
            tab_write("direction <0,0,-1>")
    
        else:
            if camera.data.type == 'ORTHO':
    
                # XXX todo: track when SensorHeightRatio was added to see if needed (not used)
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
                sensor_height_ratio = (
                    render.resolution_x * camera.data.ortho_scale / render.resolution_y
                )
                tab_write("orthographic\n")
                # Blender angle is radian so should be converted to degrees:
                # % (camera.data.angle * (180.0 / pi) )
                # but actually argument is not compulsory after angle in pov ortho mode
                tab_write("angle\n")
                tab_write("right <%6f, 0, 0>\n" % -camera.data.ortho_scale)
                tab_write("location  <0, 0, 0>\n")
                tab_write("look_at  <0, 0, -1>\n")
                tab_write("up <0, %6f, 0>\n" % (camera.data.ortho_scale / q_size))
    
            elif camera.data.type == 'PANO':
                tab_write("panoramic\n")
                tab_write("location  <0, 0, 0>\n")
                tab_write("look_at  <0, 0, -1>\n")
                tab_write("right <%s, 0, 0>\n" % -q_size)
                tab_write("up <0, 1, 0>\n")
                tab_write("angle  %f\n" % (360.0 * atan(16.0 / camera.data.lens) / pi))
            elif camera.data.type == 'PERSP':
                # Standard camera otherwise would be default in pov
                tab_write("location  <0, 0, 0>\n")
                tab_write("look_at  <0, 0, -1>\n")
                tab_write("right <%s, 0, 0>\n" % -q_size)
                tab_write("up <0, 1, 0>\n")
                tab_write(
                    "angle  %f\n"
                    % (2 * atan(camera.data.sensor_width / 2 / camera.data.lens) * 180.0 / pi)
                )
    
            tab_write(
                "rotate  <%.6f, %.6f, %.6f>\n" % tuple([degrees(e) for e in matrix.to_3x3().to_euler()])
            )
            tab_write("translate <%.6f, %.6f, %.6f>\n" % matrix.translation[:])
            if camera.data.dof.use_dof and (focal_point != 0 or camera.data.dof.focus_object):
                tab_write("aperture %.3g\n" % (1 / (camera.data.dof.aperture_fstop * 10000) * 1000))
                tab_write(
                    "blur_samples %d %d\n"
                    % (camera.data.pov.dof_samples_min, camera.data.pov.dof_samples_max)
                )
                tab_write("variance 1/%d\n" % camera.data.pov.dof_variance)
                tab_write("confidence %.3g\n" % camera.data.pov.dof_confidence)
                if camera.data.dof.focus_object:
                    focal_ob = scene.objects[camera.data.dof.focus_object.name]
                    matrix_blur = global_matrix @ focal_ob.matrix_world
                    tab_write("focal_point <%.4f,%.4f,%.4f>\n" % matrix_blur.translation[:])
                else:
                    tab_write("focal_point <0, 0, %f>\n" % focal_point)
        if camera.data.pov.normal_enable:
            tab_write(
                "normal {%s %.4f turbulence %.4f scale %.4f}\n"
                % (
                    camera.data.pov.normal_patterns,
                    camera.data.pov.cam_normal,
                    camera.data.pov.turbulence,
                    camera.data.pov.scale,
                )
            )
        tab_write("}\n")
    
    
    exported_lights_count = 0
    
    
    def export_lights(lamps, file, scene, global_matrix, write_matrix, tab_write):
        """Translate lights from Blender UI to POV syntax and write to exported file."""
    
        # Incremented after each lamp export to declare its target
        # currently used for Fresnel diffuse shader as their slope vector:
        global exported_lights_count
    
        # Get all lamps and keep their count in a global variable
        for exported_lights_count, ob in enumerate(lamps, start=1):
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
            lamp = ob.data
    
            matrix = global_matrix @ ob.matrix_world
    
            # Color is no longer modified by energy
            # any way to directly get bpy_prop_array as tuple?
            color = tuple(lamp.color)
    
            tab_write("light_source {\n")
            tab_write("< 0,0,0 >\n")
            tab_write("color srgb<%.3g, %.3g, %.3g>\n" % color)
    
            if lamp.type == 'POINT':
                pass
            elif lamp.type == 'SPOT':
                tab_write("spotlight\n")
    
                # Falloff is the main radius from the centre line
                tab_write("falloff %.2f\n" % (degrees(lamp.spot_size) / 2.0))  # 1 TO 179 FOR BOTH
                tab_write("radius %.6f\n" % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))
    
                # Blender does not have a tightness equivalent, 0 is most like blender default.
                tab_write("tightness 0\n")  # 0:10f
    
                tab_write("point_at  <0, 0, -1>\n")
                if lamp.pov.use_halo:
                    tab_write("looks_like{\n")
                    tab_write("sphere{<0,0,0>,%.6f\n" % lamp.distance)
                    tab_write("hollow\n")
                    tab_write("material{\n")
                    tab_write("texture{\n")
                    tab_write("pigment{rgbf<1,1,1,%.4f>}\n" % (lamp.pov.halo_intensity * 5.0))
                    tab_write("}\n")
                    tab_write("interior{\n")
                    tab_write("media{\n")
                    tab_write("emission 1\n")
                    tab_write("scattering {1, 0.5}\n")
                    tab_write("density{\n")
                    tab_write("spherical\n")
                    tab_write("color_map{\n")
                    tab_write("[0.0 rgb <0,0,0>]\n")
                    tab_write("[0.5 rgb <1,1,1>]\n")
                    tab_write("[1.0 rgb <1,1,1>]\n")
                    tab_write("}\n")
                    tab_write("}\n")
                    tab_write("}\n")
                    tab_write("}\n")
                    tab_write("}\n")
                    tab_write("}\n")
                    tab_write("}\n")
            elif lamp.type == 'SUN':
                tab_write("parallel\n")
                tab_write("point_at  <0, 0, -1>\n")  # *must* be after 'parallel'
    
            elif lamp.type == 'AREA':
                tab_write("fade_distance %.6f\n" % (lamp.distance / 2.0))
                # Area lights have no falloff type, so always use blenders lamp quad equivalent
                # for those?
                tab_write("fade_power %d\n" % 2)
                size_x = lamp.size
                samples_x = lamp.pov.shadow_ray_samples_x
                if lamp.shape == 'SQUARE':
                    size_y = size_x
                    samples_y = samples_x
                else:
                    size_y = lamp.size_y
                    samples_y = lamp.pov.shadow_ray_samples_y
    
                tab_write(
                    "area_light <%.6f,0,0>,<0,%.6f,0> %d, %d\n" % (size_x, size_y, samples_x, samples_y)
                )
                tab_write("area_illumination\n")
                if lamp.pov.shadow_ray_sample_method == 'CONSTANT_JITTERED':
                    if lamp.pov.use_jitter:
                        tab_write("jitter\n")
                else:
                    tab_write("adaptive 1\n")
                    tab_write("jitter\n")
    
            # No shadow checked either at global or light level:
            if not scene.pov.use_shadows or (lamp.pov.shadow_method == 'NOSHADOW'):
                tab_write("shadowless\n")
    
            # Sun shouldn't be attenuated. Area lights have no falloff attribute so they
            # are put to type 2 attenuation a little higher above.
            if lamp.type not in {'SUN', 'AREA'}:
                if lamp.falloff_type == 'INVERSE_SQUARE':
                    tab_write("fade_distance %.6f\n" % (sqrt(lamp.distance / 2.0)))
                    tab_write("fade_power %d\n" % 2)  # Use blenders lamp quad equivalent
                elif lamp.falloff_type == 'INVERSE_LINEAR':
                    tab_write("fade_distance %.6f\n" % (lamp.distance / 2.0))
                    tab_write("fade_power %d\n" % 1)  # Use blenders lamp linear
                elif lamp.falloff_type == 'CONSTANT':
                    tab_write("fade_distance %.6f\n" % (lamp.distance / 2.0))
                    tab_write("fade_power %d\n" % 3)
                    # Use blenders lamp constant equivalent no attenuation.
                # Using Custom curve for fade power 3 for now.
                elif lamp.falloff_type == 'CUSTOM_CURVE':
                    tab_write("fade_power %d\n" % 4)
    
            write_matrix(matrix)
    
            tab_write("}\n")
    
            # v(A,B) rotates vector A about origin by vector B.
            file.write(
                "#declare lampTarget%s= vrotate(<%.4g,%.4g,%.4g>,<%.4g,%.4g,%.4g>);\n"
                % (
                    exported_lights_count,
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
                    ob.rotation_euler.x,
                    ob.rotation_euler.y,
                    ob.rotation_euler.z,
                )
            )
    
    
    def export_world(world, scene, global_matrix, tab_write):
        """write world as POV backgrounbd and sky_sphere to exported file """
        render = scene.pov
        camera = scene.camera
    
        # matrix = global_matrix @ camera.matrix_world  # view dependant for later use NOT USED
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
        if not world:
            return
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
        # These lines added to get sky gradient (visible with PNG output)
        if world:
            # For simple flat background:
            if not world.pov.use_sky_blend:
    
                # Non fully transparent background could premultiply alpha and avoid
                # anti-aliasing display issue:
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
                if render.alpha_mode == 'TRANSPARENT':
                    tab_write(
                        "background {rgbt<%.3g, %.3g, %.3g, 0.75>}\n" % (world.pov.horizon_color[:])
                    )
                # Currently using no alpha with Sky option:
                elif render.alpha_mode == 'SKY':
                    tab_write("background {rgbt<%.3g, %.3g, %.3g, 0>}\n" % (world.pov.horizon_color[:]))
                # StraightAlpha:
                # XXX Does not exists anymore
                # else:
                # tab_write("background {rgbt<%.3g, %.3g, %.3g, 1>}\n" % (world.pov.horizon_color[:]))
    
            world_tex_count = 0
            # For Background image textures
            for t in world.pov_texture_slots:  # risk to write several sky_spheres but maybe ok.
                if t:
                    tex = bpy.data.textures[t.texture]
                if tex.type is not None:
                    world_tex_count += 1
                    # XXX No enable checkbox for world textures yet (report it?)
                    # if t and tex.type == 'IMAGE' and t.use:
                    if tex.type == 'IMAGE':
                        image_filename = path_image(tex.image)
                        if tex.image.filepath != image_filename:
                            tex.image.filepath = image_filename
                        if image_filename != "" and t.use_map_blend:
                            textures_blend = image_filename
                            # colvalue = t.default_value
                            t_blend = t
    
                        # Commented below was an idea to make the Background image oriented as camera
                        # taken here:
                        # http://news.pov.org/pov.newusers/thread/%3Cweb.4a5cddf4e9c9822ba2f93e20@news.pov.org%3E/
                        # Replace 4/3 by the ratio of each image found by some custom or existing
                        # function
                        # mapping_blend = (" translate <%.4g,%.4g,%.4g> rotate z*degrees" \
                        #                "(atan((camLocation - camLookAt).x/(camLocation - " \
                        #                "camLookAt).y)) rotate x*degrees(atan((camLocation - " \
                        #                "camLookAt).y/(camLocation - camLookAt).z)) rotate y*" \
                        #                "degrees(atan((camLocation - camLookAt).z/(camLocation - " \
                        #                "camLookAt).x)) scale <%.4g,%.4g,%.4g>b" % \
                        #                (t_blend.offset.x / 10 , t_blend.offset.y / 10 ,
                        #                 t_blend.offset.z / 10, t_blend.scale.x ,
                        #                 t_blend.scale.y , t_blend.scale.z))
                        # using camera rotation valuesdirectly from blender seems much easier
                        if t_blend.texture_coords == 'ANGMAP':
                            mapping_blend = ""
                        else:
                            # POV-Ray "scale" is not a number of repetitions factor, but its
                            # inverse, a standard scale factor.
                            # 0.5 Offset is needed relatively to scale because center of the
                            # UV scale is 0.5,0.5 in blender and 0,0 in POV
                            # Further Scale by 2 and translate by -1 are
                            # required for the sky_sphere not to repeat
    
                            mapping_blend = (
                                "scale 2 scale <%.4g,%.4g,%.4g> translate -1 "
                                "translate <%.4g,%.4g,%.4g> rotate<0,0,0> "
                                % (
                                    (1.0 / t_blend.scale.x),
                                    (1.0 / t_blend.scale.y),
                                    (1.0 / t_blend.scale.z),
                                    0.5 - (0.5 / t_blend.scale.x) - t_blend.offset.x,
                                    0.5 - (0.5 / t_blend.scale.y) - t_blend.offset.y,
                                    t_blend.offset.z,
                                )
                            )
    
                            # The initial position and rotation of the pov camera is probably creating
                            # the rotation offset should look into it someday but at least background
                            # won't rotate with the camera now.
                        # Putting the map on a plane would not introduce the skysphere distortion and
                        # allow for better image scale matching but also some waay to chose depth and
                        # size of the plane relative to camera.
                        tab_write("sky_sphere {\n")
                        tab_write("pigment {\n")
                        tab_write(
                            "image_map{%s \"%s\" %s}\n"
                            % (image_format(textures_blend), textures_blend, img_map_bg(t_blend))
                        )
                        tab_write("}\n")
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
                        # The following layered pigment opacifies to black over the texture for
                        # transmit below 1 or otherwise adds to itself
    
                        tab_write("pigment {rgb 0 transmit %s}\n" % tex.intensity)
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
                        tab_write("}\n")
                        # tab_write("scale 2\n")
                        # tab_write("translate -1\n")
    
            # For only Background gradient
    
    
            if world_tex_count == 0 and world.pov.use_sky_blend:
                tab_write("sky_sphere {\n")
                tab_write("pigment {\n")
                # maybe Should follow the advice of POV doc about replacing gradient
                # for skysphere..5.5
                tab_write("gradient y\n")
                tab_write("color_map {\n")
                # XXX Does not exists anymore
                # if render.alpha_mode == 'STRAIGHT':
                # tab_write("[0.0 rgbt<%.3g, %.3g, %.3g, 1>]\n" % (world.pov.horizon_color[:]))
                # tab_write("[1.0 rgbt<%.3g, %.3g, %.3g, 1>]\n" % (world.pov.zenith_color[:]))
                if render.alpha_mode == 'TRANSPARENT':
                    tab_write("[0.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n" % (world.pov.horizon_color[:]))
                    # aa premult not solved with transmit 1
                    tab_write("[1.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n" % (world.pov.zenith_color[:]))
                else:
                    tab_write("[0.0 rgbt<%.3g, %.3g, %.3g, 0>]\n" % (world.pov.horizon_color[:]))
                    tab_write("[1.0 rgbt<%.3g, %.3g, %.3g, 0>]\n" % (world.pov.zenith_color[:]))
                tab_write("}\n")
                tab_write("}\n")
                tab_write("}\n")
                # Sky_sphere alpha (transmit) is not translating into image alpha the same
                # way as 'background'
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
    
            # if world.pov.light_settings.use_indirect_light:
            #    scene.pov.radio_enable=1
    
            # Maybe change the above to a function copyInternalRenderer settings when
            # user pushes a button, then:
            # scene.pov.radio_enable = world.pov.light_settings.use_indirect_light
            # and other such translations but maybe this would not be allowed either?
    
    
        # -----------------------------------------------------------------------------
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
    
        mist = world.mist_settings
    
        if mist.use_mist:
            tab_write("fog {\n")
            if mist.falloff == 'LINEAR':
                tab_write("distance %.6f\n" % ((mist.start + mist.depth) * 0.368))
            elif mist.falloff == 'QUADRATIC':  # n**2 or squrt(n)?
                tab_write("distance %.6f\n" % ((mist.start + mist.depth) ** 2 * 0.368))
            elif mist.falloff == 'INVERSE_QUADRATIC':  # n**2 or squrt(n)?
                tab_write("distance %.6f\n" % ((mist.start + mist.depth) ** 2 * 0.368))
            tab_write(
                "color rgbt<%.3g, %.3g, %.3g, %.3g>\n"
    
                % (*world.pov.horizon_color, (1.0 - mist.intensity))
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
            )
            # tab_write("fog_offset %.6f\n" % mist.start) #create a pov property to prepend
            # tab_write("fog_alt %.6f\n" % mist.height) #XXX right?
            # tab_write("turbulence 0.2\n")
            # tab_write("turb_depth 0.3\n")
            tab_write("fog_type 1\n")  # type2 for height
            tab_write("}\n")
        if scene.pov.media_enable:
            tab_write("media {\n")
            tab_write(
                "scattering { %d, rgb %.12f*<%.4g, %.4g, %.4g>\n"
                % (
                    int(scene.pov.media_scattering_type),
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
                    *(scene.pov.media_diffusion_color[:]),
                )
            )
            if scene.pov.media_scattering_type == '5':
                tab_write("eccentricity %.3g\n" % scene.pov.media_eccentricity)
            tab_write("}\n")
            tab_write(
                "absorption %.12f*<%.4g, %.4g, %.4g>\n"
                % (scene.pov.media_absorption_scale, *(scene.pov.media_absorption_color[:]))
            )
            tab_write("\n")
            tab_write("samples %.d\n" % scene.pov.media_samples)
            tab_write("}\n")
    
    
    
    # -----------------------------------------------------------------------------
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
    def export_rainbows(rainbows, file, scene, global_matrix, write_matrix, tab_write):
        """write all POV rainbows primitives to exported file """
    
        pov_mat_name = "Default_texture"
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
        for ob in rainbows:
            povdataname = ob.data.name  # enough? XXX not used nor matrix fn?
            angle = degrees(ob.data.spot_size / 2.5)  # radians in blender (2
            width = ob.data.spot_blend * 10
            distance = ob.data.shadow_buffer_clip_start
            # eps=0.0000001
            # angle = br/(cr+eps) * 10 #eps is small epsilon variable to avoid dividing by zero
            # width = ob.dimensions[2] #now let's say width of rainbow is the actual proxy height
            # formerly:
            # cz-bz # let's say width of the rainbow is height of the cone (interfacing choice
    
            # v(A,B) rotates vector A about origin by vector B.
            # and avoid a 0 length vector by adding 1
    
            # file.write("#declare %s_Target= vrotate(<%.6g,%.6g,%.6g>,<%.4g,%.4g,%.4g>);\n" % \
            # (povdataname, -(ob.location.x+0.1), -(ob.location.y+0.1), -(ob.location.z+0.1),
            # ob.rotation_euler.x, ob.rotation_euler.y, ob.rotation_euler.z))
    
            direction = (  # XXX currently not used (replaced by track to?)
                ob.location.x,
                ob.location.y,
                ob.location.z,
            )  # not taking matrix into account
            rmatrix = global_matrix @ ob.matrix_world
    
            # ob.rotation_euler.to_matrix().to_4x4() * mathutils.Vector((0,0,1))
            # XXX Is result of the below offset by 90 degrees?
            up = ob.matrix_world.to_3x3()[1].xyz  # * global_matrix
    
            # XXX TO CHANGE:
            # formerly:
            # tab_write("#declare %s = rainbow {\n"%povdataname)
    
            # clumsy for now but remove the rainbow from instancing
            # system because not an object. use lamps later instead of meshes
    
            # del data_ref[dataname]
            tab_write("rainbow {\n")
    
            tab_write("angle %.4f\n" % angle)
            tab_write("width %.4f\n" % width)
            tab_write("distance %.4f\n" % distance)
            tab_write("arc_angle %.4f\n" % ob.pov.arc_angle)
            tab_write("falloff_angle %.4f\n" % ob.pov.falloff_angle)
            tab_write("direction <%.4f,%.4f,%.4f>\n" % rmatrix.translation[:])
            tab_write("up <%.4f,%.4f,%.4f>\n" % (up[0], up[1], up[2]))
            tab_write("color_map {\n")
            tab_write("[0.000  color srgbt<1.0, 0.5, 1.0, 1.0>]\n")
            tab_write("[0.130  color srgbt<0.5, 0.5, 1.0, 0.9>]\n")
            tab_write("[0.298  color srgbt<0.2, 0.2, 1.0, 0.7>]\n")
            tab_write("[0.412  color srgbt<0.2, 1.0, 1.0, 0.4>]\n")
            tab_write("[0.526  color srgbt<0.2, 1.0, 0.2, 0.4>]\n")
            tab_write("[0.640  color srgbt<1.0, 1.0, 0.2, 0.4>]\n")
            tab_write("[0.754  color srgbt<1.0, 0.5, 0.2, 0.6>]\n")
            tab_write("[0.900  color srgbt<1.0, 0.2, 0.2, 0.7>]\n")
            tab_write("[1.000  color srgbt<1.0, 0.2, 0.2, 1.0>]\n")
            tab_write("}\n")
    
            # tab_write("texture {%s}\n"%pov_mat_name)
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
            # tab_write("rotate x*90\n")
            # matrix = global_matrix @ ob.matrix_world
            # write_matrix(matrix)
            tab_write("}\n")
            # continue #Don't render proxy mesh, skip to next object
    
    
    def export_smoke(file, smoke_obj_name, smoke_path, comments, global_matrix, write_matrix):
        """export Blender smoke type fluids to pov media using df3 library"""
    
        flowtype = -1  # XXX todo: not used yet? should trigger emissive for fire type
        depsgraph = bpy.context.evaluated_depsgraph_get()
        smoke_obj = bpy.data.objects[smoke_obj_name].evaluated_get(depsgraph)
        domain = None
        smoke_modifier = None
        # Search smoke domain target for smoke modifiers
        for mod in smoke_obj.modifiers:
            if mod.type == 'FLUID':
                if mod.fluid_type == 'DOMAIN':
                    domain = smoke_obj
                    smoke_modifier = mod
    
    
                elif mod.fluid_type == 'FLOW':
                    if mod.flow_settings.flow_type == 'BOTH':
                        flowtype = 2
                    elif mod.flow_settings.flow_type == 'FIRE':
                        flowtype = 1
                    elif mod.flow_settings.flow_type == 'SMOKE':
                        flowtype = 0
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
        eps = 0.000001  # XXX not used currently. restore from corner case ... zero div?
        if domain is not None:
            mod_set = smoke_modifier.domain_settings
            channeldata = []
            for v in mod_set.density_grid:
                channeldata.append(v.real)
                print(v.real)
    
            # -------- Usage in voxel texture:
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
            # channeldata = []
            # if channel == 'density':
            # for v in mod_set.density_grid:
            # channeldata.append(v.real)
    
            # if channel == 'fire':
            # for v in mod_set.flame_grid:
            # channeldata.append(v.real)
    
            resolution = mod_set.resolution_max
    
            big_res = [
                mod_set.domain_resolution[0],
                mod_set.domain_resolution[1],
                mod_set.domain_resolution[2]
            ]
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
    
            if mod_set.use_noise:
                big_res[0] = big_res[0] * (mod_set.noise_scale + 1)
                big_res[1] = big_res[1] * (mod_set.noise_scale + 1)
                big_res[2] = big_res[2] * (mod_set.noise_scale + 1)
            # else:
            # p = []
    
            # -------- gather smoke domain settings
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
            # BBox = domain.bound_box
            # p.append([BBox[0][0], BBox[0][1], BBox[0][2]])
            # p.append([BBox[6][0], BBox[6][1], BBox[6][2]])
            # mod_set = smoke_modifier.domain_settings
            # resolution = mod_set.resolution_max
            # smokecache = mod_set.point_cache
            # ret = read_cache(smokecache, mod_set.use_noise, mod_set.noise_scale + 1, flowtype)
            # res_x = ret[0]
            # res_y = ret[1]
            # res_z = ret[2]
            # density = ret[3]
            # fire = ret[4]
    
            # if res_x * res_y * res_z > 0:
    
            # -------- new cache format
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
            # big_res = []
            # big_res.append(res_x)
            # big_res.append(res_y)
            # big_res.append(res_z)
            # else:
            # max = domain.dimensions[0]
            # if (max - domain.dimensions[1]) < -eps:
            # max = domain.dimensions[1]
    
            # if (max - domain.dimensions[2]) < -eps:
            # max = domain.dimensions[2]
    
            # big_res = [int(round(resolution * domain.dimensions[0] / max, 0)),
            # int(round(resolution * domain.dimensions[1] / max, 0)),
            # int(round(resolution * domain.dimensions[2] / max, 0))]
    
            # if mod_set.use_noise:
            # big_res = [big_res[0] * (mod_set.noise_scale + 1),
            # big_res[1] * (mod_set.noise_scale + 1),
            # big_res[2] * (mod_set.noise_scale + 1)]
    
            # if channel == 'density':
            # channeldata = density
    
            # if channel == 'fire':
            # channeldata = fire
    
            # sc_fr = '%s/%s/%s/%05d' % (
            # efutil.export_path,
            # efutil.scene_filename(),
            # bpy.context.scene.name,
            # bpy.context.scene.frame_current
            # )
            #               if not os.path.exists( sc_fr ):
            #                   os.makedirs(sc_fr)
            #
            #               smoke_filename = '%s.smoke' % bpy.path.clean_name(domain.name)
            #               smoke_path = '/'.join([sc_fr, smoke_filename])
            #
            #               with open(smoke_path, 'wb') as smoke_file:
            #                   # Binary densitygrid file format
            #                   #
            #                   # File header
            #                   smoke_file.write(b'SMOKE')        #magic number
            #                   smoke_file.write(struct.pack('<I', big_res[0]))
            #                   smoke_file.write(struct.pack('<I', big_res[1]))
            #                   smoke_file.write(struct.pack('<I', big_res[2]))
            # Density data
            #                   smoke_file.write(struct.pack('<%df'%len(channeldata), *channeldata))
            #
            #               LuxLog('Binary SMOKE file written: %s' % (smoke_path))
    
            # return big_res[0], big_res[1], big_res[2], channeldata
    
            mydf3 = df3_library.df3(big_res[0], big_res[1], big_res[2])
            sim_sizeX, sim_sizeY, sim_sizeZ = mydf3.size()
            for x in range(sim_sizeX):
                for y in range(sim_sizeY):
                    for z in range(sim_sizeZ):
                        mydf3.set(x, y, z, channeldata[((z * sim_sizeY + y) * sim_sizeX + x)])
    
            try:
                mydf3.exportDF3(smoke_path)
            except ZeroDivisionError:
                print("Show smoke simulation in 3D view before export")
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
            print('Binary smoke.df3 file written in preview directory')
            if comments:
                file.write("\n//--Smoke--\n\n")
    
            # Note: We start with a default unit cube.
    
            #       This is mandatory to read correctly df3 data - otherwise we could just directly use
            #       bbox coordinates from the start, and avoid scale/translate operations at the end...
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
            file.write("box{<0,0,0>, <1,1,1>\n")
            file.write("    pigment{ rgbt 1 }\n")
            file.write("    hollow\n")
            file.write("    interior{ //---------------------\n")
            file.write("        media{ method 3\n")
            file.write("               emission <1,1,1>*1\n")  # 0>1 for dark smoke to white vapour
            file.write("               scattering{ 1, // Type\n")
            file.write("                  <1,1,1>*0.1\n")
            file.write("                } // end scattering\n")
    
            file.write("                density{density_file df3 \"%s\"\n" % smoke_path)
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
            file.write("                        color_map {\n")
            file.write("                        [0.00 rgb 0]\n")
            file.write("                        [0.05 rgb 0]\n")
            file.write("                        [0.20 rgb 0.2]\n")
            file.write("                        [0.30 rgb 0.6]\n")
            file.write("                        [0.40 rgb 1]\n")
            file.write("                        [1.00 rgb 1]\n")
            file.write("                       } // end color_map\n")
            file.write("               } // end of density\n")
            file.write("               samples %i // higher = more precise\n" % resolution)
            file.write("         } // end of media --------------------------\n")
            file.write("    } // end of interior\n")
    
            # START OF TRANSFORMATIONS
    
            # Size to consider here are bbox dimensions (i.e. still in object space, *before* applying
            # loc/rot/scale and other transformations (like parent stuff), aka matrix_world).
            bbox = smoke_obj.bound_box
            dim = [
                abs(bbox[6][0] - bbox[0][0]),
                abs(bbox[6][1] - bbox[0][1]),
                abs(bbox[6][2] - bbox[0][2]),
            ]
    
            # We scale our cube to get its final size and shapes but still in *object* space (same as Blender's bbox).
            file.write("scale<%.6g,%.6g,%.6g>\n" % (dim[0], dim[1], dim[2]))
    
            # We offset our cube such that (0,0,0) coordinate matches Blender's object center.
            file.write("translate<%.6g,%.6g,%.6g>\n" % (bbox[0][0], bbox[0][1], bbox[0][2]))
    
            # We apply object's transformations to get final loc/rot/size in world space!
            # Note: we could combine the two previous transformations with this matrix directly...
            write_matrix(global_matrix @ smoke_obj.matrix_world)
    
            # END OF TRANSFORMATIONS
    
            file.write("}\n")
    
            # file.write("               interpolate 1\n")
            # file.write("               frequency 0\n")
            # file.write("   }\n")
            # file.write("}\n")