Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
blender-addons
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
blender
blender-addons
Commits
5580c782
Commit
5580c782
authored
13 years ago
by
Campbell Barton
Browse files
Options
Downloads
Patches
Plain Diff
rewrote bezier spline solver, works much better now, and with 'S' shape curves
parent
57698c62
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/curve_utils.py
+113
-82
113 additions, 82 deletions
modules/curve_utils.py
with
113 additions
and
82 deletions
modules/curve_utils.py
+
113
−
82
View file @
5580c782
...
@@ -403,10 +403,10 @@ def points_to_bezier(points_orig,
...
@@ -403,10 +403,10 @@ def points_to_bezier(points_orig,
)
)
if
reverse
:
if
reverse
:
p_first
=
self
.
points
[
-
1
]
p_first
=
self
.
points
[
-
2
]
point_iter
=
reversed
(
self
.
points
[:
-
1
])
point_iter
=
reversed
(
self
.
points
[:
-
1
])
else
:
else
:
p_first
=
self
.
points
[
0
]
p_first
=
self
.
points
[
1
]
point_iter
=
self
.
points
[
1
:]
point_iter
=
self
.
points
[
1
:]
side
=
(
line_point_side_v2
(
l1
,
l2
,
p_first
.
co
)
<
0.0
)
side
=
(
line_point_side_v2
(
l1
,
l2
,
p_first
.
co
)
<
0.0
)
...
@@ -433,7 +433,13 @@ def points_to_bezier(points_orig,
...
@@ -433,7 +433,13 @@ def points_to_bezier(points_orig,
w1
=
(
p_test_1
-
p_apex
.
co
).
length
w1
=
(
p_test_1
-
p_apex
.
co
).
length
w2
=
(
p_test_2
-
p_apex_other
.
co
).
length
w2
=
(
p_test_2
-
p_apex_other
.
co
).
length
#assert(w1 + w2 != 0)
#try:
fac
=
w1
/
(
w1
+
w2
)
fac
=
w1
/
(
w1
+
w2
)
#except ZeroDivisionError:
# fac = 0.5
assert
(
fac
>=
0.0
and
fac
<=
1.0
)
p_apex_co
=
p_apex
.
co
.
lerp
(
p_apex_other
.
co
,
fac
)
p_apex_co
=
p_apex
.
co
.
lerp
(
p_apex_other
.
co
,
fac
)
p_apex_no
=
p_apex
.
no
.
lerp
(
p_apex_other
.
no
,
fac
)
p_apex_no
=
p_apex
.
no
.
lerp
(
p_apex_other
.
no
,
fac
)
...
@@ -442,11 +448,10 @@ def points_to_bezier(points_orig,
...
@@ -442,11 +448,10 @@ def points_to_bezier(points_orig,
# visualize_line(p_mid.to_3d(), corner.to_3d())
# visualize_line(p_mid.to_3d(), corner.to_3d())
# visualize_line(p_apex.co.to_3d(), p_apex_co.to_3d())
# visualize_line(p_apex.co.to_3d(), p_apex_co.to_3d())
ok
=
True
return
p_apex_co
,
p_apex_no
,
p_apex
break
return
p_apex_co
,
p_apex_no
# intersection not found
return
None
,
None
,
None
def
bezier_solve
(
self
):
def
bezier_solve
(
self
):
"""
Calculate bezier handles,
"""
Calculate bezier handles,
...
@@ -464,97 +469,115 @@ def points_to_bezier(points_orig,
...
@@ -464,97 +469,115 @@ def points_to_bezier(points_orig,
p2
=
self
.
points
[
-
1
]
p2
=
self
.
points
[
-
1
]
# since we have even spacing we can just pick the middle point
# p_mid = self.points[len(self.points) // 2]
# vec, fac = mathutils.geometry.intersect_point_line(m_mid, p1, p2)
# ------
# take 2
p_vec
=
(
p2
.
co
-
p1
.
co
).
normalized
()
# vector between line and point directions
# TODO, ensure < 180d curves
l1_no
=
(
p1
.
no
+
p_vec
).
normalized
()
l2_no
=
((
-
p2
.
no
)
-
p_vec
).
normalized
()
p1_a
,
p1_b
=
p1
.
co
,
p1
.
co
+
p1
.
no
l1_co
=
p1
.
co
+
l1_no
p2_a
,
p2_b
=
p2
.
co
,
p2
.
co
-
p2
.
no
l2_co
=
p2
.
co
+
l2_no
isect
=
intersect_line_line
(
p1_a
.
to_3d
(),
p1_b
.
to_3d
(),
p2_a
.
to_3d
(),
p2_b
.
to_3d
(),
)
if
isect
is
None
:
# if isect is None, the line is paralelle
# just add simple handles
self
.
bezier_h1
=
p1
.
co
.
lerp
(
p2
.
co
,
1.0
/
3.0
)
self
.
bezier_h2
=
p2
.
co
.
lerp
(
p1
.
co
,
1.0
/
3.0
)
return
corner
=
isect
[
0
].
xy
p_mid
=
p1
.
co
.
lerp
(
p2
.
co
,
0.5
)
dist_best
=
10000000.0
p_best
=
None
side
=
(
line_point_side_v2
(
p_mid
,
corner
,
p1
.
co
)
<
0.0
)
ok
=
False
p_apex_co
,
p_apex_no
=
self
.
intersect_line
(
p_mid
,
corner
)
# visualize_line(p1.co, l1_co)
# visualize_line(p2.co, l2_co)
line_ix_p1_co
,
line_ix_p1_no
,
line_ix_p1
=
\
self
.
intersect_line
(
p1
.
co
,
l1_co
,
)
line_ix_p2_co
,
line_ix_p2_no
,
line_ix_p2
=
\
self
.
intersect_line
(
p2
.
co
,
l2_co
,
reverse
=
True
,
)
if
line_ix_p1_co
is
None
:
line_ix_p1_co
,
line_ix_p1_no
,
line_ix_p1
=
\
p1
.
next
.
co
,
p1
.
next
.
no
,
p1
.
next
if
line_ix_p2_co
is
None
:
line_ix_p2_co
,
line_ix_p2_no
,
line_ix_p2
=
\
p2
.
prev
.
co
,
p2
.
prev
.
no
,
p2
.
prev
# vis_circle_object(line_ix_p1_co)
# vis_circle_object(line_ix_p2_co)
l1_max
=
0.0
p1_apex_co
=
None
p
=
self
.
points
[
1
]
while
p
and
(
not
p
.
is_joint
)
and
p
!=
line_ix_p1
:
ix
=
intersect_point_line
(
p
.
co
,
p1
.
co
,
l1_co
)[
0
].
xy
length
=
(
ix
-
p
.
co
).
length
if
length
>
l1_max
:
l1_max
=
length
p1_apex_co
=
p
.
co
p
=
p
.
next
l2_max
=
0.0
p2_apex_co
=
None
p
=
self
.
points
[
-
2
]
while
p
and
(
not
p
.
is_joint
)
and
p
!=
line_ix_p2
:
ix
=
intersect_point_line
(
p
.
co
,
p2
.
co
,
l2_co
)[
0
].
xy
length
=
(
ix
-
p
.
co
).
length
if
length
>
l2_max
:
l2_max
=
length
p2_apex_co
=
p
.
co
p
=
p
.
prev
v1
=
(
p2
.
co
-
p1
.
co
).
normalized
()
v2
=
p_apex_no
.
copy
()
# find the point on the line which aligns with the apex point.
if
p1_apex_co
is
None
:
# first place handles, must be distance to apex * 1.333...
p1_apex_co
=
p1
.
next
.
co
if
1
:
if
p2_apex_co
is
None
:
p_mid_apex_align
=
intersect_point_line
(
p_apex_co
,
p2_apex_co
=
p2
.
prev
.
co
p1
.
co
,
p2
.
co
)[
0
]
else
:
p_mid_apex_align
=
p_mid
# visualize_line(p_mid_apex_align.to_3d(), p_apex_co.to_3d())
# The point is always 75% of the handle distance
l1_tan
=
(
p1
.
no
-
p1
.
no
.
project
(
l1_no
)).
normalized
()
# here we extend the distance from the line to the curve apex
l2_tan
=
-
(
p2
.
no
-
p2
.
no
.
project
(
l2_no
)).
normalized
()
# by 33.33..% to compensate for this.
h_sca
=
1
# (p_apex_co - p_mid_apex_align.xy).length / 0.75
# values are good!
#~ visualize_line(p1.co, p1.co + l1_tan)
#~ visualize_line(p2.co, p2.co + l2_tan)
#~ visualize_line(p1.co, p1.co + l1_no)
#~ visualize_line(p2.co, p2.co + l2_no)
# calculate bias based on the position of the other point allong
# the tangent.
# first need to reflect the second normal for angle comparison
# first fist need the reflection normal
no_ref
=
p_vec
.
to_3d
().
cross
(
p2
.
no
.
to_3d
()).
cross
(
p_vec
.
to_3d
()).
normalized
()
l2_no_ref
=
p2
.
no
.
reflect
(
no_ref
).
normalized
()
del
no_ref
from
math
import
pi
from
math
import
pi
# This could be tweaked but seems to work well
fac_fac
=
(
p1
.
co
-
p2
.
co
).
length
*
(
0.5
/
0.75
)
*
p1
.
no
.
angle
(
l2_no_ref
)
/
pi
# -1.0 - 1.0
fac_1
=
intersect_point_line
(
p2_apex_co
,
p1
.
co
,
p1
.
co
+
l1_tan
)[
1
]
*
fac_fac
bias
=
v1
.
angle
(
v2
)
/
(
pi
/
2
)
fac_2
=
intersect_point_line
(
p1_apex_co
,
p2
.
co
,
p2
.
co
+
l2_tan
)[
1
]
*
fac_fac
print
(
bias
)
if
abs
(
bias
)
<
0.001
:
h_sca_1
=
h_sca
h_sca_2
=
h_sca
elif
line_point_side_v2
(
Vector
((
0.0
,
0.0
)),
v2
,
v1
)
<
0
:
h_sca_1
=
h_sca
/
(
1.0
+
bias
)
h_sca_2
=
h_sca
*
(
1.0
+
bias
)
else
:
h_sca_1
=
h_sca
*
(
1.0
+
bias
)
h_sca_2
=
h_sca
/
(
1.0
+
bias
)
# find the factor
# TODO, scale the factors some useful way
fac
=
intersect_point_line
(
p_apex_co
,
p_mid
,
corner
)[
1
]
# assert(fac >= 0.0)
h_sca_1
=
1
h1_fac
=
((
p1
.
co
-
p1_apex_co
).
length
/
0.75
)
-
fac_1
h_sca_2
=
1
h2_fac
=
((
p2
.
co
-
p2_apex_co
).
length
/
0.75
)
-
fac_2
h1
=
p1
.
co
.
lerp
(
corner
,
(
fac
/
0.75
)
*
h_sca_1
)
h2
=
p2
.
co
.
lerp
(
corner
,
(
fac
/
0.75
)
*
h_sca_2
)
# rare cases this can mess up, because of almost straight lines
# good for debugging single splines
h1
=
p1
.
co
+
(
p1
.
no
*
h1_fac
)
# vis_curve_spline(p1.co, h1, p2.co, h2)
h2
=
p2
.
co
-
(
p2
.
no
*
h2_fac
)
self
.
handle_left
=
h1
self
.
handle_left
=
h1
self
.
handle_right
=
h2
self
.
handle_right
=
h2
'''
visualize_line(p1.co, p1_apex_co)
visualize_line(p1_apex_co, p2_apex_co)
visualize_line(p2.co, p2_apex_co)
visualize_line(p1.co, p2.co)
'''
def
bezier_error
(
self
):
def
bezier_error
(
self
):
from
mathutils.geometry
import
interpolate_bezier
from
mathutils.geometry
import
interpolate_bezier
...
@@ -818,7 +841,7 @@ def points_to_bezier(points_orig,
...
@@ -818,7 +841,7 @@ def points_to_bezier(points_orig,
#curve.split_func_map_point(lambda p: (p.angle_filter() >= 0) != \
#curve.split_func_map_point(lambda p: (p.angle_filter() >= 0) != \
# (p.prev.angle_filter() >= 0))
# (p.prev.angle_filter() >= 0))
curve
.
split_func_map_point
(
swap_side
)
#
curve.split_func_map_point(swap_side)
# now split based on total spline angle.
# now split based on total spline angle.
...
@@ -833,10 +856,18 @@ def points_to_bezier(points_orig,
...
@@ -833,10 +856,18 @@ def points_to_bezier(points_orig,
)
)
# debug only!
# to test how good the bezier spline fitting is without corrections
'''
for s in curve.splines:
s.bezier_solve()
'''
# or recursively subdivide...
curve
.
split_func_spline
(
lambda
s
:
curve
.
split_func_spline
(
lambda
s
:
len
(
s
.
points
)
//
2
len
(
s
.
points
)
//
2
if
((
s
.
bezier_solve
(),
s
.
bezier_error
())[
1
]
>
if
((
s
.
bezier_solve
(),
s
.
bezier_error
())[
1
]
>
bezier_tolerance
)
and
(
len
(
s
.
points
)
>
2
)
bezier_tolerance
)
and
(
len
(
s
.
points
))
else
-
1
,
else
-
1
,
recursive
=
True
,
recursive
=
True
,
)
)
...
@@ -853,7 +884,7 @@ def points_to_bezier(points_orig,
...
@@ -853,7 +884,7 @@ def points_to_bezier(points_orig,
if
__name__
==
"
__main__
"
:
if
__name__
==
"
__main__
"
:
print
(
"
A
"
)
print
(
"
A
"
)
bpy
.
ops
.
wm
.
open_mainfile
(
filepath
=
"
/root/curve_test.blend
"
)
bpy
.
ops
.
wm
.
open_mainfile
(
filepath
=
"
/root/curve_test
1
.blend
"
)
ob
=
bpy
.
data
.
objects
[
"
Curve
"
]
ob
=
bpy
.
data
.
objects
[
"
Curve
"
]
points
=
[
p
.
co
.
xy
for
s
in
ob
.
data
.
splines
for
p
in
s
.
points
]
points
=
[
p
.
co
.
xy
for
s
in
ob
.
data
.
splines
for
p
in
s
.
points
]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment