Skip to content
Snippets Groups Projects
Commit 5580c782 authored by Campbell Barton's avatar Campbell Barton
Browse files

rewrote bezier spline solver, works much better now, and with 'S' shape curves

parent 57698c62
No related branches found
No related tags found
No related merge requests found
......@@ -403,10 +403,10 @@ def points_to_bezier(points_orig,
)
if reverse:
p_first = self.points[-1]
p_first = self.points[-2]
point_iter = reversed(self.points[:-1])
else:
p_first = self.points[0]
p_first = self.points[1]
point_iter = self.points[1:]
side = (line_point_side_v2(l1, l2, p_first.co) < 0.0)
......@@ -433,7 +433,13 @@ def points_to_bezier(points_orig,
w1 = (p_test_1 - p_apex.co).length
w2 = (p_test_2 - p_apex_other.co).length
#assert(w1 + w2 != 0)
#try:
fac = w1 / (w1 + w2)
#except ZeroDivisionError:
# fac = 0.5
assert(fac >= 0.0 and fac <= 1.0)
p_apex_co = p_apex.co.lerp(p_apex_other.co, fac)
p_apex_no = p_apex.no.lerp(p_apex_other.no, fac)
......@@ -442,11 +448,10 @@ def points_to_bezier(points_orig,
# visualize_line(p_mid.to_3d(), corner.to_3d())
# visualize_line(p_apex.co.to_3d(), p_apex_co.to_3d())
ok = True
break
return p_apex_co, p_apex_no
return p_apex_co, p_apex_no, p_apex
# intersection not found
return None, None, None
def bezier_solve(self):
""" Calculate bezier handles,
......@@ -464,97 +469,115 @@ def points_to_bezier(points_orig,
p2 = self.points[-1]
# since we have even spacing we can just pick the middle point
# p_mid = self.points[len(self.points) // 2]
# vec, fac = mathutils.geometry.intersect_point_line(m_mid, p1, p2)
# ------
# take 2
p_vec = (p2.co - p1.co).normalized()
# TODO, ensure < 180d curves
# vector between line and point directions
l1_no = (p1.no + p_vec).normalized()
l2_no = ((-p2.no) - p_vec).normalized()
p1_a, p1_b = p1.co, p1.co + p1.no
p2_a, p2_b = p2.co, p2.co - p2.no
isect = intersect_line_line(p1_a.to_3d(),
p1_b.to_3d(),
p2_a.to_3d(),
p2_b.to_3d(),
)
if isect is None:
# if isect is None, the line is paralelle
# just add simple handles
self.bezier_h1 = p1.co.lerp(p2.co, 1.0 / 3.0)
self.bezier_h2 = p2.co.lerp(p1.co, 1.0 / 3.0)
return
corner = isect[0].xy
p_mid = p1.co.lerp(p2.co, 0.5)
dist_best = 10000000.0
p_best = None
side = (line_point_side_v2(p_mid, corner, p1.co) < 0.0)
ok = False
l1_co = p1.co + l1_no
l2_co = p2.co + l2_no
p_apex_co, p_apex_no = self.intersect_line(p_mid, corner)
# visualize_line(p1.co, l1_co)
# visualize_line(p2.co, l2_co)
line_ix_p1_co, line_ix_p1_no, line_ix_p1 = \
self.intersect_line(p1.co,
l1_co,
)
line_ix_p2_co, line_ix_p2_no, line_ix_p2 = \
self.intersect_line(p2.co,
l2_co,
reverse=True,
)
if line_ix_p1_co is None:
line_ix_p1_co, line_ix_p1_no, line_ix_p1 = \
p1.next.co, p1.next.no, p1.next
if line_ix_p2_co is None:
line_ix_p2_co, line_ix_p2_no, line_ix_p2 = \
p2.prev.co, p2.prev.no, p2.prev
# vis_circle_object(line_ix_p1_co)
# vis_circle_object(line_ix_p2_co)
l1_max = 0.0
p1_apex_co = None
p = self.points[1]
while p and (not p.is_joint) and p != line_ix_p1:
ix = intersect_point_line(p.co, p1.co, l1_co)[0].xy
length = (ix - p.co).length
if length > l1_max:
l1_max = length
p1_apex_co = p.co
p = p.next
l2_max = 0.0
p2_apex_co = None
p = self.points[-2]
while p and (not p.is_joint) and p != line_ix_p2:
ix = intersect_point_line(p.co, p2.co, l2_co)[0].xy
length = (ix - p.co).length
if length > l2_max:
l2_max = length
p2_apex_co = p.co
p = p.prev
v1 = (p2.co - p1.co).normalized()
v2 = p_apex_no.copy()
# find the point on the line which aligns with the apex point.
# first place handles, must be distance to apex * 1.333...
if 1:
p_mid_apex_align = intersect_point_line(p_apex_co,
p1.co,
p2.co)[0]
else:
p_mid_apex_align = p_mid
if p1_apex_co is None:
p1_apex_co = p1.next.co
if p2_apex_co is None:
p2_apex_co = p2.prev.co
# visualize_line(p_mid_apex_align.to_3d(), p_apex_co.to_3d())
# The point is always 75% of the handle distance
# here we extend the distance from the line to the curve apex
# by 33.33..% to compensate for this.
h_sca = 1 # (p_apex_co - p_mid_apex_align.xy).length / 0.75
l1_tan = (p1.no - p1.no.project(l1_no)).normalized()
l2_tan = -(p2.no - p2.no.project(l2_no)).normalized()
# values are good!
#~ visualize_line(p1.co, p1.co + l1_tan)
#~ visualize_line(p2.co, p2.co + l2_tan)
#~ visualize_line(p1.co, p1.co + l1_no)
#~ visualize_line(p2.co, p2.co + l2_no)
# calculate bias based on the position of the other point allong
# the tangent.
# first need to reflect the second normal for angle comparison
# first fist need the reflection normal
no_ref = p_vec.to_3d().cross(p2.no.to_3d()).cross(p_vec.to_3d()).normalized()
l2_no_ref = p2.no.reflect(no_ref).normalized()
del no_ref
from math import pi
# This could be tweaked but seems to work well
fac_fac = (p1.co - p2.co).length * (0.5 / 0.75) * p1.no.angle(l2_no_ref) / pi
# -1.0 - 1.0
bias = v1.angle(v2) / (pi / 2)
print(bias)
if abs(bias) < 0.001:
h_sca_1 = h_sca
h_sca_2 = h_sca
elif line_point_side_v2(Vector((0.0, 0.0)), v2, v1) < 0:
h_sca_1 = h_sca / (1.0 + bias)
h_sca_2 = h_sca * (1.0 + bias)
else:
h_sca_1 = h_sca * (1.0 + bias)
h_sca_2 = h_sca / (1.0 + bias)
fac_1 = intersect_point_line(p2_apex_co, p1.co, p1.co + l1_tan)[1] * fac_fac
fac_2 = intersect_point_line(p1_apex_co, p2.co, p2.co + l2_tan)[1] * fac_fac
# find the factor
fac = intersect_point_line(p_apex_co, p_mid, corner)[1]
# assert(fac >= 0.0)
# TODO, scale the factors some useful way
h_sca_1 = 1
h_sca_2 = 1
h1 = p1.co.lerp(corner, (fac / 0.75) * h_sca_1)
h2 = p2.co.lerp(corner, (fac / 0.75) * h_sca_2)
# rare cases this can mess up, because of almost straight lines
h1_fac = ((p1.co - p1_apex_co).length / 0.75) - fac_1
h2_fac = ((p2.co - p2_apex_co).length / 0.75) - fac_2
# good for debugging single splines
# vis_curve_spline(p1.co, h1, p2.co, h2)
h1 = p1.co + (p1.no * h1_fac)
h2 = p2.co - (p2.no * h2_fac)
self.handle_left = h1
self.handle_right = h2
'''
visualize_line(p1.co, p1_apex_co)
visualize_line(p1_apex_co, p2_apex_co)
visualize_line(p2.co, p2_apex_co)
visualize_line(p1.co, p2.co)
'''
def bezier_error(self):
from mathutils.geometry import interpolate_bezier
......@@ -818,7 +841,7 @@ def points_to_bezier(points_orig,
#curve.split_func_map_point(lambda p: (p.angle_filter() >= 0) != \
# (p.prev.angle_filter() >= 0))
curve.split_func_map_point(swap_side)
# curve.split_func_map_point(swap_side)
# now split based on total spline angle.
......@@ -833,10 +856,18 @@ def points_to_bezier(points_orig,
)
# debug only!
# to test how good the bezier spline fitting is without corrections
'''
for s in curve.splines:
s.bezier_solve()
'''
# or recursively subdivide...
curve.split_func_spline(lambda s:
len(s.points) // 2
if ((s.bezier_solve(), s.bezier_error())[1] >
bezier_tolerance) and (len(s.points) > 2)
bezier_tolerance) and (len(s.points))
else -1,
recursive=True,
)
......@@ -853,7 +884,7 @@ def points_to_bezier(points_orig,
if __name__ == "__main__":
print("A")
bpy.ops.wm.open_mainfile(filepath="/root/curve_test.blend")
bpy.ops.wm.open_mainfile(filepath="/root/curve_test1.blend")
ob = bpy.data.objects["Curve"]
points = [p.co.xy for s in ob.data.splines for p in s.points]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment