Skip to content
Snippets Groups Projects
Commit f3070e7e authored by Campbell Barton's avatar Campbell Barton
Browse files

removng curve utils, Id like to keep working on this but currently its not used anywhere.

parent f25c170b
No related branches found
No related tags found
No related merge requests found
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
import bpy
def vis_curve_object():
scene = bpy.data.scenes[0] # weak!
cu = bpy.data.curves.new(name="Line", type='CURVE')
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
return ob
def vis_curve_spline(p1, h1, p2, h2):
ob = vis_curve_object()
spline = ob.data.splines.new(type='BEZIER')
spline.bezier_points.add(1)
spline.bezier_points[0].co = p1.to_3d()
spline.bezier_points[1].co = p2.to_3d()
spline.bezier_points[0].handle_right = h1.to_3d()
spline.bezier_points[1].handle_left = h2.to_3d()
def vis_circle_object(co, rad=1.0):
import math
scene = bpy.data.scenes[0] # weak!
ob = bpy.data.objects.new(name="Circle", object_data=None)
ob.rotation_euler.x = math.pi / 2
ob.location = co.to_3d()
ob.empty_draw_size = rad
ob.layers = [True] * 20
base = scene.objects.link(ob)
return ob
def visualize_line(p1, p2, p3=None, rad=None):
pair = p1.to_3d(), p2.to_3d()
ob = vis_curve_object()
spline = ob.data.splines.new(type='POLY')
spline.points.add(1)
for co, v in zip((pair), spline.points):
v.co.xyz = co
if p3:
spline = ob.data.splines.new(type='POLY')
spline.points[0].co.xyz = p3.to_3d()
if rad is not None:
vis_circle_object(p3, rad)
def treat_points(points,
double_limit=0.0001,
):
# first remove doubles
tot_len = 0.0
if double_limit != 0.0:
i = len(points) - 1
while i > 0:
length = (points[i] - points[i - 1]).length
if length < double_limit:
del points[i]
if i >= len(points):
i -= 1
else:
tot_len += length
i -= 1
return tot_len
def solve_curvature(p1, p2, n1, n2, fac, fallback):
""" Add a nice circular curvature on
"""
from mathutils.geometry import (intersect_line_line,
)
p1_a = p1 + n1
p2_a = p2 - n2
isect = intersect_line_line(p1,
p1_a,
p2,
p2_a,
)
if isect:
corner = isect[0].lerp(isect[1], 0.5)
else:
corner = None
if corner:
p1_first_order = p1.lerp(corner, fac)
p2_first_order = corner.lerp(p2, fac)
co = p1_first_order.lerp(p2_first_order, fac)
return co
else:
# cant interpolate. just return interpolated value
return fallback.copy() # p1.lerp(p2, fac)
def points_to_bezier(points_orig,
double_limit=0.0001,
kink_tolerance=0.25,
bezier_tolerance=0.05, # error distance, scale dependant
subdiv=8,
angle_span=0.95, # 1.0 tries to evaluate splines of 180d
):
import math
from mathutils import Vector
class Point(object):
__slots__ = ("co",
"angle",
"no",
"is_joint",
"next",
"prev",
)
def __init__(self, co):
self.co = co
self.is_joint = False
def calc_angle(self):
if self.prev is None or self.next is None:
self.angle = 0.0
else:
va = self.co - self.prev.co
vb = self.next.co - self.co
self.angle = va.angle(vb, 0.0)
def angle_diff(self):
""" use for detecting joints, detect difference in angle from
surrounding points.
"""
if self.prev is None or self.next is None:
return 0.0
else:
if (self.angle > self.prev.angle and
self.angle > self.next.angle):
return abs(self.angle - self.prev.angle) / math.pi
else:
return 0.0
def calc_normal(self):
v1 = v2 = None
if self.prev and not self.prev.is_joint:
v1 = (self.co - self.prev.co).normalized()
if self.next and not self.next.is_joint:
v2 = (self.next.co - self.co).normalized()
if v1 and v2:
self.no = (v1 + v2).normalized()
elif v1:
self.no = v1
elif v2:
self.no = v2
else:
print("Warning, assigning dummy normal")
self.no = Vector((0.0, 1, 0.0))
class Spline(object):
__slots__ = ("points",
"handle_left",
"handle_right",
"next",
"prev",
)
def __init__(self, points):
self.points = points
def link_points(self):
if hasattr(self.points[0], "prev"):
raise Exception("already linked")
p_prev = None
for p in self.points:
p.prev = p_prev
p_prev = p
p_prev = None
for p in reversed(self.points):
p.next = p_prev
p_prev = p
def split(self, i, is_joint=False):
prev = self.prev
next = self.next
if is_joint:
self.points[i].is_joint = True
# share a point
spline_a = Spline(self.points[:i + 1])
spline_b = Spline(self.points[i:])
# invalidate self, dont reuse!
self.points = None
spline_a.next = spline_b
spline_b.prev = spline_a
spline_a.prev = prev
spline_b.next = next
if prev:
prev.next = spline_a
if next:
next.prev = spline_b
return spline_a, spline_b
def calc_angle(self):
for p in self.points:
p.calc_angle()
def calc_normal(self):
for p in self.points:
p.calc_normal()
def calc_all(self):
self.link_points()
self.calc_angle()
self.calc_normal()
#~ def total_angle(self):
#~ return abs(sum((p.angle for p in self.points)))
def redistribute(self, segment_length, smooth=False):
if len(self.points) == 1:
return
from mathutils.geometry import intersect_line_sphere
p_line = p = self.points[0]
points = [(p.co.copy(), p.co.copy())]
p = p.next
def point_add(co, p=None):
co = co.copy()
co_smooth = co.copy()
if smooth:
if p is None:
pass # works ok but no smoothing
elif (p.prev.no - p.no).length < 0.001:
pass # normals are too similar, paralelle
elif (p.angle > 0.0) != (p.prev.angle > 0.0):
pass
else:
# visualize_line(p.co, p.co + p.no)
# this assumes co is on the line
fac = ((p.prev.co - co).length /
(p.prev.co - p.co).length)
assert(fac >= 0.0 and fac <= 1.0)
co_smooth = solve_curvature(p.prev.co,
p.co,
p.prev.no,
p.no,
fac,
co,
)
points.append((co, co_smooth))
def point_step(p):
if p.is_joint or p.next is None:
point_add(p.co)
return None
else:
return p.next
print("START")
while p:
# we want the first pont past the segment size
#if p.is_joint:
# vis_circle_object(p.co)
length = (points[-1][0] - p.co).length
if abs(length - segment_length) < 0.00001:
# close enough to be considered on the circle bounds
point_add(p.co)
p_line = p
p = point_step(p)
elif length < segment_length:
p = point_step(p)
else:
# the point is further then the segment width
p_start = points[-1][0] if p.prev is p_line else p.prev.co
if (p_start - points[-1][0]).length > segment_length:
raise Exception("eek2")
if (p.co - points[-1][0]).length < segment_length:
raise Exception("eek3")
# print(p_start, p.co, points[-1][0], segment_length)
i1, i2 = intersect_line_sphere(p_start,
p.co,
points[-1][0],
segment_length,
)
# print()
# print(i1, i2)
# assert(i1 is not None)
if i1 is not None:
point_add(i1, p)
p_line = p.prev
elif i2:
raise Exception("err")
elif i1 is None and i2 is None:
visualize_line(p_start,
p.co,
points[-1][0],
segment_length,
)
# XXX FIXME
# raise Exception("BAD!s")
point_add(p.co)
p_line = p
p = point_step(p)
joint = self.points[0].is_joint, self.points[-1].is_joint
self.points = [Point(p[1]) for p in points]
self.points[0].is_joint, self.points[-1].is_joint = joint
self.calc_all()
# raise Exception("END")
def intersect_line(self, l1, l2, reverse=False):
""" Spectial kind of intersection, works in 3d on the plane
defimed by the points normal and the line.
"""
from mathutils.geometry import (intersect_point_line,
)
if reverse:
p_first = self.points[-1]
no = -self.points[-1].no
point_iter = reversed(self.points[:-1])
else:
p_first = self.points[0]
no = self.points[0].no
point_iter = self.points[1:]
# calculate the line right angles to the line
bi_no = (no - no.project(l2 - l1)).normalized()
bi_l1 = p_first.co
bi_l2 = p_first.co + bi_no
for p_apex in point_iter:
ix, fac = intersect_point_line(p_apex.co, bi_l1, bi_l2)
if fac < 0.0001:
if reverse:
p_apex_other = p_apex.next
else:
p_apex_other = p_apex.prev
# find the exact point on the line between the apex and
# the middle
p_test_1 = intersect_point_line(p_apex.co,
l1,
l2)[0]
p_test_2 = intersect_point_line(p_apex_other.co,
l1,
l2)[0]
w1 = (p_test_1 - p_apex.co).length
w2 = (p_test_2 - p_apex_other.co).length
#assert(w1 + w2 != 0)
try:
fac = w1 / (w1 + w2)
except ZeroDivisionError:
fac = 0.5
assert(fac >= 0.0 and fac <= 1.0)
p_apex_co = p_apex.co.lerp(p_apex_other.co, fac)
p_apex_no = p_apex.no.lerp(p_apex_other.no, fac)
p_apex_no.normalize()
# visualize_line(p_mid.to_3d(), corner.to_3d())
# visualize_line(p_apex.co.to_3d(), p_apex_co.to_3d())
return p_apex_co, p_apex_no, p_apex
# intersection not found
return None, None, None
@staticmethod
def bez_solve(p0, p1, p2, p3, u, v):
ui = 1.0 - u
vi = 1.0 - v
u_p3 = u * u * u
v_p3 = v * v * v
ui_p3 = ui * ui * ui
vi_p3 = vi * vi * vi
a = 3.0 * ui * ui * u
b = 3.0 * ui * u * u
c = 3.0 * vi * vi * v
d = 3.0 * vi * v * v
det = a * d - b * c
if det == 0.0:
assert(0)
return 0
q1 = p1 - (ui_p3 * p0 + u_p3 * p3)
q2 = p2 - (vi_p3 * p0 + v_p3 * p3)
return ((d * q1 - b * q2) / det,
(-c * q1 + a * q2) / det
)
def bezier_solve__math1(self):
""" Calculate bezier handles,
assume the splines have been broken up.
http://polymathprogrammer.com/
"""
def get(f, min=0.0, max=1.0):
f = (f * (max - min) + min)
return self.points[int((len(self.points) - 1) * f)].co
p1 = get(0.0)
p2 = get(1.0)
i1 = get(1/3)
i2 = get(2/3)
pos = __class__.bez_solve(p1, i1, i2, p2, 1.0 / 3.0, 2.0 / 3.0)
self.handle_left = self.points[0].co + (pos[0] - self.points[0].co)
self.handle_right = self.points[-1].co + (pos[1] - self.points[-1].co)
def bezier_solve__math2(self):
def get(f, min=0.0, max=1.0):
f = (f * (max - min) + min)
return self.points[int((len(self.points) - 1) * f)].co
p1 = get(0.0, min=0.0, max=0.5)
p2 = get(1.0, min=0.0, max=0.5)
i1 = get(1/3, min=0.0, max=0.5)
i2 = get(2/3, min=0.0, max=0.5)
pos_a = __class__.bez_solve(p1, i1, i2, p2, 1.0 / 3.0, 2.0 / 3.0)
p1 = get(0.0, min=0.5, max=1.0)
p2 = get(1.0, min=0.5, max=1.0)
i1 = get(1/3, min=0.5, max=1.0)
i2 = get(2/3, min=0.5, max=1.0)
pos_b = __class__.bez_solve(p1, i1, i2, p2, 1.0 / 3.0, 2.0 / 3.0)
self.handle_left = self.points[0].co + (pos_a[0] - self.points[0].co) * 2
self.handle_right = self.points[-1].co + (pos_b[1] - self.points[-1].co) * 2
def bezier_solve__inkscape(self):
# static void
# estimate_bi(Point bezier[4], unsigned const ei,
# Point const data[], double const u[], unsigned const len)
def estimate_bi(bezier, ei, data, u):
def B0(u): return ( ( 1.0 - u ) * ( 1.0 - u ) * ( 1.0 - u ) )
def B1(u): return ( 3 * u * ( 1.0 - u ) * ( 1.0 - u ) )
def B2(u): return ( 3 * u * u * ( 1.0 - u ) )
def B3(u): return ( u * u * u )
# assert( not (1 <= ei and ei <= 2))
oi = 3 - ei
num = [0.0, 0.0, 0.0]
den = 0.0
for i in range(len(data)):
ui = u[i];
b = [
B0(ui),
B1(ui),
B2(ui),
B3(ui)
]
for d in range(3):
num[d] += (b[ei] * (b[0] * bezier[0][d] +
b[oi] * bezier[oi][d] +
b[3] * bezier[3][d] +
- data[i][d]))
den -= b[ei] * b[ei]
if den:
for d in range(3):
bezier[ei][d] = num[d] / den
else:
bezier[ei] = (oi * bezier[0] + ei * bezier[3]) / 3.0
bezier = [
self.points[0].co,
self.points[0].co.lerp(self.points[-1].co, 1/3),
self.points[0].co.lerp(self.points[-1].co, 2/3),
self.points[-1].co,
]
data = [p.co for p in self.points]
u = [i / len(self.points) for i in range(len(self.points))]
estimate_bi(bezier, 1, data, u)
estimate_bi(bezier, 2, data, u)
estimate_bi(bezier, 1, data, u)
estimate_bi(bezier, 2, data, u)
estimate_bi(bezier, 1, data, u)
estimate_bi(bezier, 2, data, u)
estimate_bi(bezier, 1, data, u)
estimate_bi(bezier, 2, data, u)
self.handle_left = bezier[1]
self.handle_right = bezier[2]
def bezier_solve_ideasman42(self):
from mathutils.geometry import (intersect_point_line,
intersect_line_line,
)
# get a line
p1 = self.points[0]
p2 = self.points[-1]
# ------
# take 2
p_vec = (p2.co - p1.co).normalized()
# vector between line and point directions
l1_no = (p1.no + p_vec).normalized()
l2_no = ((-p2.no) - p_vec).normalized()
l1_co = p1.co + l1_no
l2_co = p2.co + l2_no
# visualize_line(p1.co, l1_co)
# visualize_line(p2.co, l2_co)
line_ix_p1_co, line_ix_p1_no, line_ix_p1 = \
self.intersect_line(p1.co,
l1_co,
)
line_ix_p2_co, line_ix_p2_no, line_ix_p2 = \
self.intersect_line(p2.co,
l2_co,
reverse=True,
)
if line_ix_p1_co is None:
line_ix_p1_co, line_ix_p1_no, line_ix_p1 = \
p1.next.co, p1.next.no, p1.next
if line_ix_p2_co is None:
line_ix_p2_co, line_ix_p2_no, line_ix_p2 = \
p2.prev.co, p2.prev.no, p2.prev
# vis_circle_object(line_ix_p1_co)
# vis_circle_object(line_ix_p2_co)
l1_max = 0.0
p1_apex_co = None
p = self.points[1]
while p and (not p.is_joint) and p != line_ix_p1:
ix = intersect_point_line(p.co, p1.co, l1_co)[0]
length = (ix - p.co).length
if length > l1_max:
l1_max = length
p1_apex_co = p.co
p = p.next
l2_max = 0.0
p2_apex_co = None
p = self.points[-2]
while p and (not p.is_joint) and p != line_ix_p2:
ix = intersect_point_line(p.co, p2.co, l2_co)[0]
length = (ix - p.co).length
if length > l2_max:
l2_max = length
p2_apex_co = p.co
p = p.prev
if p1_apex_co is None:
p1_apex_co = p1.next.co
if p2_apex_co is None:
p2_apex_co = p2.prev.co
l1_tan = (p1.no - p1.no.project(l1_no)).normalized()
l2_tan = -(p2.no - p2.no.project(l2_no)).normalized()
# values are good!
visualize_line(p1.co, p1.co + l1_tan)
visualize_line(p2.co, p2.co + l2_tan)
visualize_line(p1.co, p1.co + l1_no)
visualize_line(p2.co, p2.co + l2_no)
# calculate bias based on the position of the other point allong
# the tangent.
# first need to reflect the second normal for angle comparison
# first fist need the reflection normal
# angle between - 0 - 1
from math import pi
no_ref = p_vec.cross(p2.no).cross(p_vec).normalized()
l2_no_ref = p2.no.reflect(no_ref).normalized()
no_angle = p1.no.angle(l2_no_ref) / pi
del no_ref
# This could be tweaked but seems to work well
# fac_fac = 1.0
print("angle", "%.6f" % no_angle)
fac_1 = intersect_point_line(p2_apex_co,
p1.co,
p1.co + l1_tan * (p1.co - p1_apex_co).length,
)[1] * (1.0 + no_angle)
fac_2 = intersect_point_line(p1_apex_co,
p2.co,
p2.co + l2_tan * (p2.co - p2_apex_co).length,
)[1] * (1.0 + no_angle)
h1_fac = abs(fac_1)
h2_fac = abs(fac_2)
h1 = p1.co + (p1.no * h1_fac)
h2 = p2.co - (p2.no * h2_fac)
self.handle_left = h1
self.handle_right = h2
'''
visualize_line(p1.co, p1_apex_co)
visualize_line(p1_apex_co, p2_apex_co)
visualize_line(p2.co, p2_apex_co)
visualize_line(p1.co, p2.co)
'''
def bezier_solve(self):
return self.bezier_solve__inkscape()
def bezier_error(self, error_max=-1.0, test_count=8):
from mathutils.geometry import interpolate_bezier
test_points = interpolate_bezier(self.points[0].co,
self.handle_left,
self.handle_right,
self.points[-1].co,
test_count,
)
from mathutils.geometry import intersect_point_line
error = 0.0
# this is a rough method measuring the error but should be ok
# TODO. dont test against every single point.
for co in test_points:
# initial values
co_best = self.points[0].co
length_best = (co - co_best).length
for p in self.points[1:]:
# dist to point
length = (co - p.co).length
if length < length_best:
length_best = length
co_best = p.co
p_ix, fac = intersect_point_line(co, p.co, p.prev.co)
p_ix = p_ix
if fac >= 0.0 and fac <= 1.0:
length = (co - p_ix).length
if length < length_best:
length_best = length
co_best = p_ix
error += length_best / test_count
if error_max != -1.0 and error > error_max:
return True
if error_max != -1.0:
return False
else:
return error
class Curve(object):
__slots__ = ("splines",
)
def __init__(self, splines):
self.splines = splines
def link_splines(self):
s_prev = None
for s in self.splines:
s.prev = s_prev
s_perv = s
s_prev = None
for s in reversed(self.splines):
s.next = s_prev
s_perv = s
def calc_data(self):
for s in self.splines:
s.calc_all()
self.link_splines()
def split_func_map_point(self, func, is_joint=False):
""" func takes a point and returns true on split
return True if any splits are made.
"""
s_index = 0
s = self.splines[s_index]
while s:
assert(self.splines[s_index] == s)
for i, p in enumerate(s.points):
if i == 0 or i >= len(s.points) - 1:
continue
if func(p):
split_pair = s.split(i, is_joint=is_joint)
# keep list in sync
self.splines[s_index:s_index + 1] = split_pair
# advance on main while loop
s = split_pair[0]
assert(self.splines[s_index] == s)
break
s = s.next
s_index += 1
def split_func_spline(self, func, is_joint=False, recursive=False):
""" func takes a spline and returns the point index on split or -1
return True if any splits are made.
"""
s_index = 0
s = self.splines[s_index]
while s:
assert(self.splines[s_index] == s)
i = func(s)
if i != -1:
split_pair = s.split(i, is_joint=is_joint)
# keep list in sync
self.splines[s_index:s_index + 1] = split_pair
# advance on main while loop
s = split_pair[0]
assert(self.splines[s_index] == s)
if recursive:
continue
s = s.next
s_index += 1
def validate(self):
s_prev = None
iii = 0
for s in self.splines:
assert(s.prev == s_prev)
if s_prev:
assert(s_prev.next == s)
s_prev = s
iii += 1
def redistribute(self, segment_length, smooth=False):
for s in self.splines:
s.redistribute(segment_length, smooth)
def to_blend_data(self):
""" Points to blender data, debugging only
"""
scene = bpy.data.scenes[0] # weak!
for base in scene.object_bases:
base.select = False
cu = bpy.data.curves.new(name="Test", type='CURVE')
for s in self.splines:
spline = cu.splines.new(type='POLY')
spline.points.add(len(s.points) - 1)
for p, v in zip(s.points, spline.points):
v.co.xyz = p.co
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
scene.objects.active = ob
base.select = True
# base.layers = [True] * 20
print(ob, "Done")
def to_blend_curve(self, cu=None, cu_matrix=None):
""" return new bezier spline datablock or add to an existing
"""
if not cu:
cu = bpy.data.curves.new(name="Curve", type='CURVE')
spline = cu.splines.new(type='BEZIER')
spline.bezier_points.add(len(self.splines))
s_prev = None
for i, bp in enumerate(spline.bezier_points):
if i < len(self.splines):
s = self.splines[i]
else:
s = None
if s_prev and s:
pt = s.points[0]
hl = s_prev.handle_right
hr = s.handle_left
elif s:
pt = s.points[0]
hr = s.handle_left
hl = (pt.co + (pt.co - hr))
elif s_prev:
pt = s_prev.points[-1]
hl = s_prev.handle_right
hr = (pt.co + (pt.co - hl))
else:
assert(0)
bp.co.xyz = pt.co
bp.handle_left.xyz = hl
bp.handle_right.xyz = hr
handle_type = 'FREE'
if pt.is_joint == False or (s_prev and s) == False:
# XXX, this should not happen, but since it can
# at least dont allow allignment to break the curve output
if (pt.co - hl).angle(hr - pt.co, 0.0) < 0.1:
handle_type = 'ALIGNED'
bp.handle_left_type = bp.handle_right_type = handle_type
s_prev = s
scene = bpy.data.scenes[0] # weak!
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
scene.objects.active = ob
base.select = True
return cu
points = list(points_orig)
# remove doubles
tot_length = treat_points(points)
# calculate segment spacing
segment_length = (tot_length / len(points)) / subdiv
curve = Curve([Spline([Point(p) for p in points])])
curve.calc_data()
if kink_tolerance != 0.0:
pass
curve.split_func_map_point(lambda p: p.angle_diff() > kink_tolerance,
is_joint=True,
)
# return
# curve.validate()
# higher quality but not really needed
'''
curve.redistribute(segment_length / 4.0, smooth=True)
curve.redistribute(segment_length, smooth=False)
'''
curve.redistribute(segment_length, smooth=True)
# debug only!
# to test how good the bezier spline fitting is without corrections
'''
for s in curve.splines:
s.bezier_solve()
'''
'''
def angle_point(s):
a = 0.0
a_best = len(s.points) // 2
i = 1
for p in s.points[2:-2]:
if p.angle > a:
a = p.angle
a_best = i
i += 1
return a_best
'''
# or recursively subdivide...
curve.split_func_spline(lambda s:
len(s.points) // 2 # angle_point(s)
if ((s.bezier_solve(),
s.bezier_error(bezier_tolerance))[1]
and (len(s.points)))
else -1,
recursive=True,
)
error = 0.0
for s in curve.splines:
error += s.bezier_error()
print("%d :: %.6f" % (len(curve.splines), error))
# VISUALIZE
# curve.to_blend_data()
curve.to_blend_curve()
if __name__ == "__main__":
if 0:
bpy.ops.wm.open_mainfile(filepath="/root/curve_test3.blend")
for c in "Curve Curve.001 Curve.002 Curve.003 Curve.004 Curve.005".split():
print("---", c)
ob = bpy.data.objects[c]
points = [p.co.xyz for s in ob.data.splines for p in s.points]
print("points_to_bezier 1")
points_to_bezier(points)
print("points_to_bezier 2")
else:
bpy.ops.wm.open_mainfile(filepath="/root/curve_test2.blend")
ob = bpy.data.objects['Curve']
points = [p.co.xyz for s in ob.data.splines for p in s.points]
print("points_to_bezier 1")
points_to_bezier(points)
print("points_to_bezier 2")
bpy.ops.wm.save_as_mainfile(filepath="/root/curve_test_edit.blend",
copy=True)
print("done!")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment