Skip to content
Snippets Groups Projects
uvcalc_smart_project.py 34.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • # ##### BEGIN GPL LICENSE BLOCK #####
    
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    
    # ##### END GPL LICENSE BLOCK #####
    
    Campbell Barton's avatar
    Campbell Barton committed
    # TODO <pep8 compliant>
    
    from mathutils import Matrix, Vector, geometry
    
    
    DEG_TO_RAD = 0.017453292519943295 # pi/180.0
    
    SMALL_NUM = 0.00000001  # see bug [#31598] why we dont have smaller values
    
    
    global USER_FILL_HOLES
    global USER_FILL_HOLES_QUALITY
    USER_FILL_HOLES = None
    USER_FILL_HOLES_QUALITY = None
    
    def pointInTri2D(v, v1, v2, v3):
    
        key = v1.x, v1.y, v2.x, v2.y, v3.x, v3.y
    
    
        # Commented because its slower to do the bounds check, we should really cache the bounds info for each face.
    
        '''
        # BOUNDS CHECK
        xmin= 1000000
        ymin= 1000000
    
        xmax= -1000000
        ymax= -1000000
    
        for i in (0,2,4):
            x= key[i]
            y= key[i+1]
    
            if xmax<x:	xmax= x
            if ymax<y:	ymax= y
            if xmin>x:	xmin= x
            if ymin>y:	ymin= y
    
        x= v.x
        y= v.y
    
        if x<xmin or x>xmax or y < ymin or y > ymax:
            return False
        # Done with bounds check
        '''
        try:
            mtx = dict_matrix[key]
            if not mtx:
                return False
        except:
            side1 = v2 - v1
            side2 = v3 - v1
    
            nor = side1.cross(side2)
    
    
            mtx = Matrix((side1, side2, nor))
    
            # Zero area 2d tri, even tho we throw away zero area faces
    
            # the projection UV can result in a zero area UV.
            if not mtx.determinant():
                dict_matrix[key] = None
                return False
    
            mtx.invert()
    
            dict_matrix[key] = mtx
    
        uvw = (v - v1) * mtx
        return 0 <= uvw[0] and 0 <= uvw[1] and uvw[0] + uvw[1] <= 1
    
    
    
    def boundsIsland(faces):
    
        minx = maxx = faces[0].uv[0][0] # Set initial bounds.
        miny = maxy = faces[0].uv[0][1]
        # print len(faces), minx, maxx, miny , maxy
        for f in faces:
            for uv in f.uv:
                x= uv.x
                y= uv.y
                if x<minx: minx= x
                if y<miny: miny= y
                if x>maxx: maxx= x
                if y>maxy: maxy= y
    
        return minx, miny, maxx, maxy
    
    
    """
    def boundsEdgeLoop(edges):
    
        minx = maxx = edges[0][0] # Set initial bounds.
        miny = maxy = edges[0][1]
        # print len(faces), minx, maxx, miny , maxy
        for ed in edges:
            for pt in ed:
                x= pt[0]
                y= pt[1]
                if x<minx: x= minx
                if y<miny: y= miny
                if x>maxx: x= maxx
                if y>maxy: y= maxy
    
        return minx, miny, maxx, maxy
    
    """
    
    # Turns the islands into a list of unpordered edges (Non internal)
    
    # Only for UV's
    
    # only returns outline edges for intersection tests. and unique points.
    
    def island2Edge(island):
    
    
        # Vert index edges
        edges = {}
    
        unique_points= {}
    
        for f in island:
            f_uvkey= map(tuple, f.uv)
    
    
            for vIdx, edkey in enumerate(f.edge_keys):
                unique_points[f_uvkey[vIdx]] = f.uv[vIdx]
    
                if f.v[vIdx].index > f.v[vIdx-1].index:
                    i1= vIdx-1;	i2= vIdx
                else:
                    i1= vIdx;	i2= vIdx-1
    
    
                try:	edges[ f_uvkey[i1], f_uvkey[i2] ] *= 0 # sets any edge with more than 1 user to 0 are not returned.
    
                except:	edges[ f_uvkey[i1], f_uvkey[i2] ] = (f.uv[i1] - f.uv[i2]).length,
    
        # If 2 are the same then they will be together, but full [a,b] order is not correct.
    
        # Sort by length
    
    
        length_sorted_edges = [(Vector(key[0]), Vector(key[1]), value) for key, value in edges.items() if value != 0]
    
        try:	length_sorted_edges.sort(key = lambda A: -A[2]) # largest first
        except:	length_sorted_edges.sort(lambda A, B: cmp(B[2], A[2]))
    
        # Its okay to leave the length in there.
        #for e in length_sorted_edges:
        #	e.pop(2)
    
        # return edges and unique points
    
        return length_sorted_edges, [v.to_3d() for v in unique_points.values()]
    
    # ========================= NOT WORKING????
    
    # Find if a points inside an edge loop, unordered.
    
    # pt is and x/y
    # edges are a non ordered loop of edges.
    
    # offsets are the edge x and y offset.
    
    """
    def pointInEdges(pt, edges):
    
        #
        x1 = pt[0]
        y1 = pt[1]
    
        # Point to the left of this line.
        x2 = -100000
        y2 = -10000
        intersectCount = 0
        for ed in edges:
            xi, yi = lineIntersection2D(x1,y1, x2,y2, ed[0][0], ed[0][1], ed[1][0], ed[1][1])
    
            if xi is not None: # Is there an intersection.
    
                intersectCount+=1
    
        return intersectCount % 2
    
    """
    
    def pointInIsland(pt, island):
    
    Campbell Barton's avatar
    Campbell Barton committed
        vec1, vec2, vec3 = Vector(), Vector(), Vector()
    
        for f in island:
            vec1.x, vec1.y = f.uv[0]
            vec2.x, vec2.y = f.uv[1]
            vec3.x, vec3.y = f.uv[2]
    
            if pointInTri2D(pt, vec1, vec2, vec3):
                return True
    
            if len(f.v) == 4:
                vec1.x, vec1.y = f.uv[0]
                vec2.x, vec2.y = f.uv[2]
                vec3.x, vec3.y = f.uv[3]
                if pointInTri2D(pt, vec1, vec2, vec3):
                    return True
        return False
    
    
    
    # box is (left,bottom, right, top)
    def islandIntersectUvIsland(source, target, SourceOffset):
    
        # Is 1 point in the box, inside the vertLoops
        edgeLoopsSource = source[6] # Pretend this is offset
        edgeLoopsTarget = target[6]
    
        # Edge intersect test
        for ed in edgeLoopsSource:
            for seg in edgeLoopsTarget:
    
                i = geometry.intersect_line_line_2d(seg[0],
                                                    seg[1],
                                                    SourceOffset+ed[0],
                                                    SourceOffset+ed[1],
                                                    )
    
                if i:
                    return 1 # LINE INTERSECTION
    
        # 1 test for source being totally inside target
    
        SourceOffset.resize_3d()
    
        for pv in source[7]:
            if pointInIsland(pv+SourceOffset, target[0]):
                return 2 # SOURCE INSIDE TARGET
    
    
        # 2 test for a part of the target being totally inside the source.
    
        for pv in target[7]:
            if pointInIsland(pv-SourceOffset, source[0]):
                return 3 # PART OF TARGET INSIDE SOURCE.
    
        return 0 # NO INTERSECTION
    
    
    
    def optiRotateUvIsland(faces):
    
        uv_points = [uv for f in faces  for uv in f.uv]
        angle = geometry.box_fit_2d(uv_points)
    
        if angle != 0.0:
            mat = Matrix.Rotation(angle, 2)
            i = 0 # count the serialized uv/vectors
            for f in faces:
                for j, k in enumerate(range(i, len(f.v) + i)):
                    f.uv[j][:] = mat * uv_points[k]
                i += len(f.v)
    
    
    
    # Takes an island list and tries to find concave, hollow areas to pack smaller islands into.
    def mergeUvIslands(islandList):
    
        global USER_FILL_HOLES
        global USER_FILL_HOLES_QUALITY
    
    
        # Pack islands to bottom LHS
        # Sync with island
    
        #islandTotFaceArea = [] # A list of floats, each island area
        #islandArea = [] # a list of tuples ( area, w,h)
    
    
        decoratedIslandList = []
    
        islandIdx = len(islandList)
        while islandIdx:
            islandIdx-=1
            minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])
            w, h = maxx-minx, maxy-miny
    
            totFaceArea = 0
    
    Campbell Barton's avatar
    Campbell Barton committed
            offset= Vector((minx, miny))
    
            for f in islandList[islandIdx]:
                for uv in f.uv:
                    uv -= offset
    
                totFaceArea += f.area
    
            islandBoundsArea = w*h
            efficiency = abs(islandBoundsArea - totFaceArea)
    
            # UV Edge list used for intersections as well as unique points.
            edges, uniqueEdgePoints = island2Edge(islandList[islandIdx])
    
            decoratedIslandList.append([islandList[islandIdx], totFaceArea, efficiency, islandBoundsArea, w,h, edges, uniqueEdgePoints])
    
    
        # Sort by island bounding box area, smallest face area first.
        # no.. chance that to most simple edge loop first.
        decoratedIslandListAreaSort =decoratedIslandList[:]
    
        decoratedIslandListAreaSort.sort(key = lambda A: A[3])
    
        # sort by efficiency, Least Efficient first.
        decoratedIslandListEfficSort = decoratedIslandList[:]
        # decoratedIslandListEfficSort.sort(lambda A, B: cmp(B[2], A[2]))
    
        decoratedIslandListEfficSort.sort(key = lambda A: -A[2])
    
        # ================================================== THESE CAN BE TWEAKED.
        # This is a quality value for the number of tests.
        # from 1 to 4, generic quality value is from 1 to 100
        USER_STEP_QUALITY =   ((USER_FILL_HOLES_QUALITY - 1) / 25.0) + 1
    
        # If 100 will test as long as there is enough free space.
        # this is rarely enough, and testing takes a while, so lower quality speeds this up.
    
        # 1 means they have the same quality
        USER_FREE_SPACE_TO_TEST_QUALITY = 1 + (((100 - USER_FILL_HOLES_QUALITY)/100.0) *5)
    
        #print 'USER_STEP_QUALITY', USER_STEP_QUALITY
        #print 'USER_FREE_SPACE_TO_TEST_QUALITY', USER_FREE_SPACE_TO_TEST_QUALITY
    
        removedCount = 0
    
        areaIslandIdx = 0
        ctrl = Window.Qual.CTRL
        BREAK= False
        while areaIslandIdx < len(decoratedIslandListAreaSort) and not BREAK:
            sourceIsland = decoratedIslandListAreaSort[areaIslandIdx]
    
            # Already packed?
    
            if not sourceIsland[0]:
                areaIslandIdx+=1
            else:
                efficIslandIdx = 0
                while efficIslandIdx < len(decoratedIslandListEfficSort) and not BREAK:
    
                    if Window.GetKeyQualifiers() & ctrl:
                        BREAK= True
                        break
    
    
                    # Now we have 2 islands, if the efficiency of the islands lowers theres an
    
                    # increasing likely hood that we can fit merge into the bigger UV island.
                    # this ensures a tight fit.
    
                    # Just use figures we have about user/unused area to see if they might fit.
    
                    targetIsland = decoratedIslandListEfficSort[efficIslandIdx]
    
    
                    if sourceIsland[0] == targetIsland[0] or\
                    not targetIsland[0] or\
                    not sourceIsland[0]:
                        pass
                    else:
    
    
                        #~ ([island, totFaceArea, efficiency, islandArea, w,h])
                        # Wasted space on target is greater then UV bounding island area.
    
                        #~ if targetIsland[3] > (sourceIsland[2]) and\ #
                        #~ print USER_FREE_SPACE_TO_TEST_QUALITY
    
                        if targetIsland[2] > (sourceIsland[1] * USER_FREE_SPACE_TO_TEST_QUALITY) and\
                        targetIsland[4] > sourceIsland[4] and\
                        targetIsland[5] > sourceIsland[5]:
    
                            # DEBUG # print '%.10f  %.10f' % (targetIsland[3], sourceIsland[1])
    
                            # These enough spare space lets move the box until it fits
    
                            # How many times does the source fit into the target x/y
                            blockTestXUnit = targetIsland[4]/sourceIsland[4]
                            blockTestYUnit = targetIsland[5]/sourceIsland[5]
    
                            boxLeft = 0
    
    
    
                            # Distance we can move between whilst staying inside the targets bounds.
    
                            testWidth = targetIsland[4] - sourceIsland[4]
                            testHeight = targetIsland[5] - sourceIsland[5]
    
                            # Increment we move each test. x/y
                            xIncrement = (testWidth / (blockTestXUnit * ((USER_STEP_QUALITY/50)+0.1)))
                            yIncrement = (testHeight / (blockTestYUnit * ((USER_STEP_QUALITY/50)+0.1)))
    
                            # Make sure were not moving less then a 3rg of our width/height
                            if xIncrement<sourceIsland[4]/3:
                                xIncrement= sourceIsland[4]
                            if yIncrement<sourceIsland[5]/3:
                                yIncrement= sourceIsland[5]
    
    
                            boxLeft = 0 # Start 1 back so we can jump into the loop.
                            boxBottom= 0 #-yIncrement
    
    
                            #~ testcount= 0
    
    
                            while boxBottom <= testHeight:
                                # Should we use this? - not needed for now.
    
                                #~ if Window.GetKeyQualifiers() & ctrl:
                                #~     BREAK= True
                                #~     break
    
    
                                ##testcount+=1
                                #print 'Testing intersect'
    
    Campbell Barton's avatar
    Campbell Barton committed
                                Intersect = islandIntersectUvIsland(sourceIsland, targetIsland, Vector((boxLeft, boxBottom)))
    
                                if Intersect == 1:  # Line intersect, don't bother with this any more
    
                                    pass
    
                                if Intersect == 2:  # Source inside target
    
                                    We have an intersection, if we are inside the target
    
                                    then move us 1 whole width across,
    
                                    Its possible this is a bad idea since 2 skinny Angular faces
                                    could join without 1 whole move, but its a lot more optimal to speed this up
    
                                    since we have already tested for it.
    
    
                                    It gives about 10% speedup with minimal errors.
    
                                    # Move the test along its width + SMALL_NUM
    
                                    #boxLeft += sourceIsland[4] + SMALL_NUM
                                    boxLeft += sourceIsland[4]
                                elif Intersect == 0: # No intersection?? Place it.
                                    # Progress
                                    removedCount +=1
    
    #XXX								Window.DrawProgressBar(0.0, 'Merged: %i islands, Ctrl to finish early.' % removedCount)
    
    
                                    # Move faces into new island and offset
                                    targetIsland[0].extend(sourceIsland[0])
    
    Campbell Barton's avatar
    Campbell Barton committed
                                    offset= Vector((boxLeft, boxBottom))
    
    
                                    for f in sourceIsland[0]:
                                        for uv in f.uv:
                                            uv+= offset
    
    
    
    
                                    # Move edge loop into new and offset.
                                    # targetIsland[6].extend(sourceIsland[6])
                                    #while sourceIsland[6]:
                                    targetIsland[6].extend( [ (\
                                         (e[0]+offset, e[1]+offset, e[2])\
                                    ) for e in sourceIsland[6] ] )
    
    
    
                                    # Sort by edge length, reverse so biggest are first.
    
                                    try:	 targetIsland[6].sort(key = lambda A: A[2])
                                    except:	targetIsland[6].sort(lambda B,A: cmp(A[2], B[2] ))
    
    
                                    targetIsland[7].extend(sourceIsland[7])
    
    Campbell Barton's avatar
    Campbell Barton committed
                                    offset= Vector((boxLeft, boxBottom, 0.0))
    
    
    
                                    # Decrement the efficiency
                                    targetIsland[1]+=sourceIsland[1] # Increment totFaceArea
                                    targetIsland[2]-=sourceIsland[1] # Decrement efficiency
                                    # IF we ever used these again, should set to 0, eg
                                    sourceIsland[2] = 0 # No area if anyone wants to know
    
                                    break
    
    
    
                                # INCREMENT NEXT LOCATION
    
                                if boxLeft > testWidth:
                                    boxBottom += yIncrement
                                    boxLeft = 0.0
                                else:
                                    boxLeft += xIncrement
                            ##print testcount
    
                    efficIslandIdx+=1
            areaIslandIdx+=1
    
        # Remove empty islands
        i = len(islandList)
        while i:
            i-=1
            if not islandList[i]:
                del islandList[i] # Can increment islands removed here.
    
    
    # Takes groups of faces. assumes face groups are UV groups.
    def getUvIslands(faceGroups, me):
    
        # Get seams so we don't cross over seams
        edge_seams = {} # should be a set
    
                edge_seams[ed.key] = None # dummy var- use sets!
        # Done finding seams
    
    
        islandList = []
    
    
    #XXX	Window.DrawProgressBar(0.0, 'Splitting %d projection groups into UV islands:' % len(faceGroups))
    
        #print '\tSplitting %d projection groups into UV islands:' % len(faceGroups),
        # Find grouped faces
    
        faceGroupIdx = len(faceGroups)
    
        while faceGroupIdx:
            faceGroupIdx-=1
            faces = faceGroups[faceGroupIdx]
    
            if not faces:
                continue
    
            # Build edge dict
            edge_users = {}
    
            for i, f in enumerate(faces):
                for ed_key in f.edge_keys:
                    if ed_key in edge_seams: # DELIMIT SEAMS! ;)
                        edge_users[ed_key] = [] # so as not to raise an error
                    else:
                        try:		edge_users[ed_key].append(i)
                        except:		edge_users[ed_key] = [i]
    
            # Modes
            # 0 - face not yet touched.
            # 1 - added to island list, and need to search
    
            # 2 - touched and searched - don't touch again.
    
            face_modes = [0] * len(faces) # initialize zero - untested.
    
            face_modes[0] = 1 # start the search with face 1
    
            newIsland = []
    
            newIsland.append(faces[0])
    
    
            ok = True
            while ok:
    
                ok = True
                while ok:
                    ok= False
                    for i in range(len(faces)):
                        if face_modes[i] == 1: # search
                            for ed_key in faces[i].edge_keys:
                                for ii in edge_users[ed_key]:
                                    if i != ii and face_modes[ii] == 0:
                                        face_modes[ii] = ok = 1 # mark as searched
                                        newIsland.append(faces[ii])
    
    
                            # mark as searched, don't look again.
    
                            face_modes[i] = 2
    
                islandList.append(newIsland)
    
                ok = False
                for i in range(len(faces)):
                    if face_modes[i] == 0:
                        newIsland = []
                        newIsland.append(faces[i])
    
                        face_modes[i] = ok = 1
                        break
                # if not ok will stop looping
    
    
    #XXX	Window.DrawProgressBar(0.1, 'Optimizing Rotation for %i UV Islands' % len(islandList))
    
    
        for island in islandList:
            optiRotateUvIsland(island)
    
        return islandList
    
    
    
    def packIslands(islandList):
    
    #XXX		Window.DrawProgressBar(0.1, 'Merging Islands (Ctrl: skip merge)...')
    
            mergeUvIslands(islandList) # Modify in place
    
    
        # Now we have UV islands, we need to pack them.
    
    
        # Make a synchronized list with the islands
        # so we can box pack the islands.
    
        packBoxes = []
    
        # Keep a list of X/Y offset so we can save time by writing the
        # uv's and packed data in one pass.
        islandOffsetList = []
    
        islandIdx = 0
    
        while islandIdx < len(islandList):
            minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])
    
            w, h = maxx-minx, maxy-miny
    
            if USER_ISLAND_MARGIN:
                minx -= USER_ISLAND_MARGIN# *w
                miny -= USER_ISLAND_MARGIN# *h
                maxx += USER_ISLAND_MARGIN# *w
                maxy += USER_ISLAND_MARGIN# *h
    
                # recalc width and height
                w, h = maxx-minx, maxy-miny
    
    
            if w < SMALL_NUM:
                w = SMALL_NUM
            if h < SMALL_NUM:
                h = SMALL_NUM
    
            """Save the offset to be applied later,
    
            we could apply to the UVs now and allign them to the bottom left hand area
            of the UV coords like the box packer imagines they are
            but, its quicker just to remember their offset and
    
            apply the packing and offset in 1 pass """
    
            islandOffsetList.append((minx, miny))
    
            # Add to boxList. use the island idx for the BOX id.
            packBoxes.append([0, 0, w, h])
            islandIdx+=1
    
        # Now we have a list of boxes to pack that syncs
        # with the islands.
    
        #print '\tPacking UV Islands...'
    
    Campbell Barton's avatar
    Campbell Barton committed
    #XXX	Window.DrawProgressBar(0.7, "Packing %i UV Islands..." % len(packBoxes) )
    
        # time1 = time.time()
    
    Campbell Barton's avatar
    Campbell Barton committed
        packWidth, packHeight = geometry.box_pack_2d(packBoxes)
    
    
        # print 'Box Packing Time:', time.time() - time1
    
        #if len(pa	ckedLs) != len(islandList):
    
        #	raise "Error packed boxes differs from original length"
    
    
        #print '\tWriting Packed Data to faces'
    
    Campbell Barton's avatar
    Campbell Barton committed
    #XXX	Window.DrawProgressBar(0.8, "Writing Packed Data to faces")
    
    
        # Sort by ID, so there in sync again
        islandIdx = len(islandList)
    
        # Having these here avoids divide by 0
    
        if islandIdx:
    
            if USER_STRETCH_ASPECT:
                # Maximize to uv area?? Will write a normalize function.
                xfactor = 1.0 / packWidth
                yfactor = 1.0 / packHeight
            else:
                # Keep proportions.
                xfactor = yfactor = 1.0 / max(packWidth, packHeight)
    
        while islandIdx:
            islandIdx -=1
            # Write the packed values to the UV's
    
            xoffset = packBoxes[islandIdx][0] - islandOffsetList[islandIdx][0]
            yoffset = packBoxes[islandIdx][1] - islandOffsetList[islandIdx][1]
    
            for f in islandList[islandIdx]: # Offsetting the UV's so they fit in there packed box
                for uv in f.uv:
                    uv.x= (uv.x+xoffset) * xfactor
                    uv.y= (uv.y+yoffset) * yfactor
    
    
    
        vec = vec.normalized()
        return vec.to_track_quat('Z', 'X' if abs(vec.x) > 0.5 else 'Y').inverted()
    
    
    
    class thickface(object):
    
        __slost__= "v", "uv", "no", "area", "edge_keys"
    
        def __init__(self, face, uv_layer, mesh_verts):
    
            self.v = [mesh_verts[i] for i in face.vertices]
    
            self.uv = [uv_layer[i].uv for i in face.loop_indices]
    
            self.no = face.normal.copy()
    
            self.area = face.area
            self.edge_keys = face.edge_keys
    
    
    def main_consts():
        from math import radians
    
        global ROTMAT_2D_POS_90D
        global ROTMAT_2D_POS_45D
        global RotMatStepRotation
    
    
        ROTMAT_2D_POS_90D = Matrix.Rotation(radians(90.0), 2)
        ROTMAT_2D_POS_45D = Matrix.Rotation(radians(45.0), 2)
    
    
        RotMatStepRotation = []
        rot_angle = 22.5 #45.0/2
        while rot_angle > 0.1:
    
            RotMatStepRotation.append([
                Matrix.Rotation(radians(+rot_angle), 2),
                Matrix.Rotation(radians(-rot_angle), 2),
                ])
    
    
            rot_angle = rot_angle/2.0
    
    
    
    global ob
    ob = None
    
    def main(context,
             island_margin,
             projection_limit,
             user_area_weight,
             ):
    
        global USER_FILL_HOLES
        global USER_FILL_HOLES_QUALITY
        global USER_STRETCH_ASPECT
        global USER_ISLAND_MARGIN
    
        
        from math import cos
        import time
    
        global dict_matrix
        dict_matrix = {}
    
    
        # Constants:
        # Takes a list of faces that make up a UV island and rotate
        # until they optimally fit inside a square.
        global ROTMAT_2D_POS_90D
        global ROTMAT_2D_POS_45D
        global RotMatStepRotation
        main_consts()
    
        # Create the variables.
        USER_PROJECTION_LIMIT = projection_limit
        USER_ONLY_SELECTED_FACES = True
        USER_SHARE_SPACE = 1 # Only for hole filling.
        USER_STRETCH_ASPECT = 1 # Only for hole filling.
        USER_ISLAND_MARGIN = island_margin # Only for hole filling.
        USER_FILL_HOLES = 0
        USER_FILL_HOLES_QUALITY = 50 # Only for hole filling.
        USER_VIEW_INIT = 0 # Only for hole filling.
    
        is_editmode = (context.active_object.mode == 'EDIT')
        if is_editmode:
            obList =  [ob for ob in [context.active_object] if ob and ob.type == 'MESH']
        else:
            obList =  [ob for ob in context.selected_editable_objects if ob and ob.type == 'MESH']
            USER_ONLY_SELECTED_FACES = False
    
    Campbell Barton's avatar
    Campbell Barton committed
            raise Exception("error, no selected mesh objects")
    
    
        # Reuse variable
        if len(obList) == 1:
            ob = "Unwrap %i Selected Mesh"
        else:
            ob = "Unwrap %i Selected Meshes"
    
        # HACK, loop until mouse is lifted.
        '''
        while Window.GetMouseButtons() != 0:
            time.sleep(10)
        '''
    
    
    #~ XXX	if not Draw.PupBlock(ob % len(obList), pup_block):
    #~ XXX		return
    #~ XXX	del ob
    
    
        # Convert from being button types
    
        USER_PROJECTION_LIMIT_CONVERTED = cos(USER_PROJECTION_LIMIT * DEG_TO_RAD)
        USER_PROJECTION_LIMIT_HALF_CONVERTED = cos((USER_PROJECTION_LIMIT/2) * DEG_TO_RAD)
    
    
        # Toggle Edit mode
        is_editmode = (context.active_object.mode == 'EDIT')
        if is_editmode:
            bpy.ops.object.mode_set(mode='OBJECT')
    
        # Assume face select mode! an annoying hack to toggle face select mode because Mesh doesn't like faceSelectMode.
    
            # Sort by data name so we get consistent results
    
            obList.sort(key = lambda ob: ob.data.name)
            collected_islandList= []
    
    
        # Tag as False so we don't operate on the same mesh twice.
    
    #XXX	bpy.data.meshes.tag = False
        for me in bpy.data.meshes:
            me.tag = False
    
    
        for ob in obList:
            me = ob.data
    
            if me.tag or me.library:
                continue
    
            # Tag as used
            me.tag = True
    
    
            if not me.uv_textures: # Mesh has no UV Coords, don't bother.
    
            uv_layer = me.uv_layers.active.data
    
            me_verts = list(me.vertices)
    
                meshFaces = [thickface(f, uv_layer, me_verts) for i, f in enumerate(me.polygons) if f.select]
    
                meshFaces = [thickface(f, uv_layer, me_verts) for i, f in enumerate(me.polygons)]
    
    #XXX		Window.DrawProgressBar(0.1, 'SmartProj UV Unwrapper, mapping "%s", %i faces.' % (me.name, len(meshFaces)))
    
            # Generate a projection list from face normals, this is meant to be smart :)
    
    
            # make a list of face props that are in sync with meshFaces
            # Make a Face List that is sorted by area.
            # meshFaces = []
    
            # meshFaces.sort( lambda a, b: cmp(b.area , a.area) ) # Biggest first.
    
            meshFaces.sort(key=lambda a: -a.area)
    
    
            # remove all zero area faces
            while meshFaces and meshFaces[-1].area <= SMALL_NUM:
                # Set their UV's to 0,0
                for uv in meshFaces[-1].uv:
                    uv.zero()
                meshFaces.pop()
    
            # Smallest first is slightly more efficient, but if the user cancels early then its better we work on the larger data.
    
            # Generate Projection Vecs
            # 0d is   1.0
            # 180 IS -0.59846
    
    
            # Initialize projectVecs
            if USER_VIEW_INIT:
                # Generate Projection
    
                projectVecs = [Vector(Window.GetViewVector()) * ob.matrix_world.inverted().to_3x3()] # We add to this along the way
    
            else:
                projectVecs = []
    
            newProjectVec = meshFaces[0].no
            newProjectMeshFaces = []	# Popping stuffs it up.
    
    
    
            # Pretend that the most unique angle is ages away to start the loop off
    
            mostUniqueAngle = -1.0
    
            # This is popped
            tempMeshFaces = meshFaces[:]
    
    
    
            # This while only gathers projection vecs, faces are assigned later on.
            while 1:
                # If theres none there then start with the largest face
    
                # add all the faces that are close.
                for fIdx in range(len(tempMeshFaces)-1, -1, -1):
    
                    # Use half the angle limit so we don't overweight faces towards this
    
                    # normal and hog all the faces.
                    if newProjectVec.dot(tempMeshFaces[fIdx].no) > USER_PROJECTION_LIMIT_HALF_CONVERTED:
                        newProjectMeshFaces.append(tempMeshFaces.pop(fIdx))
    
                # Add the average of all these faces normals as a projectionVec
    
                averageVec = Vector((0.0, 0.0, 0.0))
    
                if user_area_weight == 0.0:
                    for fprop in newProjectMeshFaces:
                        averageVec += fprop.no
                elif user_area_weight == 1.0:
    
                    for fprop in newProjectMeshFaces:
    
                        averageVec += fprop.no * fprop.area
    
                else:
                    for fprop in newProjectMeshFaces:
    
                        averageVec += fprop.no * ((fprop.area * user_area_weight) + (1.0 - user_area_weight))
    
    
                if averageVec.x != 0 or averageVec.y != 0 or averageVec.z != 0: # Avoid NAN
    
                    projectVecs.append(averageVec.normalized())
    
    
    
                # Get the next vec!
                # Pick the face thats most different to all existing angles :)
                mostUniqueAngle = 1.0 # 1.0 is 0d. no difference.
                mostUniqueIndex = 0 # dummy
    
                for fIdx in range(len(tempMeshFaces)-1, -1, -1):
                    angleDifference = -1.0 # 180d difference.
    
                    # Get the closest vec angle we are to.
                    for p in projectVecs:
                        temp_angle_diff= p.dot(tempMeshFaces[fIdx].no)
    
                        if angleDifference < temp_angle_diff:
                            angleDifference= temp_angle_diff
    
                    if angleDifference < mostUniqueAngle:
                        # We have a new most different angle
                        mostUniqueIndex = fIdx
                        mostUniqueAngle = angleDifference
    
                if mostUniqueAngle < USER_PROJECTION_LIMIT_CONVERTED:
                    #print 'adding', mostUniqueAngle, USER_PROJECTION_LIMIT, len(newProjectMeshFaces)
                    # Now weight the vector to all its faces, will give a more direct projection
    
                    # if the face its self was not representative of the normal from surrounding faces.
    
    
                    newProjectVec = tempMeshFaces[mostUniqueIndex].no
                    newProjectMeshFaces = [tempMeshFaces.pop(mostUniqueIndex)]
    
    
                else:
                    if len(projectVecs) >= 1: # Must have at least 2 projections
                        break
    
    
            # If there are only zero area faces then its possible
            # there are no projectionVecs
            if not len(projectVecs):
                Draw.PupMenu('error, no projection vecs where generated, 0 area faces can cause this.')
                return
    
            faceProjectionGroupList =[[] for i in range(len(projectVecs)) ]
    
            # MAP and Arrange # We know there are 3 or 4 faces here
    
            for fIdx in range(len(meshFaces)-1, -1, -1):
                fvec = meshFaces[fIdx].no
                i = len(projectVecs)
    
                # Initialize first
                bestAng = fvec.dot(projectVecs[0])
                bestAngIdx = 0
    
    
                # Cycle through the remaining, first already done
    
                while i-1:
                    i-=1
    
                    newAng = fvec.dot(projectVecs[i])
                    if newAng > bestAng: # Reverse logic for dotvecs
                        bestAng = newAng
                        bestAngIdx = i
    
                # Store the area for later use.
                faceProjectionGroupList[bestAngIdx].append(meshFaces[fIdx])
    
            # Cull faceProjectionGroupList,
    
    
            # Now faceProjectionGroupList is full of faces that face match the project Vecs list
            for i in range(len(projectVecs)):
                # Account for projectVecs having no faces.
                if not faceProjectionGroupList[i]:
                    continue
    
                # Make a projection matrix from a unit length vector.
    
                MatQuat = VectoQuat(projectVecs[i])
    
    
                # Get the faces UV's from the projected vertex.
                for f in faceProjectionGroupList[i]:
                    f_uv = f.uv
                    for j, v in enumerate(f.v):
    
    Campbell Barton's avatar
    Campbell Barton committed
                        # XXX - note, between mathutils in 2.4 and 2.5 the order changed.
    
                        f_uv[j][:] = (MatQuat * v.co).xy
    
    
    
            if USER_SHARE_SPACE:
                # Should we collect and pack later?
                islandList = getUvIslands(faceProjectionGroupList, me)
                collected_islandList.extend(islandList)
    
            else:
                # Should we pack the islands for this 1 object?
                islandList = getUvIslands(faceProjectionGroupList, me)
                packIslands(islandList)
    
    
            # update the mesh here if we need to.
    
        # We want to pack all in 1 go, so pack now
        if USER_SHARE_SPACE:
    
    #XXX        Window.DrawProgressBar(0.9, "Box Packing for all objects...")
    
            packIslands(collected_islandList)
    
        print("Smart Projection time: %.2f" % (time.time() - time1))
    
        # Window.DrawProgressBar(0.9, "Smart Projections done, time: %.2f sec" % (time.time() - time1))
    
    
        if is_editmode:
            bpy.ops.object.mode_set(mode='EDIT')
    
    
        dict_matrix.clear()
    
    
    #XXX	Window.DrawProgressBar(1.0, "")
    #XXX	Window.WaitCursor(0)
    #XXX	Window.RedrawAll()
    
    
        pup_block = [\
        'Projection',\
        ('Selected Faces Only', USER_ONLY_SELECTED_FACES, 'Use only selected faces from all selected meshes.'),\
        ('Init from view', USER_VIEW_INIT, 'The first projection will be from the view vector.'),\
        '',\
        'UV Layout',\
        ('Share Tex Space', USER_SHARE_SPACE, 'Objects Share texture space, map all objects into 1 uvmap.'),\
        ('Stretch to bounds', USER_STRETCH_ASPECT, 'Stretch the final output to texture bounds.'),\