Skip to content
Snippets Groups Projects
NeuralNetwork.h 7.39 KiB
Newer Older
  • Learn to ignore specific revisions
  • Michal Kravcenko's avatar
    Michal Kravcenko committed
     * This file contains the header for the NeuralNetwork class representing a function in the form of a directed graph,
     * in which the vertices are called Neurons (with activation functions) and the edges Connections (with transfer functions)
    
     *
     * @author Michal Kravčenko
     * @date 13.6.18 -
     */
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    //TODO preprocess the feed-forward and backward passes for more efficient parallelism
    
    #ifndef INC_4NEURO_NEURALNETWORK_H
    #define INC_4NEURO_NEURALNETWORK_H
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    #include <algorithm>
    #include <utility>
    
    #include "../Neuron/Neuron.h"
    #include "../Neuron/NeuronConstant.h"
    #include "../Neuron/NeuronBinary.h"
    #include "../Neuron/NeuronLinear.h"
    #include "../Neuron/NeuronLogistic.h"
    
    #include "../NetConnection/ConnectionFunctionGeneral.h"
    #include "../NetConnection/ConnectionFunctionIdentity.h"
    
    
    
    enum class BIAS_TYPE{NEXT_BIAS, NO_BIAS, EXISTING_BIAS};
    
    enum class SIMPLE_CONNECTION_TYPE{NEXT_WEIGHT, UNITARY_WEIGHT, EXISTING_WEIGHT};
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /**
         *
         */
        std::vector<Neuron*> *neurons = nullptr;
    
        /**
         *
         */
        std::vector<size_t>* input_neuron_indices = nullptr;
    
        /**
         *
         */
        std::vector<size_t>* output_neuron_indices = nullptr;
    
        /**
         *
         */
        std::vector<double>* connection_weights = nullptr;
    
        /**
         *
         */
        std::vector<double>* neuron_biases = nullptr;
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /**
         *
         */
        std::vector<double>* neuron_potentials = nullptr;
    
        /**
         *
         */
        std::vector<ConnectionFunctionGeneral*> * connection_list = nullptr;
    
        /**
         *
         */
        std::vector<std::vector<std::pair<size_t, size_t>>*> * inward_adjacency = nullptr;
    
        /**
         *
         */
        std::vector<std::vector<std::pair<size_t, size_t>>*> * outward_adjacency = nullptr;
    
        /**
         *
         */
        std::vector<std::vector<size_t>*> *neuron_layers_feedforward = nullptr;
    
        /**
         *
         */
        std::vector<std::vector<size_t>*> *neuron_layers_feedbackward = nullptr;
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
         *
         */
        bool layers_analyzed = false;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /**
         *
         */
        bool delete_weights = true;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /**
         *
         */
        bool delete_biases = true;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /**
         * Adds a new connection to the local list of connections
         * @param con Connection object to be added
         * @return Returns the index of the added connection among all the connections
         */
        size_t add_new_connection_to_list(ConnectionFunctionGeneral* con);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /**
         * Adds a new entry (oriented edge s -> t) to the adjacency list of this network
         * @param s Index of the source neuron
         * @param t Index of the target neuron
         * @param con_idx Index of the connection representing the edge
         */
        void add_outward_connection(size_t s, size_t t, size_t con_idx);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /**
         * Adds a new entry (oriented edge s <- t) to the adjacency list of this network
         * @param s Index of the source neuron
         * @param t Index of the target neuron
         * @param con_idx Index of the connection representing the edge
         */
        void add_inward_connection(size_t s, size_t t, size_t con_idx);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /**
         * Performs one feedforward pass and feedbackward pass during which determines the layers of this neural network
         * for simpler use during evaluation and learning
         */
        void analyze_layer_structure( );
    
         * Struct used to access private properties from
         * the serialization function
    
        LIB4NEURO_API explicit NeuralNetwork(std::string filepath);
    
        /**
         * If possible, returns a neural net with 'input_neuron_indices' neurons as inputs and 'output_neuron_indices' as
         * outputs, otherwise returns nullptr. The returned object shares adjustable weights with this network. All
         * neurons are coppied (new instances), edges also. Uses a breadth-first search as the underlying algorithm.
         * @param input_neuron_indices
         * @param output_neuron_indices
         * @return
         */
    
        LIB4NEURO_API NeuralNetwork* get_subnet(std::vector<size_t> &input_neuron_indices, std::vector<size_t> &output_neuron_indices);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /**
         * Replaces the values in @{this->connection_weights} and @{this->neuron_biases} by the provided values
         * @param parameters
         */
    
        LIB4NEURO_API virtual void copy_parameter_space(std::vector<double> *parameters);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        /**
         * Copies the pointers @{this->connection_weights} and @{this->neuron_biases} from the parental network, sets
         * flags to not delete the vectors in this object
         * @param parent_network
         */
    
        LIB4NEURO_API virtual void set_parameter_space_pointers( NeuralNetwork &parent_network );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
         * @param input
         * @param output
         * @param custom_weights_and_biases
    
        LIB4NEURO_API virtual void eval_single(std::vector<double> &input, std::vector<double> &output, std::vector<double> *custom_weights_and_biases = nullptr);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
         * Adds a new neuron to the list of neurons. Also assigns a valid bias value to its activation function
    
        LIB4NEURO_API size_t add_neuron(Neuron* n, BIAS_TYPE bt = BIAS_TYPE::NEXT_BIAS, size_t bias_idx = 0);
    
    
        /**
         *
         * @param n1_idx
         * @param n2_idx
         * @return
         */
    
        LIB4NEURO_API size_t add_connection_simple(size_t n1_idx, size_t n2_idx, SIMPLE_CONNECTION_TYPE sct = SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT, size_t weight_idx = 0 );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
         * Take the existing connection with index 'connection_idx' in 'parent_network' and adds it to the structure of this
         * object
    
         * @param n1_idx
         * @param n2_idx
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
         * @param connection_idx
         * @param parent_network
    
        LIB4NEURO_API void add_existing_connection(size_t n1_idx, size_t n2_idx, size_t connection_idx, NeuralNetwork &parent_network );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
         * @return
    
        LIB4NEURO_API virtual int get_neuron_bias_index( size_t neuron_idx );
    
        LIB4NEURO_API void specify_input_neurons(std::vector<size_t> &input_neurons_indices);
    
        LIB4NEURO_API void specify_output_neurons(std::vector<size_t> &output_neurons_indices);
    
        LIB4NEURO_API std::vector<double>* get_parameter_ptr_weights();
    
        LIB4NEURO_API std::vector<double>* get_parameter_ptr_biases();
    
        LIB4NEURO_API void save_text(std::string filepath);