Newer
Older

Michal Kravcenko
committed
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 13.6.18 -
*/
Martin Beseda
committed
#include <iostream>
#include "../message.h"

Michal Kravcenko
committed
#include "NeuralNetwork.h"
Martin Beseda
committed
#include "NeuralNetworkSerialization.h"
Martin Beseda
committed
namespace lib4neuro {
NeuralNetwork::NeuralNetwork() {
this->neurons = new std::vector<Neuron *>(0);
this->neuron_biases = new std::vector<double>(0);
this->neuron_potentials = new std::vector<double>(0);
this->neuron_bias_indices = new std::vector<int>(0);
Martin Beseda
committed
this->connection_weights = new std::vector<double>(0);
this->connection_list = new std::vector<ConnectionFunctionGeneral *>(0);
this->inward_adjacency = new std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
this->outward_adjacency = new std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
Martin Beseda
committed
this->neuron_layers_feedforward = new std::vector<std::vector<size_t> *>(0);
this->neuron_layers_feedbackward = new std::vector<std::vector<size_t> *>(0);
Martin Beseda
committed
this->input_neuron_indices = new std::vector<size_t>(0);
this->output_neuron_indices = new std::vector<size_t>(0);
Martin Beseda
committed
this->delete_weights = true;
this->delete_biases = true;
this->layers_analyzed = false;
}
Martin Beseda
committed
NeuralNetwork::NeuralNetwork(std::string filepath) {
std::ifstream ifs(filepath);
boost::archive::text_iarchive ia(ifs);
ia >> *this;
ifs.close();
}
Martin Beseda
committed
NeuralNetwork::~NeuralNetwork() {
Martin Beseda
committed
if (this->neurons) {
for (auto n: *(this->neurons)) {
delete n;
n = nullptr;
}
delete this->neurons;
this->neurons = nullptr;
Martin Beseda
committed
if (this->neuron_potentials) {
delete this->neuron_potentials;
this->neuron_potentials = nullptr;
}
Martin Beseda
committed
if (this->neuron_bias_indices) {
delete this->neuron_bias_indices;
this->neuron_bias_indices = nullptr;
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->output_neuron_indices) {
delete this->output_neuron_indices;
this->output_neuron_indices = nullptr;
}
Martin Beseda
committed
if (this->input_neuron_indices) {
delete this->input_neuron_indices;
this->input_neuron_indices = nullptr;
}
Martin Beseda
committed
if (this->connection_weights && this->delete_weights) {
delete this->connection_weights;
this->connection_weights = nullptr;
}
Martin Beseda
committed
if (this->neuron_biases && this->delete_biases) {
delete this->neuron_biases;
this->neuron_biases = nullptr;
}
Martin Beseda
committed
if (this->connection_list) {
Martin Beseda
committed
if (this->delete_weights) {
for (auto c: *this->connection_list) {
delete c;
c = nullptr;
}
Martin Beseda
committed
delete this->connection_list;
this->connection_list = nullptr;
Martin Beseda
committed
if (this->inward_adjacency) {
for (auto e: *this->inward_adjacency) {
if (e) {
delete e;
e = nullptr;
}
Martin Beseda
committed
delete this->inward_adjacency;
this->inward_adjacency = nullptr;
}
Martin Beseda
committed
if (this->outward_adjacency) {
for (auto e: *this->outward_adjacency) {
if (e) {
delete e;
e = nullptr;
}
Martin Beseda
committed
delete this->outward_adjacency;
this->outward_adjacency = nullptr;
Martin Beseda
committed
if (this->neuron_layers_feedforward) {
for (auto e: *this->neuron_layers_feedforward) {
delete e;
e = nullptr;
}
delete this->neuron_layers_feedforward;
this->neuron_layers_feedforward = nullptr;
}
Martin Beseda
committed
if (this->neuron_layers_feedbackward) {
for (auto e: *this->neuron_layers_feedbackward) {
delete e;
e = nullptr;
}
delete this->neuron_layers_feedbackward;
this->neuron_layers_feedbackward = nullptr;
Martin Beseda
committed
NeuralNetwork *
NeuralNetwork::get_subnet(std::vector<size_t> &input_neuron_indices, std::vector<size_t> &output_neuron_indices) {
NeuralNetwork *output_net = nullptr;
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// TODO rework due to the changed structure of the class
// Neuron * active_neuron, * target_neuron;
//
// size_t n = this->neurons->size();
// bool *part_of_subnetwork = new bool[n];
// std::fill(part_of_subnetwork, part_of_subnetwork + n, false);
//
// bool *is_reachable_from_source = new bool[n];
// bool *is_reachable_from_destination = new bool[n];
// std::fill(is_reachable_from_source, is_reachable_from_source + n, false);
// std::fill(is_reachable_from_destination, is_reachable_from_destination + n, false);
//
// bool *visited_neurons = new bool[n];
// std::fill(visited_neurons, visited_neurons + n, false);
//
// size_t active_set_size[2];
// active_set_size[0] = 0;
// active_set_size[1] = 0;
// size_t * active_neuron_set = new size_t[2 * n];
// size_t idx1 = 0, idx2 = 1;
//
// /* MAPPING BETWEEN NEURONS AND THEIR INDICES */
// size_t idx = 0, idx_target;
// for(Neuron *v: *this->neurons){
// v->set_idx( idx );
// idx++;
// }
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// for(size_t i: input_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
//
// visited_neurons[i] = true;
// }
//
// /* FORWARD PASS */
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_source[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// for(Connection* connection: *(active_neuron->get_connections_out())){
//
// target_neuron = connection->get_neuron_out( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// active_set_size[0] = active_set_size[1] = 0;
// std::fill(visited_neurons, visited_neurons + n, false);
//
// for(size_t i: output_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
//
// visited_neurons[i] = true;
// }
//
// /* BACKWARD PASS */
// size_t n_new_neurons = 0;
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_destination[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// if(is_reachable_from_source[ idx ]){
// n_new_neurons++;
// }
//
// for(Connection* connection: *(active_neuron->get_connections_in())){
//
// target_neuron = connection->get_neuron_in( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
// /* FOR CONSISTENCY REASONS */
// for(size_t in: input_neuron_indices){
// if( !is_reachable_from_destination[in] ){
// n_new_neurons++;
// }
// is_reachable_from_destination[in] = true;
// }
// /* FOR CONSISTENCY REASONS */
// for(size_t in: output_neuron_indices){
// if( !is_reachable_from_source[in] ){
// n_new_neurons++;
// }
// is_reachable_from_source[in] = true;
// }
//
// /* WE FORM THE SET OF NEURONS IN THE OUTPUT NETWORK */
// if(n_new_neurons > 0){
//// printf("Number of new neurons: %d\n", n_new_neurons);
// output_net = new NeuralNetwork();
// output_net->set_weight_array( this->connection_weights );
//
// std::vector<size_t > local_inputs(0), local_outputs(0);
// local_inputs.reserve(input_neuron_indices.size());
// local_outputs.reserve(output_neuron_indices.size());
//
// std::vector<Neuron*> local_n_arr(0);
// local_n_arr.reserve( n_new_neurons );
//
// std::vector<Neuron*> local_local_n_arr(0);
// local_local_n_arr.reserve( n_new_neurons );
//
// int * neuron_local_mapping = new int[ n ];
// std::fill(neuron_local_mapping, neuron_local_mapping + n, -1);
// idx = 0;
// for(size_t i = 0; i < n; ++i){
// if(is_reachable_from_source[i] && is_reachable_from_destination[i]){
// neuron_local_mapping[i] = (int)idx;
// idx++;
//
// Neuron *new_neuron = this->neurons->at(i)->get_copy( );
//
// output_net->add_neuron( new_neuron );
// local_local_n_arr.push_back( new_neuron );
// local_n_arr.push_back( this->neurons->at(i) );
// }
// }
// for(size_t in: input_neuron_indices){
// local_inputs.push_back(neuron_local_mapping[in]);
// }
// for(size_t in: output_neuron_indices){
// local_outputs.push_back(neuron_local_mapping[in]);
// }
//
//// printf("%d\n", local_n_arr.size());
//// printf("inputs: %d, outputs: %d\n", local_inputs.size(), local_outputs.size());
// int local_idx_1, local_idx_2;
// for(Neuron* source_neuron: local_n_arr){
// //we also add the relevant edges
// local_idx_1 = neuron_local_mapping[source_neuron->get_idx()];
//
// for(Connection* connection: *(source_neuron->get_connections_out( ))){
// target_neuron = connection->get_neuron_out();
//
// local_idx_2 = neuron_local_mapping[target_neuron->get_idx()];
// if(local_idx_2 >= 0){
// //this edge is part of the subnetwork
// Connection* new_connection = connection->get_copy( local_local_n_arr[local_idx_1], local_local_n_arr[local_idx_2] );
//
// local_local_n_arr[local_idx_1]->add_connection_out(new_connection);
// local_local_n_arr[local_idx_2]->add_connection_in(new_connection);
//
//// printf("adding a connection between neurons %d, %d\n", local_idx_1, local_idx_2);
// }
//
// }
//
// }
// output_net->specify_input_neurons(local_inputs);
// output_net->specify_output_neurons(local_outputs);
//
//
// delete [] neuron_local_mapping;
// }
//
// delete [] is_reachable_from_source;
// delete [] is_reachable_from_destination;
// delete [] part_of_subnetwork;
// delete [] visited_neurons;
// delete [] active_neuron_set;
//
//
Martin Beseda
committed
return output_net;
}
Martin Beseda
committed
size_t NeuralNetwork::add_neuron(Neuron *n, BIAS_TYPE bt, size_t bias_idx) {
Martin Beseda
committed
if (bt == BIAS_TYPE::NO_BIAS) {
this->neuron_bias_indices->push_back(-1);
} else if (bt == BIAS_TYPE::NEXT_BIAS) {
this->neuron_bias_indices->push_back((int) this->neuron_biases->size());
this->neuron_biases->resize(this->neuron_biases->size() + 1);
} else if (bt == BIAS_TYPE::EXISTING_BIAS) {
if (bias_idx >= this->neuron_biases->size()) {
std::cerr << "The supplied bias index is too large!\n" << std::endl;
}
this->neuron_bias_indices->push_back((int) bias_idx);

Michal Kravcenko
committed
}
Martin Beseda
committed
this->outward_adjacency->push_back(new std::vector<std::pair<size_t, size_t>>(0));
this->inward_adjacency->push_back(new std::vector<std::pair<size_t, size_t>>(0));
Martin Beseda
committed
this->neurons->push_back(n);
Martin Beseda
committed
this->layers_analyzed = false;
return this->neurons->size() - 1;
}
Martin Beseda
committed
size_t
NeuralNetwork::add_connection_simple(size_t n1_idx, size_t n2_idx, SIMPLE_CONNECTION_TYPE sct, size_t weight_idx) {
Martin Beseda
committed
ConnectionFunctionIdentity *con_weight_u1u2;
if (sct == SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT) {
con_weight_u1u2 = new ConnectionFunctionIdentity();
} else {
if (sct == SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT) {
weight_idx = this->connection_weights->size();
this->connection_weights->resize(weight_idx + 1);
} else if (sct == SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT) {
if (weight_idx >= this->connection_weights->size()) {
std::cerr << "The supplied connection weight index is too large!\n" << std::endl;
}

Michal Kravcenko
committed
}
Martin Beseda
committed
con_weight_u1u2 = new ConnectionFunctionIdentity(weight_idx);
}
Martin Beseda
committed
size_t conn_idx = this->add_new_connection_to_list(con_weight_u1u2);
Martin Beseda
committed
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
Martin Beseda
committed
this->layers_analyzed = false;
Martin Beseda
committed
return this->connection_list->size() - 1;
}
Martin Beseda
committed
void NeuralNetwork::add_existing_connection(size_t n1_idx, size_t n2_idx, size_t connection_idx,
NeuralNetwork &parent_network) {
Martin Beseda
committed
size_t conn_idx = this->add_new_connection_to_list(parent_network.connection_list->at(connection_idx));
Martin Beseda
committed
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
Martin Beseda
committed
this->layers_analyzed = false;
}
Martin Beseda
committed
void NeuralNetwork::copy_parameter_space(std::vector<double> *parameters) {
if (parameters != nullptr) {
for (unsigned int i = 0; i < this->connection_weights->size(); ++i) {
(*this->connection_weights)[i] = (*parameters)[i];
}
Martin Beseda
committed
for (unsigned int i = 0; i < this->neuron_biases->size(); ++i) {
(*this->neuron_biases)[i] = (*parameters)[i + this->connection_weights->size()];
}
}

Michal Kravcenko
committed
Martin Beseda
committed
void NeuralNetwork::set_parameter_space_pointers(NeuralNetwork &parent_network) {

Michal Kravcenko
committed
Martin Beseda
committed
if (this->connection_weights) {
delete connection_weights;
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->neuron_biases) {
delete this->neuron_biases;
}

Michal Kravcenko
committed
Martin Beseda
committed
this->connection_weights = parent_network.connection_weights;
this->neuron_biases = parent_network.neuron_biases;
Martin Beseda
committed
this->delete_biases = false;
this->delete_weights = false;

Michal Kravcenko
committed
}
Martin Beseda
committed
void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> &output,
std::vector<double> *custom_weights_and_biases) {
if ((this->input_neuron_indices->size() * this->output_neuron_indices->size()) <= 0) {
std::cerr << "Input and output neurons have not been specified\n" << std::endl;
exit(-1);
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->input_neuron_indices->size() != input.size()) {
std::cerr << "Error, input size != Network input size\n" << std::endl;
exit(-1);
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->output_neuron_indices->size() != output.size()) {
std::cerr << "Error, output size != Network output size\n" << std::endl;
exit(-1);
}
double potential, bias;
int bias_idx;
Martin Beseda
committed
this->copy_parameter_space(custom_weights_and_biases);
Martin Beseda
committed
this->analyze_layer_structure();

Michal Kravcenko
committed
Martin Beseda
committed
/* reset of the output and the neuron potentials */
std::fill(output.begin(), output.end(), 0.0);
std::fill(this->neuron_potentials->begin(), this->neuron_potentials->end(), 0.0);

Michal Kravcenko
committed
Martin Beseda
committed
/* set the potentials of the input neurons */
for (size_t i = 0; i < this->input_neuron_indices->size(); ++i) {
this->neuron_potentials->at(this->input_neuron_indices->at(i)) = input[i];
}

Michal Kravcenko
committed
Martin Beseda
committed
/* we iterate through all the feed-forward layers and transfer the signals */
for (auto layer: *this->neuron_layers_feedforward) {
/* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
for (auto si: *layer) {
bias = 0.0;
bias_idx = this->neuron_bias_indices->at(si);
if (bias_idx >= 0) {
bias = this->neuron_biases->at(bias_idx);
}
potential = this->neurons->at(si)->activate(this->neuron_potentials->at(si), bias);

Michal Kravcenko
committed
Martin Beseda
committed
for (auto c: *this->outward_adjacency->at(si)) {
size_t ti = c.first;
size_t ci = c.second;

Michal Kravcenko
committed
Martin Beseda
committed
this->neuron_potentials->at(ti) +=
this->connection_list->at(ci)->eval(*this->connection_weights) * potential;
}

Michal Kravcenko
committed
Martin Beseda
committed
unsigned int i = 0;
for (auto oi: *this->output_neuron_indices) {
bias = 0.0;
bias_idx = this->neuron_bias_indices->at(oi);
if (bias_idx >= 0) {
bias = this->neuron_biases->at(bias_idx);
}
output[i] = this->neurons->at(oi)->activate(this->neuron_potentials->at(oi), bias);
++i;

Michal Kravcenko
committed
}

Michal Kravcenko
committed
}
Martin Beseda
committed
void NeuralNetwork::randomize_weights() {

Michal Kravcenko
committed
Martin Beseda
committed
boost::random::mt19937 gen;

Michal Kravcenko
committed
Martin Beseda
committed
// Init weight guess ("optimal" for logistic activation functions)
double r = 4 * sqrt(6. / (this->connection_weights->size()));

Michal Kravcenko
committed
Martin Beseda
committed
boost::random::uniform_real_distribution<> dist(-r, r);

Michal Kravcenko
committed
Martin Beseda
committed
for (size_t i = 0; i < this->connection_weights->size(); i++) {
this->connection_weights->at(i) = dist(gen);
}

Michal Kravcenko
committed
}
Martin Beseda
committed
void NeuralNetwork::randomize_biases() {
Martin Beseda
committed
boost::random::mt19937 gen;
Martin Beseda
committed
// Init weight guess ("optimal" for logistic activation functions)
boost::random::uniform_real_distribution<> dist(-1, 1);
for (size_t i = 0; i < this->neuron_biases->size(); i++) {
this->neuron_biases->at(i) = dist(gen);
}
Martin Beseda
committed
size_t NeuralNetwork::get_n_inputs() {
return this->input_neuron_indices->size();
}

Michal Kravcenko
committed
Martin Beseda
committed
size_t NeuralNetwork::get_n_outputs() {
return this->output_neuron_indices->size();
}
Martin Beseda
committed
size_t NeuralNetwork::get_n_weights() {
return this->connection_weights->size();
Martin Beseda
committed
size_t NeuralNetwork::get_n_biases() {
return this->neuron_biases->size();
}
Martin Beseda
committed
int NeuralNetwork::get_neuron_bias_index(size_t neuron_idx) {
return this->neuron_bias_indices->at(neuron_idx);
Martin Beseda
committed
size_t NeuralNetwork::get_n_neurons() {
return this->neurons->size();
}
Martin Beseda
committed
void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) {
if (!this->input_neuron_indices) {
this->input_neuron_indices = new std::vector<size_t>(input_neurons_indices);
} else {
delete this->input_neuron_indices;
this->input_neuron_indices = new std::vector<size_t>(input_neurons_indices);
Martin Beseda
committed
void NeuralNetwork::specify_output_neurons(std::vector<size_t> &output_neurons_indices) {
if (!this->output_neuron_indices) {
this->output_neuron_indices = new std::vector<size_t>(output_neurons_indices);
} else {
delete this->output_neuron_indices;
this->output_neuron_indices = new std::vector<size_t>(output_neurons_indices);
}
}
Martin Beseda
committed
void NeuralNetwork::print_weights() {
std::cout << "Connection weights: ";
if (this->connection_weights) {
for (size_t i = 0; i < this->connection_weights->size() - 1; ++i) {
std::cout << this->connection_weights->at(i) << " ";
}
std::cout << this->connection_weights->at(this->connection_weights->size() - 1);
}
Martin Beseda
committed
std::cout << std::endl;
Martin Beseda
committed
void NeuralNetwork::print_stats() {
std::cout << "Number of neurons: " << this->neurons->size() << std::endl
<< "Number of connections: " << this->connection_list->size() << std::endl
<< "Number of active weights: " << this->connection_weights->size() << std::endl
<< "Number of active biases: " << this->neuron_biases->size() << std::endl;
Martin Beseda
committed
std::vector<double> *NeuralNetwork::get_parameter_ptr_biases() {
return this->neuron_biases;
}
Martin Beseda
committed
std::vector<double> *NeuralNetwork::get_parameter_ptr_weights() {
return this->connection_weights;
Martin Beseda
committed
size_t NeuralNetwork::add_new_connection_to_list(ConnectionFunctionGeneral *con) {
this->connection_list->push_back(con);
return this->connection_list->size() - 1;
}

Michal Kravcenko
committed
Martin Beseda
committed
void NeuralNetwork::add_inward_connection(size_t s, size_t t, size_t con_idx) {
if (!this->inward_adjacency->at(s)) {
this->inward_adjacency->at(s) = new std::vector<std::pair<size_t, size_t>>(0);
Martin Beseda
committed
this->inward_adjacency->at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
Martin Beseda
committed
void NeuralNetwork::add_outward_connection(size_t s, size_t t, size_t con_idx) {
if (!this->outward_adjacency->at(s)) {
this->outward_adjacency->at(s) = new std::vector<std::pair<size_t, size_t>>(0);
Martin Beseda
committed
this->outward_adjacency->at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
Martin Beseda
committed
void NeuralNetwork::analyze_layer_structure() {
Martin Beseda
committed
if (this->layers_analyzed) {
//nothing to do
return;
}
Martin Beseda
committed
/* buffer preparation */
this->neuron_potentials->resize(this->get_n_neurons());
Martin Beseda
committed
/* space allocation */
if (this->neuron_layers_feedforward) {
for (auto e: *this->neuron_layers_feedforward) {
delete e;
e = nullptr;
}
delete this->neuron_layers_feedforward;
this->neuron_layers_feedforward = nullptr;
Martin Beseda
committed
if (this->neuron_layers_feedbackward) {
for (auto e: *this->neuron_layers_feedbackward) {
delete e;
e = nullptr;
}
delete this->neuron_layers_feedbackward;
this->neuron_layers_feedbackward = nullptr;
Martin Beseda
committed
this->neuron_layers_feedforward = new std::vector<std::vector<size_t> *>(0);
this->neuron_layers_feedbackward = new std::vector<std::vector<size_t> *>(0);
Martin Beseda
committed
auto n = this->neurons->size();
Martin Beseda
committed
/* helpful counters */
std::vector<size_t> inward_saturation(n);
std::vector<size_t> outward_saturation(n);
std::fill(inward_saturation.begin(), inward_saturation.end(), 0);
std::fill(outward_saturation.begin(), outward_saturation.end(), 0);
for (unsigned int i = 0; i < n; ++i) {
if (this->inward_adjacency->at(i)) {
inward_saturation[i] = this->inward_adjacency->at(i)->size();
}
Martin Beseda
committed
if (this->outward_adjacency->at(i)) {
outward_saturation[i] = this->outward_adjacency->at(i)->size();
}
}
Martin Beseda
committed
std::vector<size_t> active_eval_set(2 * n);
size_t active_set_size[2];
Martin Beseda
committed
/* feedforward analysis */
active_set_size[0] = 0;
active_set_size[1] = 0;
Martin Beseda
committed
size_t idx1 = 0, idx2 = 1;
active_set_size[0] = this->get_n_inputs();
size_t i = 0;
for (i = 0; i < this->get_n_inputs(); ++i) {
active_eval_set[i] = this->input_neuron_indices->at(i);
}
size_t active_ni;
while (active_set_size[idx1] > 0) {
/* we add the current active set as the new outward layer */
std::vector<size_t> *new_feedforward_layer = new std::vector<size_t>(active_set_size[idx1]);
this->neuron_layers_feedforward->push_back(new_feedforward_layer);
//we iterate through the active neurons and propagate the signal
for (i = 0; i < active_set_size[idx1]; ++i) {
active_ni = active_eval_set[i + n * idx1];
new_feedforward_layer->at(i) = active_ni;
Martin Beseda
committed
if (!this->outward_adjacency->at(active_ni)) {
continue;
}
for (auto ni: *(this->outward_adjacency->at(active_ni))) {
inward_saturation[ni.first]--;
Martin Beseda
committed
if (inward_saturation[ni.first] == 0) {
active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
active_set_size[idx2]++;
}
Martin Beseda
committed
idx1 = idx2;
idx2 = (idx1 + 1) % 2;
Martin Beseda
committed
active_set_size[idx2] = 0;
}
Martin Beseda
committed
/* feed backward analysis */
active_set_size[0] = 0;
active_set_size[1] = 0;
Martin Beseda
committed
idx1 = 0;
idx2 = 1;
Martin Beseda
committed
active_set_size[0] = this->get_n_outputs();
for (i = 0; i < this->get_n_outputs(); ++i) {
active_eval_set[i] = this->output_neuron_indices->at(i);
}
Martin Beseda
committed
while (active_set_size[idx1] > 0) {
Martin Beseda
committed
/* we add the current active set as the new outward layer */
std::vector<size_t> *new_feedbackward_layer = new std::vector<size_t>(active_set_size[idx1]);
this->neuron_layers_feedbackward->push_back(new_feedbackward_layer);
Martin Beseda
committed
//we iterate through the active neurons and propagate the signal backward
for (i = 0; i < active_set_size[idx1]; ++i) {
active_ni = active_eval_set[i + n * idx1];
new_feedbackward_layer->at(i) = active_ni;
Martin Beseda
committed
if (!this->inward_adjacency->at(active_ni)) {
continue;
}
Martin Beseda
committed
for (auto ni: *(this->inward_adjacency->at(active_ni))) {
outward_saturation[ni.first]--;
Martin Beseda
committed
if (outward_saturation[ni.first] == 0) {
active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
active_set_size[idx2]++;
}
Martin Beseda
committed
idx1 = idx2;
idx2 = (idx1 + 1) % 2;
Martin Beseda
committed
active_set_size[idx2] = 0;
}
Martin Beseda
committed
this->layers_analyzed = true;
}
Martin Beseda
committed
void NeuralNetwork::save_text(std::string filepath) {
std::ofstream ofs(filepath);
{
boost::archive::text_oarchive oa(ofs);
oa << *this;
ofs.close();
}