Newer
Older
Martin Beseda
committed
#include <algorithm>
Martin Beseda
committed
#include <experimental/filesystem>
Martin Beseda
committed
#include <boost/serialization/export.hpp>
Martin Beseda
committed
#include "DataSetSerialization.h"
#include "exceptions.h"
Martin Beseda
committed
BOOST_CLASS_EXPORT_IMPLEMENT(lib4neuro::DataSet);
Martin Beseda
committed
namespace lib4neuro {
Martin Beseda
committed
Martin Beseda
committed
DataSet::DataSet() {
this->n_elements = 0;
this->input_dim = 0;
this->output_dim = 0;
this->normalization_strategy = std::make_shared<DoubleUnitStrategy>(DoubleUnitStrategy());
Martin Beseda
committed
}
Martin Beseda
committed
DataSet::DataSet(std::string file_path) {
std::ifstream ifs(file_path);
Martin Beseda
committed
if(ifs.is_open()) {
Martin Beseda
committed
try {
boost::archive::text_iarchive ia(ifs);
ia >> *this;
}catch(boost::archive::archive_exception& e) {
THROW_RUNTIME_ERROR("Serialized archive error: '" + e.what() + "'! Please, check if your file is really "
"the serialized DataSet.");
}
Martin Beseda
committed
ifs.close();
} else {
THROW_RUNTIME_ERROR("File " + file_path + " couldn't be open!");
Martin Beseda
committed
}
this->normalization_strategy = std::make_shared<DoubleUnitStrategy>(DoubleUnitStrategy());
Martin Beseda
committed
}
Martin Beseda
committed
DataSet::DataSet(std::vector<std::pair<std::vector<double>, std::vector<double>>>* data_ptr,
NormalizationStrategy* ns) {
Martin Beseda
committed
this->n_elements = data_ptr->size();
this->data = *data_ptr;
this->input_dim = this->data[0].first.size();
this->output_dim = this->data[0].second.size();
Martin Beseda
committed
if(ns) {
std::shared_ptr<NormalizationStrategy> ns_tmp;
ns_tmp.reset(ns);
this->normalization_strategy = ns_tmp;
// this->max_min_inp_val.emplace_back(this->normalization_strategy->get_max_value());
// this->max_min_inp_val.emplace_back(this->normalization_strategy->get_min_value());
Martin Beseda
committed
//TODO check the complete data set for input/output dimensions
}
Martin Beseda
committed
DataSet::DataSet(double lower_bound,
double upper_bound,
unsigned int size,
double output,
NormalizationStrategy* ns) {
Martin Beseda
committed
std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
this->data = new_data_vec;
this->n_elements = 0;
this->input_dim = 1;
this->output_dim = 1;
if(ns) {
std::shared_ptr<NormalizationStrategy> ns_tmp(ns);
// this->max_min_inp_val.emplace_back(this->normalization_strategy->get_max_value());
// this->max_min_inp_val.emplace_back(this->normalization_strategy->get_min_value());
Martin Beseda
committed
this->add_isotropic_data(lower_bound, upper_bound, size, output);
}
DataSet::DataSet(std::vector<double> &bounds,
unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &),
unsigned int output_dim,
NormalizationStrategy* ns) {
Martin Beseda
committed
std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
this->data = new_data_vec;
this->input_dim = bounds.size() / 2;
this->output_dim = output_dim;
this->n_elements = 0;
if(ns) {
std::shared_ptr<NormalizationStrategy> ns_tmp;
ns_tmp.reset(ns);
this->normalization_strategy = ns_tmp;
Martin Beseda
committed
this->add_isotropic_data(bounds, no_elems_in_one_dim, output_func);
}
Martin Beseda
committed
void DataSet::add_data_pair(std::vector<double> &inputs, std::vector<double> &outputs) {
if(this->n_elements == 0 && this->input_dim == 0 && this->output_dim == 0) {
this->input_dim = inputs.size();
this->output_dim = outputs.size();
}
Martin Beseda
committed
if (inputs.size() != this->input_dim) {
THROW_RUNTIME_ERROR("Bad input dimension.");
Martin Beseda
committed
} else if (outputs.size() != this->output_dim) {
THROW_RUNTIME_ERROR("Bad output dimension.");
Martin Beseda
committed
}
Martin Beseda
committed
this->n_elements++;
this->data.emplace_back(std::make_pair(inputs, outputs));
Martin Beseda
committed
}
Martin Beseda
committed
void DataSet::add_isotropic_data(double lower_bound, double upper_bound, unsigned int size, double output) {
Martin Beseda
committed
if (this->input_dim != 1 || this->output_dim != 1) {
THROW_RUNTIME_ERROR("Cannot add data with dimensionality 1:1 when the data set "
"is of different dimensionality!");
Martin Beseda
committed
}
double frac;
if(size < 1) {
THROW_INVALID_ARGUMENT_ERROR("Size of added data has to be >=1 !");
} else if (size == 1) {
frac = 1;
} else {
frac = (upper_bound - lower_bound) / (size - 1);
}
Martin Beseda
committed
std::vector<double> inp, out;
Martin Beseda
committed
out = {output};
Martin Beseda
committed
for (unsigned int i = 0; i < size; ++i) {
inp = {frac * i};
this->data.emplace_back(std::make_pair(inp, out));
}
Martin Beseda
committed
this->n_elements += size;
Martin Beseda
committed
void DataSet::add_isotropic_data(std::vector<double> &bounds, unsigned int no_elems_in_one_dim,
std::vector<double> (*output_func)(std::vector<double> &)) {
// TODO add check of dataset dimensions
Martin Beseda
committed
std::vector<std::vector<double>> grid;
std::vector<double> tmp;
double frac;
if(no_elems_in_one_dim < 1) {
THROW_INVALID_ARGUMENT_ERROR("Number of elements in one dimension has to be >=1 !");
}
Martin Beseda
committed
for (unsigned int i = 0; i < bounds.size(); i += 2) {
frac = 1;
} else {
frac = (bounds[i] - bounds[i+1]) / (no_elems_in_one_dim - 1);
}
Martin Beseda
committed
tmp.clear();
for (double j = bounds[i]; j <= bounds[i + 1]; j += frac) {
tmp.emplace_back(j);
}
Martin Beseda
committed
grid.emplace_back(tmp);
Martin Beseda
committed
grid = this->cartesian_product(&grid);
for (auto vec : grid) {
this->n_elements++;
this->data.emplace_back(std::make_pair(vec, output_func(vec)));
}
Martin Beseda
committed
std::vector<std::pair<std::vector<double>, std::vector<double>>> *DataSet::get_data() {
return &(this->data);
}
Martin Beseda
committed
size_t DataSet::get_n_elements() {
return this->n_elements;
Martin Beseda
committed
size_t DataSet::get_input_dim() {
return this->input_dim;
}
Martin Beseda
committed
size_t DataSet::get_output_dim() {
return this->output_dim;
}
void DataSet::print_data() {
if (n_elements) {
for (auto p : this->data) {
/* INPUT */
for (auto v : std::get<0>(p)) {
std::cout << v << " ";
}
std::cout << "-> ";
/* OUTPUT */
for (auto v : std::get<1>(p)) {
std::cout << v << " ";
}
Martin Beseda
committed
std::cout << std::endl;
}
Martin Beseda
committed
void DataSet::store_text(std::string file_path) {
Martin Beseda
committed
std::ofstream ofs(file_path);
if(!ofs.is_open()) {
THROW_RUNTIME_ERROR("File " + file_path + " couldn't be open!");
} else {
boost::archive::text_oarchive oa(ofs);
oa << *this;
ofs.close();
}
}
void DataSet::store_data_text(std::ofstream* file_path) {
for (auto e : this->data) {
/* First part of the pair */
for (unsigned int i = 0; i < e.first.size() - 1; i++) {
*file_path << e.first.at(i) << ",";
}
*file_path << e.first.back() << " ";
/* Second part of the pair */
for (unsigned int i = 0; i < e.second.size() - 1; i++) {
*file_path << e.second.at(i) << ",";
}
*file_path << e.second.back() << std::endl;
}
}
void DataSet::store_data_text(std::string file_path) {
std::ofstream ofs(file_path);
if(!ofs.is_open()) {
THROW_RUNTIME_ERROR("File " + file_path + " couldn't be open!");
} else {
for (auto e : this->data) {
/* First part of the pair */
for (unsigned int i = 0; i < e.first.size() - 1; i++) {
ofs << e.first.at(i) << ",";
}
ofs << e.first.back() << " ";
/* Second part of the pair */
for (unsigned int i = 0; i < e.second.size() - 1; i++) {
ofs << e.second.at(i) << ",";
}
ofs << e.second.back() << std::endl;
}
}
Martin Beseda
committed
template<class T>
std::vector<std::vector<T>> DataSet::cartesian_product(const std::vector<std::vector<T>> *v) {
std::vector<std::vector<double>> v_combined_old, v_combined, v_tmp;
std::vector<double> tmp;
Martin Beseda
committed
for (const auto &e : v->at(0)) {
tmp = {e};
v_combined.emplace_back(tmp);
}
Martin Beseda
committed
for (unsigned int i = 1; i < v->size(); i++) { // Iterate through remaining vectors of 'v'
v_combined_old = v_combined;
v_combined.clear();
for (const auto &e : v->at(i)) {
for (const auto &vec : v_combined_old) {
tmp = vec;
tmp.emplace_back(e);
/* Add only unique elements */
if (std::find(v_combined.begin(), v_combined.end(), tmp) == v_combined.end()) {
v_combined.emplace_back(tmp);
}
Martin Beseda
committed
return v_combined;
Martin Beseda
committed
void DataSet::normalize() {

Michal Kravcenko
committed
this->normalized = false;
if(!this->normalization_strategy) {
THROW_INVALID_ARGUMENT_ERROR("There is no normalization strategy given for this data set, so it can not be "
"normalized!");
Martin Beseda
committed
/* Find maximum and minimum values */
if(this->max_min_inp_val.empty()) {
this->max_min_inp_val.emplace_back(this->data.at(0).first.at(0));
this->max_min_inp_val.emplace_back(this->data.at(0).first.at(0));
}
Martin Beseda
committed
double tmp, tmp2;
for(auto pair : this->data) {
/* Finding maximum */
//TODO make more efficiently
tmp = *std::max_element(pair.first.begin(), pair.first.end());
tmp2 = *std::max_element(pair.second.begin(), pair.second.end());
tmp = std::max(tmp, tmp2);
Martin Beseda
committed
/* Testing for a new maxima */
if (tmp > this->max_min_inp_val.at(0)) {
this->max_min_inp_val.at(0) = tmp;
Martin Beseda
committed
}
/* Finding minimum */
tmp = *std::min_element(pair.first.begin(), pair.first.end());
tmp2 = *std::min_element(pair.second.begin(), pair.second.end());
tmp = std::min(tmp, tmp2);
Martin Beseda
committed
/* Testing for a new minima */
if (tmp < this->max_min_inp_val.at(1)) {
this->max_min_inp_val.at(1) = tmp;
Martin Beseda
committed
}
}
/* Normalize every number in the data set */
for(auto& pair : this->data) {
for(auto& v : pair.first) {
Martin Beseda
committed
v = this->normalization_strategy->normalize(v, this->max_min_inp_val.at(0), this->max_min_inp_val.at(1));
Martin Beseda
committed
}
for(auto& v : pair.second) {
Martin Beseda
committed
v = this->normalization_strategy->normalize(v, this->max_min_inp_val.at(0), this->max_min_inp_val.at(1));
Martin Beseda
committed
}
}

Michal Kravcenko
committed
this->normalized = true;
Martin Beseda
committed
}

Michal Kravcenko
committed
double DataSet::get_normalized_value(double val){
if(!this->normalized || !this->normalization_strategy) {
return val;
}
return this->normalization_strategy->normalize(val, this->max_min_inp_val.at(0), this->max_min_inp_val.at(1));
}
void DataSet::get_input(std::vector<double> &d, size_t idx){
assert(d.size() == this->data[idx].first.size());
for (size_t j = 0; j < this->data[idx].first.size(); ++j) {
d[j] = this->data[idx].first[j];
}
}
void DataSet::get_output(std::vector<double> &d, size_t idx){
assert(d.size() == this->data[idx].second.size());
for (size_t j = 0; j < this->data[idx].second.size(); ++j) {
d[j] = this->data[idx].second[j];
}
}
void DataSet::de_normalize() {
std::vector<double> tmp_inp(this->data.at(0).first.size());
std::vector<double> tmp_out(this->data.at(0).second.size());
for(auto& pair: this->data) {
for(size_t i=0; i < pair.first.size(); i++) {
tmp_inp.at(i) = this->normalization_strategy->de_normalize(pair.first.at(i));
}
pair.first = tmp_inp;
}
for(auto& pair: this->data) {
for(size_t i=0; i < pair.second.size(); i++) {
tmp_out.at(i) = this->normalization_strategy->de_normalize(pair.second.at(i));
}
pair.second = tmp_out;
}
Martin Beseda
committed
/* Remove found max and minimal values, because of is_normalized() method */
this->max_min_inp_val.clear();
void DataSet::de_normalize_single(std::vector<double> &d1, std::vector<double> &d2){
assert(d1.size() == d2.size());
for (size_t j = 0; j < d1.size(); ++j) {
d2[j] = this->normalization_strategy->de_normalize(d1[j]);
NormalizationStrategy* DataSet::get_normalization_strategy() {
void DataSet::set_normalization_strategy(NormalizationStrategy* ns) {
if( ns ){
this->normalization_strategy.reset(ns);
}
}
bool DataSet::is_normalized() {
return !this->max_min_inp_val.empty();
}
double DataSet::get_max_inp_val() {
Martin Beseda
committed
return this->max_min_inp_val.at(0);
}
double DataSet::get_min_inp_val() {
Martin Beseda
committed
return this->max_min_inp_val.at(1);
Martin Beseda
committed
/**
* Method returning random amount of data pairs between 1-max
*/
std::vector<std::pair<std::vector<double>, std::vector<double>>> DataSet::get_random_data_batch(size_t max) {
Martin Beseda
committed
return this->data;
} else {
std::vector<std::pair<std::vector<double>, std::vector<double>>> newData;
size_t n_chosen = rand() % std::min(max, this->data.size())+1;
n_chosen = max;
std::vector<size_t> chosens;
size_t chosen;
for (int i = 0; i < n_chosen; i++) {
chosen = rand() % this->data.size();
auto it = std::find(chosens.begin(), chosens.end(), chosen);
Martin Beseda
committed
if (it != chosens.end()) {
i--;
} else {
newData.push_back(this->data.at(chosen));
return newData;
}
}