Skip to content
Snippets Groups Projects
DataSet.cpp 17.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • Martin Beseda's avatar
    Martin Beseda committed
    
    
    #include <boost/serialization/export.hpp>
    
    BOOST_CLASS_EXPORT_IMPLEMENT(lib4neuro::DataSet);
    
            this->n_elements             = 0;
            this->input_dim              = 0;
            this->output_dim             = 0;
    
    Martin Beseda's avatar
    Martin Beseda committed
            this->normalization_strategy = std::make_shared<DoubleUnitStrategy>(DoubleUnitStrategy());
    
        DataSet::DataSet(std::string file_path) {
            std::ifstream ifs(file_path);
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (ifs.is_open()) {
    
                try {
                    boost::archive::text_iarchive ia(ifs);
                    ia >> *this;
    
                }
                catch (boost::archive::archive_exception& e) {
    
    Martin Beseda's avatar
    Martin Beseda committed
                    THROW_RUNTIME_ERROR(
    
                        "Serialized archive error: '" + e.what() + "'! Please, check if your file is really "
                                                                   "the serialized DataSet.");
    
                THROW_RUNTIME_ERROR("File " + file_path + " couldn't be open!");
    
    Martin Beseda's avatar
    Martin Beseda committed
            this->normalization_strategy = std::make_shared<DoubleUnitStrategy>(DoubleUnitStrategy());
    
    Martin Beseda's avatar
    Martin Beseda committed
        DataSet::DataSet(std::vector<std::pair<std::vector<double>, std::vector<double>>>* data_ptr,
    
            this->data       = *data_ptr;
            this->input_dim  = this->data[0].first.size();
    
            this->output_dim = this->data[0].second.size();
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (ns) {
    
    Martin Beseda's avatar
    Martin Beseda committed
                std::shared_ptr<NormalizationStrategy> ns_tmp;
                ns_tmp.reset(ns);
                this->normalization_strategy = ns_tmp;
    
            //TODO check the complete data set for input/output dimensions
        }
    
        DataSet::DataSet(double lower_bound,
                         double upper_bound,
                         unsigned int size,
                         double output,
                         NormalizationStrategy* ns) {
    
            std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
    
            this->data       = new_data_vec;
    
            this->input_dim  = 1;
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (ns) {
    
                std::shared_ptr<NormalizationStrategy> ns_tmp(ns);
    
    Martin Beseda's avatar
    Martin Beseda committed
                this->normalization_strategy = ns_tmp;
    
    Martin Beseda's avatar
    Martin Beseda committed
            this->add_isotropic_data(lower_bound,
                                     upper_bound,
                                     size,
                                     output);
    
    Martin Beseda's avatar
    Martin Beseda committed
        DataSet::DataSet(std::vector<double>& bounds,
    
                         unsigned int no_elems_in_one_dim,
    
    Martin Beseda's avatar
    Martin Beseda committed
                         std::vector<double> (* output_func)(std::vector<double>&),
    
                         unsigned int output_dim,
                         NormalizationStrategy* ns) {
    
            std::vector<std::pair<std::vector<double>, std::vector<double>>> new_data_vec;
    
            this->data       = new_data_vec;
            this->input_dim  = bounds.size() / 2;
    
            this->output_dim = output_dim;
            this->n_elements = 0;
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (ns) {
    
    Martin Beseda's avatar
    Martin Beseda committed
                std::shared_ptr<NormalizationStrategy> ns_tmp;
                ns_tmp.reset(ns);
                this->normalization_strategy = ns_tmp;
    
    Martin Beseda's avatar
    Martin Beseda committed
            this->add_isotropic_data(bounds,
                                     no_elems_in_one_dim,
                                     output_func);
    
        void DataSet::shift_outputs_to_zero() {
    
            auto first_elem = this->data.at(0).second;
    
            for(size_t j = 0; j < this->data.size(); ++j){
                for(size_t i = 0; i < this->get_output_dim(); ++i){
    
                    this->data.at(j).second.at(i) -= first_elem.at(i);
    
    Martin Beseda's avatar
    Martin Beseda committed
        void DataSet::add_data_pair(std::vector<double>& inputs,
                                    std::vector<double>& outputs) {
            if (this->n_elements == 0 && this->input_dim == 0 && this->output_dim == 0) {
    
                this->input_dim  = inputs.size();
    
                this->output_dim = outputs.size();
            }
    
    
                THROW_RUNTIME_ERROR("Bad input dimension.");
    
            } else if (outputs.size() != this->output_dim) {
    
                THROW_RUNTIME_ERROR("Bad output dimension.");
    
    Martin Beseda's avatar
    Martin Beseda committed
            this->data.emplace_back(std::make_pair(inputs,
                                                   outputs));
    
    Martin Beseda's avatar
    Martin Beseda committed
        void DataSet::add_isotropic_data(double lower_bound,
                                         double upper_bound,
                                         unsigned int size,
                                         double output) {
    
            if (this->input_dim != 1 || this->output_dim != 1) {
    
                THROW_RUNTIME_ERROR("Cannot add data with dimensionality 1:1 when the data set "
                                    "is of different dimensionality!");
    
            double frac;
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (size < 1) {
    
                THROW_INVALID_ARGUMENT_ERROR("Size of added data has to be >=1 !");
            } else if (size == 1) {
                frac = 1;
            } else {
                frac = (upper_bound - lower_bound) / (size - 1);
            }
    
    
            for (unsigned int i = 0; i < size; ++i) {
                inp = {frac * i};
    
    Martin Beseda's avatar
    Martin Beseda committed
                this->data.emplace_back(std::make_pair(inp,
                                                       out));
    
    Martin Beseda's avatar
    Martin Beseda committed
        void DataSet::add_isotropic_data(std::vector<double>& bounds,
                                         unsigned int no_elems_in_one_dim,
                                         std::vector<double> (* output_func)(std::vector<double>&)) {
    
            std::vector<double>              tmp;
            double                           frac;
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (no_elems_in_one_dim < 1) {
    
                THROW_INVALID_ARGUMENT_ERROR("Number of elements in one dimension has to be >=1 !");
            }
    
            for (unsigned int i = 0; i < bounds.size(); i += 2) {
    
    Martin Beseda's avatar
    Martin Beseda committed
                if (no_elems_in_one_dim == 1) {
    
                    frac = 1;
                } else {
    
    Martin Beseda's avatar
    Martin Beseda committed
                    frac = (bounds[i] - bounds[i + 1]) / (no_elems_in_one_dim - 1);
    
                tmp.clear();
                for (double j = bounds[i]; j <= bounds[i + 1]; j += frac) {
                    tmp.emplace_back(j);
                }
    
            grid = this->cartesian_product(&grid);
    
            for (auto vec : grid) {
                this->n_elements++;
    
    Martin Beseda's avatar
    Martin Beseda committed
                this->data.emplace_back(std::make_pair(vec,
                                                       output_func(vec)));
    
    Martin Beseda's avatar
    Martin Beseda committed
        std::vector<std::pair<std::vector<double>, std::vector<double>>>* DataSet::get_data() {
    
        size_t DataSet::get_n_elements() {
            return this->n_elements;
    
        size_t DataSet::get_input_dim() {
            return this->input_dim;
        }
    
        size_t DataSet::get_output_dim() {
            return this->output_dim;
        }
    
        void DataSet::print_data() {
            if (n_elements) {
                for (auto p : this->data) {
                    /* INPUT */
                    for (auto v : std::get<0>(p)) {
                        std::cout << v << " ";
                    }
    
                    std::cout << "-> ";
    
                    /* OUTPUT */
                    for (auto v : std::get<1>(p)) {
                        std::cout << v << " ";
                    }
    
        void DataSet::store_text(std::string file_path) {
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (!ofs.is_open()) {
    
                THROW_RUNTIME_ERROR("File " + file_path + " couldn't be open!");
            } else {
                boost::archive::text_oarchive oa(ofs);
                oa << *this;
                ofs.close();
            }
        }
    
    
        void DataSet::store_data_text(std::ofstream* file_path) {
            for (auto e : this->data) {
                /* First part of the pair */
                for (unsigned int i = 0; i < e.first.size() - 1; i++) {
    
                    *file_path << this->get_denormalized_value(e.first.at(i)) << ",";
    
                *file_path << this->get_denormalized_value(e.first.back()) << " ";
    
    
                /* Second part of the pair */
                for (unsigned int i = 0; i < e.second.size() - 1; i++) {
    
                    *file_path << this->get_denormalized_value(e.second.at(i)) << ",";
    
                *file_path << this->get_denormalized_value(e.second.back()) << std::endl;
    
        void DataSet::store_data_text(std::string file_path) {
            std::ofstream ofs(file_path);
    
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (!ofs.is_open()) {
    
                THROW_RUNTIME_ERROR("File " + file_path + " couldn't be open!");
            } else {
    
                this->store_data_text(&ofs);
    
    Martin Beseda's avatar
    Martin Beseda committed
        std::vector<std::vector<T>> DataSet::cartesian_product(const std::vector<std::vector<T>>* v) {
    
            std::vector<std::vector<double>> v_combined_old, v_combined, v_tmp;
    
            std::vector<double>              tmp;
    
    Martin Beseda's avatar
    Martin Beseda committed
            for (const auto& e : v->at(0)) {
    
            for (unsigned int i = 1; i < v->size(); i++) {  // Iterate through remaining vectors of 'v'
                v_combined_old = v_combined;
                v_combined.clear();
    
    
    Martin Beseda's avatar
    Martin Beseda committed
                for (const auto& e : v->at(i)) {
                    for (const auto& vec : v_combined_old) {
    
                        tmp = vec;
                        tmp.emplace_back(e);
    
                        /* Add only unique elements */
    
    Martin Beseda's avatar
    Martin Beseda committed
                        if (std::find(v_combined.begin(),
                                      v_combined.end(),
                                      tmp) == v_combined.end()) {
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (!this->normalization_strategy) {
    
                THROW_INVALID_ARGUMENT_ERROR("There is no normalization strategy given for this data set, so it can not be "
                                             "normalized!");
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (this->max_min_inp_val.empty()) {
    
                this->max_min_inp_val.emplace_back(this->data.at(0).first.at(0));
                this->max_min_inp_val.emplace_back(this->data.at(0).first.at(0));
            }
    
    
            double    tmp, tmp2;
    
    Martin Beseda's avatar
    Martin Beseda committed
            for (auto pair : this->data) {
    
                /* Finding maximum */
                //TODO make more efficiently
    
                tmp  = *std::max_element(pair.first.begin(),
                                         pair.first.end());
    
    Martin Beseda's avatar
    Martin Beseda committed
                tmp2 = *std::max_element(pair.second.begin(),
                                         pair.second.end());
    
    Martin Beseda's avatar
    Martin Beseda committed
                tmp = std::max(tmp,
                               tmp2);
    
                /* Testing for a new maxima */
                if (tmp > this->max_min_inp_val.at(0)) {
                    this->max_min_inp_val.at(0) = tmp;
    
                tmp  = *std::min_element(pair.first.begin(),
                                         pair.first.end());
    
    Martin Beseda's avatar
    Martin Beseda committed
                tmp2 = *std::min_element(pair.second.begin(),
                                         pair.second.end());
    
    Martin Beseda's avatar
    Martin Beseda committed
                tmp = std::min(tmp,
                               tmp2);
    
                /* Testing for a new minima */
                if (tmp < this->max_min_inp_val.at(1)) {
                    this->max_min_inp_val.at(1) = tmp;
    
    Martin Beseda's avatar
    Martin Beseda committed
            for (auto& pair : this->data) {
                for (auto& v : pair.first) {
                    v = this->normalization_strategy->normalize(v,
                                                                this->max_min_inp_val.at(0),
                                                                this->max_min_inp_val.at(1));
    
    Martin Beseda's avatar
    Martin Beseda committed
                for (auto& v : pair.second) {
                    v = this->normalization_strategy->normalize(v,
                                                                this->max_min_inp_val.at(0),
                                                                this->max_min_inp_val.at(1));
    
    Martin Beseda's avatar
    Martin Beseda committed
        double DataSet::get_normalized_value(double val) {
            if (!this->normalized || !this->normalization_strategy) {
    
    Martin Beseda's avatar
    Martin Beseda committed
            return this->normalization_strategy->normalize(val,
                                                           this->max_min_inp_val.at(0),
                                                           this->max_min_inp_val.at(1));
    
        double DataSet::get_denormalized_value(double val) {
            if (!this->normalized || !this->normalization_strategy) {
                return val;
            }
    
            return this->normalization_strategy->de_normalize(val);
    
    Martin Beseda's avatar
    Martin Beseda committed
        void DataSet::get_input(std::vector<double>& d,
                                size_t idx) {
    
            assert(d.size() == this->data[idx].first.size());
            for (size_t j = 0; j < this->data[idx].first.size(); ++j) {
                d[j] = this->data[idx].first[j];
            }
        }
    
    
    Martin Beseda's avatar
    Martin Beseda committed
        void DataSet::get_output(std::vector<double>& d,
                                 size_t idx) {
    
            assert(d.size() == this->data[idx].second.size());
            for (size_t j = 0; j < this->data[idx].second.size(); ++j) {
                d[j] = this->data[idx].second[j];
            }
        }
    
    
        void DataSet::de_normalize() {
            std::vector<double> tmp_inp(this->data.at(0).first.size());
            std::vector<double> tmp_out(this->data.at(0).second.size());
    
    
    Martin Beseda's avatar
    Martin Beseda committed
            for (auto& pair: this->data) {
                for (size_t i = 0; i < pair.first.size(); i++) {
    
                    tmp_inp.at(i) = this->normalization_strategy->de_normalize(pair.first.at(i));
                }
                pair.first = tmp_inp;
            }
    
    
    Martin Beseda's avatar
    Martin Beseda committed
            for (auto& pair: this->data) {
                for (size_t i = 0; i < pair.second.size(); i++) {
    
                    tmp_out.at(i) = this->normalization_strategy->de_normalize(pair.second.at(i));
                }
                pair.second = tmp_out;
            }
    
    
            /* Remove found max and minimal values, because of is_normalized() method */
            this->max_min_inp_val.clear();
    
    Martin Beseda's avatar
    Martin Beseda committed
        void DataSet::de_normalize_single(std::vector<double>& d1,
                                          std::vector<double>& d2) {
    
            assert(d1.size() == d2.size());
            for (size_t j = 0; j < d1.size(); ++j) {
    
                d2[j] = this->normalization_strategy->de_normalize(d1[j]);
    
        NormalizationStrategy* DataSet::get_normalization_strategy() {
    
    Martin Beseda's avatar
    Martin Beseda committed
            return this->normalization_strategy.get();
    
        void DataSet::set_normalization_strategy(NormalizationStrategy* ns) {
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (ns) {
    
                this->normalization_strategy.reset(ns);
            }
        }
    
    
        bool DataSet::is_normalized() {
            return !this->max_min_inp_val.empty();
        }
    
    
        double DataSet::get_max_inp_val() {
    
    
        /**
         * Method returning random amount of data pairs between 1-max
         */
        std::vector<std::pair<std::vector<double>, std::vector<double>>> DataSet::get_random_data_batch(size_t max) {
    
    Martin Beseda's avatar
    Martin Beseda committed
            if (max <= 0) {
    
            } else {
                std::vector<std::pair<std::vector<double>, std::vector<double>>> newData;
    
    Martin Beseda's avatar
    Martin Beseda committed
                srand(time(NULL));  //TODO use Mersen twister from Boost
    
    Martin Beseda's avatar
    Martin Beseda committed
                size_t n_chosen = rand() % std::min(max,
                                                    this->data.size()) + 1;
    
    Martin Beseda's avatar
    Martin Beseda committed
                n_chosen = max;
    
                std::vector<size_t> chosens;
    
                size_t              chosen;
    
                for (size_t i = 0; i < n_chosen; i++) {
    
    Martin Beseda's avatar
    Martin Beseda committed
                    chosen = rand() % this->data.size();
    
    Martin Beseda's avatar
    Martin Beseda committed
                    auto it = std::find(chosens.begin(),
                                        chosens.end(),
                                        chosen);
    
                        i--;
                    } else {
                        newData.push_back(this->data.at(chosen));
    
    Martin Beseda's avatar
    Martin Beseda committed
                        chosens.push_back(chosen);
    
    	
    	void DataSet::add_zero_output_columns(size_t n_columns)
    	{
    		for (size_t i = 0; i < this->n_elements; i++)
    		{
    			for (size_t j = 0; j < n_columns; j++)
    			{
    				this->data.at(i).second.push_back(0);
    			}
    		}
    		this->output_dim += n_columns;
    	}
    
    
        arma::Mat<double>* DataSet::get_inputs_matrix() {
            this->inputs_matrix = new arma::Mat<double>(this->data.size(), this->data.at(0).first.size());
    //        arma::Mat<double> m(this->data.size(), this->data.at(0).first.size());
    
            for (size_t i = 0; i < this->data.size(); i++) {
                this->inputs_matrix->row(i) = arma::Row<double>(this->data.at(i).first);
            }
    
    //        this->inputs_matrix = &m;
            return this->inputs_matrix;
        }
    
        arma::Mat<double>* DataSet::get_outputs_matrix() {
            this->outputs_matrix = new arma::Mat<double>(this->data.size(), this->data.at(0).second.size());
    
            for(size_t i = 0; i < this->data.size(); i++) {
                this->outputs_matrix->row(i) = arma::Row<double>(this->data.at(i).second);
            }
    
    //        this->outputs_matrix = &m;
            return this->outputs_matrix;
        }