Newer
Older
* Example solving the time dependent water flow 1D diffusion PDE:
* y_xx - y_t = 0, for (x, t) in [0, 1] x [0, 1]
* y(x, 0) = e^(-sqrt(0.5)x) * sin(-sqrt(0.5)x)
*
* -------------------------------------------
* Analytical solution:
* NN representation: sum over [a_i * (1 + e^(bi - x * w_ix - t * w_it))^(-1)]
* -------------------------------------------
* Optimal NN setting with biases (4 inner neurons)
* Path 1. wx = 0.51954589, wt = -0.48780445, b = 0.35656955, a = 1.69279158
* Path 2. wx = -1.24173503, wt = 1.13351300, b = 0.32528567, a = 1.69148458
* Path 3. wx = 0.64754127, wt = 0.95758760, b = -0.95852707, a = 2.77877453
* Path 4. wx = 1.65439557, wt = -0.31784248, b = -1.81237586, a = -3.96157108
* @author Michal Kravčenko
* @date 9.8.18
*/
#include <random>
#include <iostream>
#include <fstream>
#include "../../include/4neuro.h"
#include "../Solvers/DESolver.h"
//y(x, t) = ... ai * f(wxi * x + wti * t - bi)
double eval_approx_y(double x, double t, size_t n_inner_neurons, std::vector<double> ¶meters){
double value= 0.0, wxi, wti, ai, bi, ei, ei1;
for(size_t i = 0; i < n_inner_neurons; ++i){
wxi = parameters[4 * i + 0];
wti = parameters[4 * i + 1];
ai = parameters[4 * i + 2];
bi = parameters[4 * i + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
value += ai / (ei1);
}
return value;
}
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
//yt(x, t) = ... (ai * wti * e^(bi - wti * t - wxi * x))/(e^(bi - wti * t - wxi * x) + 1)^2
double eval_approx_yt(double x, double t, size_t n_inner_neurons, std::vector<double> ¶meters){
double value= 0.0, wxi, wti, ai, bi, ei, ei1;
for(size_t i = 0; i < n_inner_neurons; ++i){
wxi = parameters[4 * i + 0];
wti = parameters[4 * i + 1];
ai = parameters[4 * i + 2];
bi = parameters[4 * i + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
value += ai * wti * ei / (ei1 * ei1);
}
return value;
}
//yx(x, t) = ... (ai * wxi * e^(bi - t * wti - wxi * x))/(e^(bi - t * wti - wxi * x) + 1)^2
double eval_approx_yx(double x, double t, size_t n_inner_neurons, std::vector<double> ¶meters){
double value= 0.0, wxi, wti, ai, bi, ei, ei1;
for(size_t i = 0; i < n_inner_neurons; ++i){
wxi = parameters[4 * i + 0];
wti = parameters[4 * i + 1];
ai = parameters[4 * i + 2];
bi = parameters[4 * i + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
value += (ai * wxi * ei1)/(ei1 * ei1);
}
return value;
}
//yxx(x, t) = ... (ai * wxi * e^(bi - t * wti - wxi * x))/(e^(bi - t * wti - wxi * x) + 1)^2
double eval_approx_yxx(double x, double t, size_t n_inner_neurons, std::vector<double> ¶meters){
double value= 0.0, wxi, wti, ai, bi, ei, ei1;
for(size_t i = 0; i < n_inner_neurons; ++i){
wxi = parameters[4 * i + 0];
wti = parameters[4 * i + 1];
ai = parameters[4 * i + 2];
bi = parameters[4 * i + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
value += (2 * ai * wxi * wxi * ei * ei) / (ei1 * ei1 * ei1) - (ai * wxi * wxi * ei) / (ei1 * ei1);
}
return value;
}
double eval_approx_da_y(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, bi, ei, ei1;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
bi = parameters[4 * neuron_idx + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
return 1.0 / ei1;
}
double eval_approx_dwx_y(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, ai, bi, ei, ei1;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
ai = parameters[4 * neuron_idx + 2];
bi = parameters[4 * neuron_idx + 3];
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
return (ai * x * ei)/(ei1 * ei1);
}
double eval_approx_dwt_y(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, ai, bi, ei, ei1;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
ai = parameters[4 * neuron_idx + 2];
bi = parameters[4 * neuron_idx + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
return (ai * t * ei)/(ei1 * ei1);
}
double eval_approx_db_y(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, bi, ei, ai, ei1;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
ai = parameters[4 * neuron_idx + 2];
bi = parameters[4 * neuron_idx + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
return -(ai * ei)/(ei1 * ei1);
}
double eval_approx_da_yt(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, bi, ei, ei1;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
bi = parameters[4 * neuron_idx + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
return (wti * ei)/(ei1 * ei1);
}
double eval_approx_dwx_yt(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, ai, bi, ei, ei1;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
ai = parameters[4 * neuron_idx + 2];
bi = parameters[4 * neuron_idx + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
return (2 * ai * wti * x * ei * ei)/(ei1 * ei1 * ei1) - (ai * wti * x * ei)/(ei1 * ei1);
}
double eval_approx_dwt_yt(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, ai, bi, ei, ei1;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
ai = parameters[4 * neuron_idx + 2];
bi = parameters[4 * neuron_idx + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
return -(ai * t * wti * ei) / (ei1 * ei1) + (2 * ai * t * wti * ei * ei)/(ei1 * ei1 * ei1) + (ai * ei)/(ei1 * ei1);
}
double eval_approx_db_yt(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, ai, bi, ei, ei1;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
ai = parameters[4 * neuron_idx + 2];
bi = parameters[4 * neuron_idx + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ei1 = ei + 1.0;
return (ai * wti * ei) / (ei1 * ei1) - (2 * ai * wti * ei * ei) / (ei1 * ei1 * ei1);
}
double eval_approx_da_yxx(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, ai, bi, ei, ei1, ebp, eb, etx;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
ai = parameters[4 * neuron_idx + 2];
bi = parameters[4 * neuron_idx + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ebp= std::pow(E, bi + wxi * x + wti * t);
eb = std::pow(E, bi);
etx = std::pow(E, wxi * x + wti * t);
ei1 = eb + etx;
return -(wxi * wxi * ebp * (etx - eb))/(ei1 * ei1 * ei1);
}
double eval_approx_dwx_yxx(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, ai, bi, ei, ei1, ebp, eb, etx;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
ai = parameters[4 * neuron_idx + 2];
bi = parameters[4 * neuron_idx + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ebp= std::pow(E, bi + wxi * x + wti * t);
eb = std::pow(E, bi);
etx = std::pow(E, wxi * x + wti * t);
ei1 = eb + etx;
return (ai * wxi * wxi * x * ei) / ((ei + 1) * (ei + 1)) - (6 * ai * wxi * wxi * x * ei * ei) / ((ei + 1) * (ei + 1) * (ei + 1)) + (6 * ai * wxi *wxi * x * ei * ei * ei) / ((ei + 1) * (ei + 1) * (ei + 1) * (ei + 1)) - (2 * ai * wxi * ei) / ((ei + 1) * (ei + 1)) + (4 * ai * wxi * ei * ei)/((ei + 1) * (ei + 1) * (ei + 1));
}
double eval_approx_dwt_yxx(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, ai, bi, ei, ei1, ebp, eb, etx;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
ai = parameters[4 * neuron_idx + 2];
bi = parameters[4 * neuron_idx + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ebp= std::pow(E, bi + wxi * x + wti * t);
eb = std::pow(E, bi);
etx = std::pow(E, wxi * x + wti * t);
ei1 = eb + etx;
return (ai * t * wxi * wxi * ei) / ((ei + 1) * (ei + 1)) - (6 * ai * t * wxi * wxi * ei * ei) / ((ei + 1) * (ei + 1) * (ei + 1)) + (6 * ai * t * wxi * wxi * ei * ei * ei) / ((ei + 1) * (ei + 1) * (ei + 1) * (ei + 1));
}
double eval_approx_db_yxx(double x, double t, size_t neuron_idx, std::vector<double> ¶meters){
double wxi, wti, ai, bi, ei, ei1, ebp, eb, etx;
wxi = parameters[4 * neuron_idx + 0];
wti = parameters[4 * neuron_idx + 1];
ai = parameters[4 * neuron_idx + 2];
bi = parameters[4 * neuron_idx + 3];
ei = std::pow(E, bi - wxi * x - wti * t);
ebp= std::pow(E, bi + wxi * x + wti * t);
eb = std::pow(E, bi);
etx = std::pow(E, wxi * x + wti * t);
ei1 = eb + etx;
return (ai * wxi * wxi * eb * ebp) / (ei1 * ei1 * ei1) - (ai * wxi * wxi * ebp * (etx - eb)) / (ei1 * ei1 * ei1) + (3 * ai * wxi * wxi * eb * ebp * (etx - eb)) / (ei1 * ei1 * ei1 * ei1);
}
void eval_step_size_simple(double &gamma, double val, double prev_val, double sk, double grad_norm, double grad_norm_prev){
if(val > prev_val){
gamma *= 0.99999;
}
if(sk <= 1e-3 || grad_norm < grad_norm_prev){
/* movement on a line */
/* new slope is less steep, speed up */
gamma *= 1.0005;
}
else if(grad_norm > grad_norm_prev){
/* new slope is more steep, slow down*/
gamma /= 1.0005;
}
else{
gamma /= 1.005;
}
// gamma *= 0.999999;
}
void eval_step_size_mk( double &gamma, double beta, double &c, double grad_norm_prev, double grad_norm, double fi, double fim ){
if( fi > fim )
{
c /= 1.0000005;
}
else if( fi < fim )
{
c *= 1.0000005;
}
gamma *= std::pow( c, 1.0 - 2.0 * beta) * std::pow( grad_norm_prev / grad_norm, 1.0 / c );
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
double calculate_gradient( std::vector<double> &data_points, size_t n_inner_neurons, std::vector<double> *parameters, std::vector<double> *gradient ){
size_t i, j, k;
double x, t, mem, derror, total_error, approx;
size_t train_size = data_points.size();
/* error of boundary condition: y(0, t) = sin(t) => e1 = 1/n * (sin(t) - y(0, t))^2 */
for(i = 0; i < train_size; ++i){
t = data_points[i];
mem = (std::sin(t) - eval_approx_y(0.0, t, n_inner_neurons, *parameters));
derror = 2.0 * mem / train_size;
for(j = 0; j < n_inner_neurons; ++j){
(*gradient)[4 * j + 0] -= derror * eval_approx_dwx_y(0, t, j, *parameters);
(*gradient)[4 * j + 1] -= derror * eval_approx_dwt_y(0, t, j, *parameters);
(*gradient)[4 * j + 2] -= derror * eval_approx_da_y(0, t, j, *parameters);
(*gradient)[4 * j + 3] -= derror * eval_approx_db_y(0, t, j, *parameters);
}
total_error += mem * mem / train_size;
}
/* error boundary condition: y(x, 0) = e^(-(0.5)^(0.5)x) * sin(-(0.5)^(0.5)x) => e2 = 1/n * (e^(-(0.5)^(0.5)x) * sin(-(0.5)^(0.5)x) - y(x, 0))^2 */
for(i = 0; i < train_size; ++i){
x = data_points[i];
mem = (std::pow(E, -0.707106781 * x) * std::sin( -0.707106781 * x ) - eval_approx_y(x, 0.0, n_inner_neurons, *parameters));
derror = 2.0 * mem / train_size;
for(j = 0; j < n_inner_neurons; ++j){
(*gradient)[4 * j + 0] -= derror * eval_approx_dwx_y(x, 0, j, *parameters);
(*gradient)[4 * j + 1] -= derror * eval_approx_dwt_y(x, 0, j, *parameters);
(*gradient)[4 * j + 2] -= derror * eval_approx_da_y(x, 0, j, *parameters);
(*gradient)[4 * j + 3] -= derror * eval_approx_db_y(x, 0, j, *parameters);
}
total_error += mem * mem / train_size;
}
/* error of the governing equation: y_xx - y_t = 0 => e3 = 1/n^2 * (0 - y_xx + y_t)^2 */
for(i = 0; i < data_points.size(); ++i){
x = data_points[i];
for(j = 0; j < data_points.size(); ++j){
t = data_points[j];
approx = eval_approx_yxx(x, t, n_inner_neurons, *parameters) - eval_approx_yt(x, t, n_inner_neurons, *parameters);
mem = 0.0 - approx;
derror = 2.0 * mem / (train_size * train_size);
for(k = 0; k < n_inner_neurons; ++k){
(*gradient)[4 * k + 0] -= derror * (eval_approx_dwx_yxx(x, t, k, *parameters) - eval_approx_dwx_yt(x, t, k, *parameters));
(*gradient)[4 * k + 1] -= derror * (eval_approx_dwt_yxx(x, t, k, *parameters) - eval_approx_dwt_yt(x, t, k, *parameters));
(*gradient)[4 * k + 2] -= derror * ( eval_approx_da_yxx(x, t, k, *parameters) - eval_approx_da_yt(x, t, k, *parameters));
(*gradient)[4 * k + 3] -= derror * ( eval_approx_db_yxx(x, t, k, *parameters) - eval_approx_db_yt(x, t, k, *parameters));
}
total_error += mem * mem / (train_size * train_size);
}
}
return total_error;
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
void solve_example_gradient(std::vector<double> &guess, double accuracy, size_t n_inner_neurons, size_t train_size, double ds, double de, size_t n_test_points, double ts, double te){
/* SETUP OF THE TRAINING DATA */
std::vector<double> inp, out;
double frac, alpha, x;
double grad_norm = accuracy * 10.0, mem, ai, bi, wxi, wti, error, derror, approx, t, gamma, total_error, sk, sy, sx, sg, beta;
double grad_norm_prev = grad_norm;
size_t i, j, k, iter_idx = 0;
/* TRAIN DATA FOR THE GOVERNING DE */
std::vector<double> data_points(train_size);
/* ISOTROPIC TRAIN SET */
frac = (de - ds) / (train_size - 1);
for(i = 0; i < train_size; ++i){
data_points[i] = frac * i + ds;
// std::cout << data_points[i] << std::endl;
}
// /* CHEBYSCHEV TRAIN SET */
// alpha = PI / (train_size );
// frac = 0.5 * (de - ds);
// for(i = 0; i < train_size; ++i){
// x = (std::cos(PI - alpha * i) + 1.0) * frac + ds;
// data_points[i] = x;
// }
std::vector<double> *gradient_current = new std::vector<double>(4 * n_inner_neurons);
std::vector<double> *gradient_prev = new std::vector<double>(4 * n_inner_neurons);
std::vector<double> *params_current = new std::vector<double>(guess);
std::vector<double> *params_prev = new std::vector<double>(guess);
std::vector<double> *ptr_mem;
std::fill(gradient_current->begin(), gradient_current->end(), 0.0);
std::fill(gradient_prev->begin(), gradient_prev->end(), 0.0);
for (i = 0; i < n_inner_neurons; ++i) {
wxi = (*params_current)[4 * i + 0];
wti = (*params_current)[4 * i + 1];
ai = (*params_current)[4 * i + 2];
bi = (*params_current)[4 * i + 3];
printf("Path %3d. wx = %15.8f, wt = %15.8f, b = %15.8f, a = %15.8f\n", (int)(i + 1), wxi, wti, bi, ai);
}
gamma = 1.0;
double val = 0.0, prev_val, c = 2.0;
prev_val = 0.0;
while( grad_norm > accuracy) {
iter_idx++;
prev_val = val;
grad_norm_prev = grad_norm;
/* reset of the current gradient */
std::fill(gradient_current->begin(), gradient_current->end(), 0.0);
val = calculate_gradient( data_points, n_inner_neurons, params_current, gradient_current );
grad_norm = 0.0;
for(auto v: *gradient_current){
grad_norm += v * v;
}
grad_norm = std::sqrt(grad_norm);
/* Update of the parameters */
/* step length calculation */
if(iter_idx < 10 || iter_idx % 100 == 0){
/* fixed step length */
gamma = 0.1 * accuracy;
/* norm of the gradient calculation */
sk = 0.0;
for(i = 0; i < gradient_current->size(); ++i){
sx = (*gradient_current)[i] - (*gradient_prev)[i];
sk += sx * sx;
}
sk = std::sqrt(sk);
/* angle between two consecutive gradients */
double beta = 0.0, sx = 0.0;
for(i = 0; i < gradient_current->size(); ++i){
sx += (gradient_current->at( i ) * gradient_prev->at( i ));
sx /= grad_norm * grad_norm_prev;
beta = std::sqrt(std::acos( sx ) / PI);
// eval_step_size_simple( gamma, val, prev_val, sk, grad_norm, grad_norm_prev );
eval_step_size_mk( gamma, beta, c, grad_norm_prev, grad_norm, val, prev_val );
}
for(i = 0; i < gradient_current->size(); ++i){
(*params_prev)[i] = (*params_current)[i] - gamma * (*gradient_current)[i];
}
/* switcheroo */
ptr_mem = gradient_prev;
gradient_prev = gradient_current;
gradient_current = ptr_mem;
ptr_mem = params_prev;
params_prev = params_current;
params_current = ptr_mem;
if(iter_idx % 1 == 0){
printf("Iteration %12d. Step size: %15.8f, C: %15.8f, Gradient norm: %15.8f. Total error: %10.8f\r", (int)iter_idx, gamma, c, grad_norm, val);
std::cout.flush();
}
}
printf("Iteration %12d. Step size: %15.8f, C: %15.8f, Gradient norm: %15.8f. Total error: %10.8f\r\n", (int)iter_idx, gamma, c, grad_norm, val);
std::cout.flush();
for (i = 0; i < n_inner_neurons; ++i) {
wxi = (*params_current)[4 * i + 0];
wti = (*params_current)[4 * i + 1];
ai = (*params_current)[4 * i + 2];
bi = (*params_current)[4 * i + 3];
printf("Path %3d. wx = %15.8f, wt = %15.8f, b = %15.8f, a = %15.8f\n", (int)(i + 1), wxi, wti, bi, ai);
}
// for (i = 0; i < n_inner_neurons; ++i) {
// wxi = (*params_current)[4 * i + 0];
// wti = (*params_current)[4 * i + 1];
// ai = (*params_current)[4 * i + 2];
// bi = (*params_current)[4 * i + 3];
//
// printf("%f/(1+e^(%f-%fx-%ft)) + ", (int)(i + 1), ai, bi, wxi, wti);
// }
// printf("\n");
/* SOLUTION EXPORT */
printf("Exporting file 'data_2d_pde1_y.txt' : %7.3f%%\r", 0.0);
std::cout.flush();
std::vector<double> input, output(1);
std::ofstream ofs_y("data_2d_pde1_y.txt", std::ofstream::out);
frac = (te - ts) / (n_test_points - 1);
for(i = 0; i < n_test_points; ++i){
x = i * frac + ts;
for(j = 0; j < n_test_points; ++j){
t = j * frac + ts;
ofs_y << x << " " << t << " " << eval_approx_y(x, t, n_inner_neurons, *params_current) << std::endl;
printf("Exporting file 'data_2d_pde1_y.txt' : %7.3f%%\r", (100.0 * (j + i * n_test_points)) / (n_test_points * n_test_points - 1));
std::cout.flush();
}
}
printf("Exporting file 'data_2d_pde1_y.txt' : %7.3f%%\n", 100.0);
std::cout.flush();
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
ofs_y.close();
printf("Exporting file 'data_2d_pde1_yt.txt' : %7.3f%%\r", 0.0);
std::cout.flush();
std::ofstream ofs_t("data_2d_pde1_yt.txt", std::ofstream::out);
frac = (te - ts) / (n_test_points - 1);
for(i = 0; i < n_test_points; ++i){
x = i * frac + ts;
for(j = 0; j < n_test_points; ++j){
t = j * frac + ts;
ofs_t << x << " " << t << " " << eval_approx_yt(x, t, n_inner_neurons, *params_current) << std::endl;
printf("Exporting file 'data_2d_pde1_yt.txt' : %7.3f%%\r", (100.0 * (j + i * n_test_points)) / (n_test_points * n_test_points - 1));
std::cout.flush();
}
}
printf("Exporting file 'data_2d_pde1_yt.txt' : %7.3f%%\n", 100.0);
std::cout.flush();
ofs_t.close();
printf("Exporting file 'data_2d_pde1_yx.txt' : %7.3f%%\r", 0.0);
std::cout.flush();
std::ofstream ofs_x("data_2d_pde1_yx.txt", std::ofstream::out);
frac = (te - ts) / (n_test_points - 1);
for(i = 0; i < n_test_points; ++i){
x = i * frac + ts;
for(j = 0; j < n_test_points; ++j){
t = j * frac + ts;
ofs_x << x << " " << t << " " << eval_approx_yx(x, t, n_inner_neurons, *params_current) << std::endl;
printf("Exporting file 'data_2d_pde1_yx.txt' : %7.3f%%\r", (100.0 * (j + i * n_test_points)) / (n_test_points * n_test_points - 1));
std::cout.flush();
}
}
printf("Exporting file 'data_2d_pde1_yx.txt' : %7.3f%%\n", 100.0);
std::cout.flush();
ofs_x.close();
printf("Exporting file 'data_2d_pde1_yxx.txt' : %7.3f%%\r", 0.0);
std::cout.flush();
std::ofstream ofs_xx("data_2d_pde1_yxx.txt", std::ofstream::out);
frac = (te - ts) / (n_test_points - 1);
for(i = 0; i < n_test_points; ++i){
x = i * frac + ts;
for(j = 0; j < n_test_points; ++j){
t = j * frac + ts;
ofs_xx << x << " " << t << " " << eval_approx_yxx(x, t, n_inner_neurons, *params_current) << std::endl;
printf("Exporting file 'data_2d_pde1_yxx.txt' : %7.3f%%\r", (100.0 * (j + i * n_test_points)) / (n_test_points * n_test_points - 1));
std::cout.flush();
}
}
printf("Exporting file 'data_2d_pde1_yxx.txt' : %7.3f%%\n", 100.0);
std::cout.flush();
ofs_xx.close();
/* governing equation error */
std::ofstream ofs_error("data_2d_pde1_first_equation_error.txt", std::ofstream::out);
printf("Exporting file 'data_2d_pde1_first_equation_error.txt' : %7.3f%%\r", 0.0);
for(i = 0; i < n_test_points; ++i){
x = i * frac + ts;
for(j = 0; j < n_test_points; ++j){
t = j * frac + ts;
ofs_error << x << " " << t << " " << std::fabs(eval_approx_yxx(x, t, n_inner_neurons, *params_current) - eval_approx_yt(x, t, n_inner_neurons, *params_current)) << std::endl;
printf("Exporting file 'data_2d_pde1_first_equation_error.txt' : %7.3f%%\r", (100.0 * (j + i * n_test_points)) / (n_test_points * n_test_points - 1));
std::cout.flush();
}
}
printf("Exporting file 'data_2d_pde1_first_equation_error.txt' : %7.3f%%\n", 100.0);
std::cout.flush();
/* ISOTROPIC TEST SET FOR BOUNDARY CONDITIONS */
/* first boundary condition & its error */
std::ofstream ofs_bc_t("data_1d_pde1_yt.txt", std::ofstream::out);
std::ofstream ofs_bc_x("data_1d_pde1_yx.txt", std::ofstream::out);
printf("Exporting files 'data_1d_pde1_yt.txt' and 'data_1d_pde1_yx.txt' : %7.3f%%\r", 0.0);
for(i = 0; i < n_test_points; ++i){
x = frac * i + ts;
t = frac * i + ts;
double yt = std::sin(t);
double yx = std::pow(E, -0.707106781 * x) * std::sin( -0.707106781 * x );
double evalt = eval_approx_y(0, t, n_inner_neurons, *params_current);
double evalx = eval_approx_y(x, 0, n_inner_neurons, *params_current);
ofs_bc_t << i + 1 << " " << t << " " << yt << " " << evalt << " " << std::fabs(evalt - yt) << std::endl;
ofs_bc_x << i + 1 << " " << x << " " << yx << " " << evalx << " " << std::fabs(evalx - yx) << std::endl;
printf("Exporting files 'data_1d_pde1_yt.txt' and 'data_1d_pde1_yx.txt' : %7.3f%%\r", (100.0 * i) / (n_test_points - 1));
std::cout.flush();
}
printf("Exporting files 'data_1d_pde1_yt.txt' and 'data_1d_pde1_yx.txt' : %7.3f%%\r", 100.0);
std::cout.flush();
ofs_bc_t.close();
ofs_bc_x.close();
delete gradient_current;
delete gradient_prev;
delete params_current;
delete params_prev;
}
void solve_example_particle_swarm(double accuracy, size_t n_inner_neurons, size_t train_size, double ds, double de, size_t n_test_points, double ts, double te, size_t max_iters, size_t n_particles){
/* solution properties */
/* do not change below */
size_t n_inputs = 2;
size_t n_equations = 3;
DESolver solver_01( n_equations, n_inputs, n_inner_neurons );
/* SETUP OF THE EQUATIONS */
MultiIndex alpha_00( n_inputs );
MultiIndex alpha_01( n_inputs );
MultiIndex alpha_20( n_inputs );
alpha_00.set_partial_derivative(1, 0);
alpha_01.set_partial_derivative(1, 1);
alpha_20.set_partial_derivative(0, 2);
/* the governing differential equation */
solver_01.add_to_differential_equation( 0, alpha_20, 1.0 );
solver_01.add_to_differential_equation( 0, alpha_01, -1.0 );
/* dirichlet boundary condition */
solver_01.add_to_differential_equation( 1, alpha_00, 1.0 );
solver_01.add_to_differential_equation( 2, alpha_00, 1.0 );
/* SETUP OF THE TRAINING DATA */
//TODO neater data setup
std::vector<double> inp, out;
double frac, x, t;
/* TRAIN DATA FOR THE GOVERNING DE */
std::vector<double> test_bounds_2d = {ds, de, ds, de};
/* GOVERNING EQUATION RHS */
auto f1 = [](std::vector<double>&input) -> std::vector<double> {
std::vector<double> output(1);
output[0] = 0.0;
return output;
};
DataSet ds_00(test_bounds_2d, train_size, f1, 1);
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_t;
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_x;
/* ISOTROPIC TRAIN SET */
frac = (de - ds) / (train_size - 1);
for(unsigned int i = 0; i < train_size; ++i){
inp = {0.0, frac * i};
out = {std::sin(inp[1])};
data_vec_t.emplace_back(std::make_pair(inp, out));
inp = {frac * i, 0.0};
out = {std::pow(E, -0.707106781 * inp[0]) * std::sin( -0.707106781 * inp[0] )};
data_vec_x.emplace_back(std::make_pair(inp, out));
DataSet ds_t(&data_vec_t);
/* Placing the conditions into the solver */
solver_01.set_error_function( 0, ErrorFunctionType::ErrorFuncMSE, &ds_00 );
solver_01.set_error_function( 1, ErrorFunctionType::ErrorFuncMSE, &ds_t );
solver_01.set_error_function( 2, ErrorFunctionType::ErrorFuncMSE, &ds_x );
/* PARTICLE SWARM TRAINING METHOD SETUP */
//must encapsulate each of the partial error functions
double *domain_bounds = new double[ 6 * n_inner_neurons ];
for(unsigned int i = 0; i < 3 * n_inner_neurons; ++i){
domain_bounds[2 * i] = -20.0;
domain_bounds[2 * i + 1] = 20.0;
double c1 = 1.7, c2 = 1.7, w = 0.7;
double gamma = 0.5, epsilon = 0.02, delta = 0.9;
solver_01.solve_via_particle_swarm( domain_bounds, c1, c2, w, n_particles, max_iters, gamma, epsilon, delta );
delete [] domain_bounds;
/* PRACTICAL END OF THE EXAMPLE */
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
/* SOLUTION EXPORT */
size_t i, j;
std::vector<double> *w1_ptr = solver_01.get_solution( alpha_00 )->get_parameter_ptr_weights();
std::vector<double> *w2_ptr = solver_01.get_solution( alpha_00 )->get_parameter_ptr_biases();
std::vector<double> export_params(4 * n_inner_neurons);
for(i = 0; i < n_inner_neurons; ++i){
export_params[4 * i + 0] = w1_ptr->at(i);
export_params[4 * i + 1] = w1_ptr->at(n_inner_neurons + i);
export_params[4 * i + 2] = w1_ptr->at(2 * n_inner_neurons + i);
export_params[4 * i + 3] = w2_ptr->at( i );
}
printf("Exporting file 'data_2d_pde1_y.txt' : %7.3f%%\r", 0.0);
std::cout.flush();
std::vector<double> input, output(1);
std::ofstream ofs("data_2d_pde1_y.txt", std::ofstream::out);
frac = (te - ts) / (n_test_points - 1);
for(i = 0; i < n_test_points; ++i){
x = i * frac + ts;
for(j = 0; j < n_test_points; ++j){
t = j * frac + ts;
ofs << x << " " << t << " " << eval_approx_y(x, t, n_inner_neurons, export_params) << std::endl;
printf("Exporting file 'data_2d_pde1_y.txt' : %7.3f%%\r", (100.0 * (j + i * n_test_points)) / (n_test_points * n_test_points - 1));
std::cout.flush();
}
}
printf("Exporting file 'data_2d_pde1_y.txt' : %7.3f%%\n", 100.0);
std::cout.flush();
ofs.close();
/* governing equation error */
ofs = std::ofstream("data_2d_pde1_first_equation_error.txt", std::ofstream::out);
printf("Exporting file 'data_2d_pde1_first_equation_error.txt' : %7.3f%%\r", 0.0);
for(i = 0; i < n_test_points; ++i){
x = i * frac + ts;
for(j = 0; j < n_test_points; ++j){
t = j * frac + ts;
ofs << x << " " << t << " " << std::fabs(eval_approx_yxx(x, t, n_inner_neurons, export_params) - eval_approx_yt(x, t, n_inner_neurons, export_params)) << std::endl;
printf("Exporting file 'data_2d_pde1_first_equation_error.txt' : %7.3f%%\r", (100.0 * (j + i * n_test_points)) / (n_test_points * n_test_points - 1));
std::cout.flush();
}
}
printf("Exporting file 'data_2d_pde1_first_equation_error.txt' : %7.3f%%\n", 100.0);
std::cout.flush();
ofs.close();
/* ISOTROPIC TEST SET FOR BOUNDARY CONDITIONS */
/* first boundary condition & its error */
ofs = std::ofstream("data_1d_pde1_yt.txt", std::ofstream::out);
std::ofstream ofs2("data_1d_pde1_yx.txt", std::ofstream::out);
printf("Exporting files 'data_1d_pde1_yt.txt' and 'data_1d_pde1_yx.txt' : %7.3f%%\r", 0.0);
for(i = 0; i < n_test_points; ++i){
x = frac * i + ts;
t = frac * i + ts;
double yt = std::sin(t);
double yx = std::pow(E, -0.707106781 * x) * std::sin( -0.707106781 * x );
double evalt = eval_approx_y(0, t, n_inner_neurons, export_params);
double evalx = eval_approx_y(x, 0, n_inner_neurons, export_params);
ofs << i + 1 << " " << t << " " << yt << " " << evalt << " " << std::fabs(evalt - yt) << std::endl;
ofs2 << i + 1 << " " << x << " " << yx << " " << evalx << " " << std::fabs(evalx - yx) << std::endl;
printf("Exporting files 'data_1d_pde1_yt.txt' and 'data_1d_pde1_yx.txt' : %7.3f%%\r", (100.0 * i) / (n_test_points - 1));
std::cout.flush();
}
printf("Exporting files 'data_1d_pde1_yt.txt' and 'data_1d_pde1_yx.txt' : %7.3f%%\r", 100.0);
std::cout.flush();
ofs2.close();
ofs.close();
unsigned int n_inner_neurons = 3;
unsigned int train_size = 10;
double accuracy = 1e-5;
double ds = 0.0;
double de = 1.0;
unsigned int test_size = 100;
double ts = ds;
double te = de + 0;
// size_t particle_swarm_max_iters = 500;
// size_t n_particles = 10;
// solve_example_particle_swarm(accuracy, n_inner_neurons, train_size, ds, de, test_size, ts, te, particle_swarm_max_iters, n_particles);
std::vector<double> init_guess(4 * n_inner_neurons);
std::random_device seeder;
std::mt19937 gen(seeder());
std::uniform_real_distribution<double> dist(-1.0, 1.0);
for(unsigned int i = 0; i < init_guess.size(); ++i){
init_guess[i] = dist(gen);
}
// init_guess = {-0.21709230, -0.26189447, 0.77853923, 0.41091127, -0.44311897, -0.99036349, 0.84912023, -0.16920743};
solve_example_gradient(init_guess, accuracy, n_inner_neurons, train_size, ds, de, test_size, ts, te);