Skip to content
Snippets Groups Projects
NeuralNetwork.cpp 16 KiB
Newer Older
  • Learn to ignore specific revisions
  • /**
     * DESCRIPTION OF THE FILE
     *
     * @author Michal Kravčenko
     * @date 13.6.18 - 
     */
    
    
    #include <iostream>
    
    #include <boost/random/mersenne_twister.hpp>
    #include <boost/random/uniform_real_distribution.hpp>
    
    #include "../NetConnection/ConnectionWeightIdentity.h"
    
    
    NeuralNetwork::NeuralNetwork() {
        this->neurons = new std::vector<Neuron*>(0);
    
        this->connection_weights = new std::vector<double>(0);
    
    
        this->connection_weights->reserve(0);
    
    NeuralNetwork* NeuralNetwork::get_subnet(std::vector<size_t> &input_neuron_indices, std::vector<size_t> &output_neuron_indices){
        NeuralNetwork *output_net = nullptr;
    
        Neuron * active_neuron, * target_neuron;
    
        size_t n = this->neurons->size();
        bool *part_of_subnetwork = new bool[n];
        std::fill(part_of_subnetwork, part_of_subnetwork + n, false);
    
        bool *is_reachable_from_source = new bool[n];
        bool *is_reachable_from_destination = new bool[n];
        std::fill(is_reachable_from_source, is_reachable_from_source + n, false);
        std::fill(is_reachable_from_destination, is_reachable_from_destination + n, false);
    
        bool *visited_neurons = new bool[n];
        std::fill(visited_neurons, visited_neurons + n, false);
    
        size_t active_set_size[2];
        active_set_size[0] = 0;
        active_set_size[1] = 0;
        size_t * active_neuron_set = new size_t[2 * n];
        size_t idx1 = 0, idx2 = 1;
    
        /* MAPPING BETWEEN NEURONS AND THEIR INDICES */
        size_t idx = 0, idx_target;
        for(Neuron *v: *this->neurons){
            v->set_idx( idx );
            idx++;
        }
    
        /* INITIAL STATE FOR THE FORWARD PASS */
        for(size_t i: input_neuron_indices ){
    
            if( i < 0 || i >= n){
                //invalid index
                continue;
            }
            active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
            active_set_size[idx1]++;
    
            visited_neurons[i] = true;
        }
    
        /* FORWARD PASS */
        while(active_set_size[idx1] > 0){
    
            //we iterate through the active neurons and propagate the signal
            for(int i = 0; i < active_set_size[idx1]; ++i){
                idx = active_neuron_set[i];
    
                is_reachable_from_source[ idx ] = true;
    
                active_neuron = this->neurons->at( idx );
    
                for(Connection* connection: *(active_neuron->get_connections_out())){
    
                    target_neuron = connection->get_neuron_out( );
                    idx_target = target_neuron->get_idx( );
    
                    if( visited_neurons[idx_target] ){
                        //this neuron was already analyzed
                        continue;
                    }
    
                    visited_neurons[idx_target] = true;
                    active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
                    active_set_size[idx2]++;
                }
            }
            idx1 = idx2;
            idx2 = (idx1 + 1) % 2;
            active_set_size[idx2] = 0;
        }
    
    
        /* INITIAL STATE FOR THE FORWARD PASS */
        active_set_size[0] = active_set_size[1] = 0;
        std::fill(visited_neurons, visited_neurons + n, false);
    
        for(size_t i: output_neuron_indices ){
    
            if( i < 0 || i >= n){
                //invalid index
                continue;
            }
            active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
            active_set_size[idx1]++;
    
            visited_neurons[i] = true;
        }
    
        /* BACKWARD PASS */
        size_t n_new_neurons = 0;
        while(active_set_size[idx1] > 0){
    
            //we iterate through the active neurons and propagate the signal
            for(int i = 0; i < active_set_size[idx1]; ++i){
                idx = active_neuron_set[i];
    
                is_reachable_from_destination[ idx ] = true;
    
                active_neuron = this->neurons->at( idx );
    
                if(is_reachable_from_source[ idx ]){
                    n_new_neurons++;
                }
    
                for(Connection* connection: *(active_neuron->get_connections_in())){
    
                    target_neuron = connection->get_neuron_in( );
                    idx_target = target_neuron->get_idx( );
    
                    if( visited_neurons[idx_target] ){
                        //this neuron was already analyzed
                        continue;
                    }
    
                    visited_neurons[idx_target] = true;
                    active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
                    active_set_size[idx2]++;
                }
            }
            idx1 = idx2;
            idx2 = (idx1 + 1) % 2;
            active_set_size[idx2] = 0;
        }
    
        /* FOR CONSISTENCY REASONS */
        for(size_t in: input_neuron_indices){
            if( !is_reachable_from_destination[in] ){
                n_new_neurons++;
            }
            is_reachable_from_destination[in] = true;
        }
        /* FOR CONSISTENCY REASONS */
        for(size_t in: output_neuron_indices){
            if( !is_reachable_from_source[in] ){
                n_new_neurons++;
            }
            is_reachable_from_source[in] = true;
        }
    
        /* WE FORM THE SET OF NEURONS IN THE OUTPUT NETWORK  */
        if(n_new_neurons > 0){
            output_net = new NeuralNetwork();
            output_net->set_weight_array( this->connection_weights );
    
            std::vector<size_t > local_inputs(0), local_outputs(0);
            local_inputs.reserve(input_neuron_indices.size());
            local_outputs.reserve(output_neuron_indices.size());
    
            std::vector<Neuron*> local_n_arr(0);
            local_n_arr.reserve( n_new_neurons );
    
    
            int * neuron_local_mapping = new int[ n ];
            std::fill(neuron_local_mapping, neuron_local_mapping + n, -1);
            idx = 0;
            for(size_t i = 0; i < n; ++i){
                if(is_reachable_from_source[i] && is_reachable_from_destination[i]){
                    neuron_local_mapping[i] = (int)idx;
                    idx++;
    
                    Neuron *new_neuron = this->neurons->at(i)->get_copy( );
    
                    output_net->add_neuron( new_neuron );
                    local_n_arr.push_back( new_neuron );
                }
            }
            for(size_t in: input_neuron_indices){
                local_inputs.push_back(neuron_local_mapping[in]);
            }
            for(size_t in: output_neuron_indices){
                local_outputs.push_back(neuron_local_mapping[in]);
            }
    
            int local_idx_1, local_idx_2;
            for(Neuron* source_neuron: local_n_arr){
                //we also add the relevant edges
                local_idx_1 = neuron_local_mapping[source_neuron->get_idx()];
    
                for(Connection* connection: *(source_neuron->get_connections_out( ))){
                    target_neuron = connection->get_neuron_out();
    
                    local_idx_2 = neuron_local_mapping[target_neuron->get_idx()];
                    if(local_idx_2 >= 0){
                        //this neuron is part of the subnetwork
                        Connection* new_connection = connection->get_copy( source_neuron, target_neuron );
    
                        source_neuron->add_connection_out(new_connection);
                        target_neuron->add_connection_in(new_connection);
                    }
    
                }
    
            }
            output_net->specify_input_neurons(local_inputs);
            output_net->specify_output_neurons(local_outputs);
    
    
            delete [] neuron_local_mapping;
        }
    
        delete [] is_reachable_from_source;
        delete [] is_reachable_from_destination;
        delete [] part_of_subnetwork;
        delete [] visited_neurons;
        delete [] active_neuron_set;
    
    
        return output_net;
    }
    
    
    
    NeuralNetwork::~NeuralNetwork() {
        if(this->neurons){
            delete this->neurons;
            this->neurons = nullptr;
        }
        if(this->output_neurons){
            delete this->output_neurons;
            this->output_neurons = nullptr;
        }
        if(this->input_neurons){
            delete this->input_neurons;
            this->input_neurons = nullptr;
        }
        if(this->active_eval_set){
            delete this->active_eval_set;
            this->active_eval_set = nullptr;
        }
    
    
        if(this->connection_weights && this->delete_weights){
    
            delete this->connection_weights;
            this->connection_weights = nullptr;
        }
    
    int NeuralNetwork::add_neuron(Neuron *n) {
    
        this->neurons->push_back(n);
        this->in_out_determined = false;
    
        n->set_idx(this->neurons->size() - 1);
    
    void NeuralNetwork::add_connection_simple(int n1_idx, int n2_idx) {
        add_connection_simple(n1_idx, n2_idx, -1);
    }
    
    
    void NeuralNetwork::add_connection_simple(int n1_idx, int n2_idx, size_t weight_idx) {
    
        add_connection_simple(n1_idx, n2_idx, weight_idx, 1);
    
    void NeuralNetwork::add_connection_simple(int n1_idx, int n2_idx, size_t weight_idx, double weight_value) {
    
        // TODO generate weight_value automatically from normal distribution
    
    
        if(weight_idx < 0 || weight_idx >= this->connection_weights->size()){
            //this weight is a new one, we add it to the system of weights
            this->connection_weights->push_back(weight_value);
            weight_idx = (int)this->connection_weights->size() - 1;
        }
        Neuron *neuron_out = this->neurons->at(n1_idx);
        Neuron *neuron_in = this->neurons->at(n2_idx);
    
    
        ConnectionWeightIdentity *con_weight_u1u2 = new ConnectionWeightIdentity(this->connection_weights);
        con_weight_u1u2->SetParamIndex(weight_idx, 0);
    
    
        Connection *u1u2 = new Connection(neuron_out, neuron_in, con_weight_u1u2);
    
        neuron_out->add_connection_out(u1u2);
        neuron_in->add_connection_in(u1u2);
    }
    
    
    void NeuralNetwork::add_connection_general(int n1_idx, int n2_idx, std::function<double(double *, int*, int)> *f,
    
                                               int* weight_indices, double* weight_values, size_t n_weights) {
    
        ConnectionWeight *con_weight_u1u2 = new ConnectionWeight(n_weights, this->connection_weights);
    
        for(size_t wi = 0; wi < n_weights; ++wi){
    
            weight_idx = weight_indices[wi];
            weight_value = weight_values[wi];
    
            if(weight_idx < 0 || weight_idx >= this->connection_weights->size()){
                //this weight is a new one, we add it to the system of weights
                this->connection_weights->push_back(weight_value);
                weight_indices[wi] = (int)this->connection_weights->size() - 1;
            }
    
    
            con_weight_u1u2->SetParamIndex(weight_indices[wi], wi);
    
        }
    
        Neuron *neuron_out = this->neurons->at(n1_idx);
        Neuron *neuron_in = this->neurons->at(n2_idx);
        Connection *u1u2 = new Connection(neuron_out, neuron_in, con_weight_u1u2);
    
        neuron_out->add_connection_out(u1u2);
        neuron_in->add_connection_in(u1u2);
    
    }
    
    void NeuralNetwork::determine_inputs_outputs() {
        if(this->output_neurons){
            delete this->output_neurons;
        }
    
        if(this->input_neurons){
            delete this->input_neurons;
        }
    
        this->output_neurons = new std::vector<Neuron*>(0);
        this->input_neurons = new std::vector<Neuron*>(0);
    
        if(this->active_eval_set == nullptr){
            this->active_eval_set = new std::vector<Neuron*>(this->neurons->size() * 2);
        }
        else{
            this->active_eval_set->resize(this->neurons->size() * 2);
        }
    
        for(Neuron* neuron: *this->neurons){
            if(neuron->get_connections_out()->empty()){
                //this neuron has no outgoing connections, it is the output neuron
                this->output_neurons->push_back(neuron);
            }
            else if(neuron->get_connections_in()->empty()){
                //this neuron has no incoming connections, it is the input neuron
                this->input_neurons->push_back(neuron);
            }
        }
    
    
        this->n_inputs = this->input_neurons->size();
        this->n_outputs = this->output_neurons->size();
    
    void NeuralNetwork::set_weight_array(std::vector<double> *weight_ptr) {
        if(this->connection_weights){
            delete this->connection_weights;
        }
        this->connection_weights = weight_ptr;
        this->delete_weights = false;
    }
    
    
    void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> &output) {
    
        if(!this->in_out_determined && this->n_inputs * this->n_outputs <= 0){
    //        this->determine_inputs_outputs();
    
            std::cerr << "Input and output neurons have not been specified\n" << std::endl;
            exit(-sin1);
    
            std::cerr << "Error, input size != Network input size\n" << std::endl;
            exit(-1);
    
            std::cerr << "Error, output size != Network output size\n" << std::endl;
            exit(-1);
    
        }
    
        std::fill(output.begin(), output.end(), 0.0);
    
        //reset of the potentials
        for(Neuron* neuron: *this->neurons){
            neuron->set_potential(0.0);
            neuron->set_saturation_in(0);
            neuron->set_saturation_out(0);
        }
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->active_eval_set == nullptr){
            this->active_eval_set = new std::vector<Neuron*>(this->neurons->size() * 2);
        }
        else{
            this->active_eval_set->resize(this->neurons->size() * 2);
        }
    
    
        int active_set_size[2];
        active_set_size[0] = 0;
        active_set_size[1] = 0;
    
        int idx1 = 0, idx2 = 1;
    
        active_set_size[0] = this->n_inputs;
        int i = 0;
        auto n = this->neurons->size();
    
        for(Neuron* neuron: *this->input_neurons){
    
            this->active_eval_set->at(i) = neuron;
    
            neuron->set_potential(input[i]);
    
    
            //printf("INPUT NEURON %2d, POTENTIAL: %f\n", i, input[i]);
    
    
            ++i;
        }
        Neuron* active_neuron;
        Neuron* target_neuron;
    
        while(active_set_size[idx1] > 0){
    
            //we iterate through the active neurons and propagate the signal
            for(i = 0; i < active_set_size[idx1]; ++i){
                active_neuron = this->active_eval_set->at(i + n * idx1);
                active_neuron->activate();
    
                for(Connection* connection: *(active_neuron->get_connections_out())){
                    connection->pass_signal();
    
                    target_neuron = connection->get_neuron_out();
                    target_neuron->adjust_saturation_in(1);
    
                    if(target_neuron->is_saturated_in()){
                        this->active_eval_set->at(active_set_size[idx2] + n * idx2) = target_neuron;
                        active_set_size[idx2]++;
                    }
                }
            }
    
            idx1 = idx2;
            idx2 = (idx1 + 1) % 2;
    
            active_set_size[idx2] = 0;
        }
    
        i = 0;
        for(Neuron* neuron: *this->output_neurons){
    
            output[i] = neuron->get_state();
    
            //printf("OUTPUT NEURON %2d, VALUE: %f\n", i, output[i]);
    
    
    
    }
    
    void NeuralNetwork::copy_weights(double *weights) {
        for(unsigned int i = 0; i < this->connection_weights->size(); ++i){
            (*this->connection_weights)[i] = weights[i];
        }
    
    }
    
    void NeuralNetwork::randomize_weights() {
    
    
        if( this->neurons->size() <= 0 || !this->in_out_determined ){
            return;
        }
    
    
        boost::random::mt19937 gen;
    
        // Init weight guess ("optimal" for logistic activation functions)
        double r = 4 * sqrt(6./(this->n_inputs + this->n_outputs));
    
        boost::random::uniform_real_distribution<> dist(-r, r);
    
        for(unsigned int i = 0; i < this->n_weights; i++) {
            this->connection_weights->at(i) = dist(gen);
        }
    }
    
    size_t NeuralNetwork::get_n_inputs() {
        return this->n_inputs;
    }
    
    size_t  NeuralNetwork::get_n_outputs() {
        return this->n_outputs;
    }
    
    size_t NeuralNetwork::get_n_weights() {
        if(!this->n_weights) {
            this->n_weights = this->connection_weights->size();
        }
        return this->n_weights;
    
    }
    
    void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) {
        if( !this->input_neurons ){
            this->input_neurons = new std::vector<Neuron*>();
        }
        this->input_neurons->reserve( input_neurons_indices.size() );
    
        for( size_t e: input_neurons_indices ){
            if( e < 0 || e >= this->neurons->size() ){
                continue;
            }
            this->input_neurons->push_back( this->neurons->at(e) );
        }
        this->n_inputs = this->input_neurons->size();
    }
    
    void NeuralNetwork::specify_output_neurons(std::vector<size_t> &output_neurons_indices) {
        if( !this->output_neurons ){
            this->output_neurons = new std::vector<Neuron*>();
        }
        this->output_neurons->reserve( output_neurons_indices.size() );
    
        for( size_t e: output_neurons_indices ){
            if( e < 0 || e >= this->neurons->size() ){
                continue;
            }
            this->output_neurons->push_back( this->neurons->at(e) );
        }
        this->n_outputs = this->output_neurons->size();
    }