Newer
Older
//
// Created by martin on 7/15/18.
//
size_t ErrorFunction::get_dimension() {
return this->dimension;
}
MSE::MSE(NeuralNetwork *net, DataSet *ds) {
this->net = net;
this->ds = ds;
this->dimension = net->get_n_weights() + net->get_n_biases();
unsigned int dim_out = this->ds->get_output_dim();

Michal Kravcenko
committed
// unsigned int dim_in = this->ds->get_input_dim();
size_t n_elements = this->ds->get_n_elements();
double error = 0.0, val;
std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = this->ds->get_data();
// //TODO instead use something smarter
// this->net->copy_weights(weights);
std::vector<double> output( dim_out );
for(unsigned int i = 0; i < n_elements; ++i){ // Iterate through every element in the test set
Martin Beseda
committed
this->net->eval_single(data->at(i).first, output, weights); // Compute the net output and store it into 'output' variable
for(unsigned int j = 0; j < dim_out; ++j) { // Compute difference for every element of the output vector
Martin Beseda
committed
val = output[j] - data->at(i).second[j];
this->summand = nullptr;
this->summand_coefficient = nullptr;
if( this->summand ){
delete this->summand;
}
if( this->summand_coefficient ){
delete this->summand_coefficient;
}
double ErrorSum::eval(std::vector<double> *weights) {
double output = 0.0;

Michal Kravcenko
committed
for( unsigned int i = 0; i < this->summand->size(); ++i ){
output += this->summand->at( i )->eval( weights ) * this->summand_coefficient->at( i );
}
return output;
}
void ErrorSum::add_error_function(ErrorFunction *F, double alpha) {
if(!this->summand){
this->summand = new std::vector<ErrorFunction*>(0);
}
this->summand->push_back( F );
if(!this->summand_coefficient){
this->summand_coefficient = new std::vector<double>(0);
}
this->summand_coefficient->push_back( alpha );
if(F->get_dimension() > this->dimension){
this->dimension = F->get_dimension();
}
// if(!this->dimension) {
// size_t max = 0;
// for(auto e : *this->summand) {
// if(e->get_dimension() > max) {
// max = e->get_dimension();
// }
// };
//
// this->dimension = max;
// }