Skip to content
Snippets Groups Projects
ErrorFunctions.h 16.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • //
    // Created by martin on 7/15/18.
    //
    
    #ifndef INC_4NEURO_ERRORFUNCTION_H
    #define INC_4NEURO_ERRORFUNCTION_H
    
    
    #include "../Network/NeuralNetwork.h"
    #include "../DataSet/DataSet.h"
    
        //TODO write smarter using ErrorFunction abstract class?
    
        enum ErrorFunctionType {
            ErrorFuncMSE
        };
    
        class ErrorFunction {
        public:
    
            /**
             *
             * @param weights
             * @return
             */
    
    //        virtual double eval(std::vector<double>* weights = nullptr, bool denormalize_data=false,
    //                bool verbose = false) = 0;
            virtual double eval(std::vector<double>* weights = nullptr, bool denormalize_data=false,
                                bool verbose = false) = 0;
    
    
            /**
             *
             * @return
             */
            LIB4NEURO_API virtual size_t get_dimension();
    
    
            /**
             *
             * @param params
             * @param grad
    
             */
            virtual void
    
            calculate_error_gradient(std::vector<double>& params,
                                     std::vector<double>& grad,
    
            /**
             *
             * @param params
             * @param grad
             * @param alpha
             * @param batch
             */
            virtual void
            analyze_error_gradient(std::vector<double>& params,
                                     std::vector<double>& grad,
                                     double alpha = 1.0,
                                     size_t batch = 0) = 0;
    
    
            /**
             *
             * @return
             */
    
            virtual std::vector<double> get_parameters();
    
            virtual DataSet* get_dataset();
    
            /**
             *
             * @return
             */
            virtual DataSet* get_test_dataset();
    
    
            /**
             *
             * @return
             */
            NeuralNetwork* get_network_instance();
    
            /**
             *
             * @param percent_train
             * @return
             */
            void divide_data_train_test(double percent_test);
    
            /**
             *
             */
            void return_full_data_set_for_training();
    
            /**
             *
             */
    
            virtual double eval_on_test_data(std::vector<double>* weights = nullptr, bool verbose = false) = 0;
    
            /**
             *
             * @param results_file_path
             * @param weights
             * @return
             */
    
            virtual double eval_on_test_data(std::string results_file_path, std::vector<double>* weights = nullptr,
    
            virtual double eval_on_test_data(std::ofstream* results_file_path, std::vector<double>* weights = nullptr,
    
            virtual double eval_on_data_set(DataSet* data_set, std::vector<double>* weights = nullptr,
    
    
            /**
             *
             * @param data_set
             * @param weights
             * @param results_file_path
             * @return
             */
            virtual double
    
            eval_on_data_set(DataSet* data_set, std::string results_file_path, std::vector<double>* weights = nullptr,
    
    
            /**
             *
             * @param data_set
             * @param results_file_path
             * @param weights
             * @return
             */
    
            virtual double eval_on_data_set(DataSet* data_set,
                                            std::ofstream* results_file_path = nullptr,
    
                                            std::vector<double>* weights = nullptr,
    
                                            bool denormalize_data = true,
                                            bool verbose = false) = 0;
    
            virtual double eval_single_item_by_idx(size_t  i, std::vector<double>* parameter_vector, std::vector<double> &error_vector) = 0;
    
    
            /**
             *
             * @param error_vector
             * @param gradient_vector
             */
            virtual void calculate_error_gradient_single(std::vector<double> &error_vector, std::vector<double> &gradient_vector) = 0;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            /**
             *
             * @param input
             * @param output
             * @param gradient
             * @param h
             */
    
            calculate_residual_gradient(std::vector<double>* input,
                                        std::vector<double>* output,
                                        std::vector<double>* gradient,
    
                                        double h = 1e-3) = 0;
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            /**
             *
             * @param input
             * @param output
             * @param parameters
             * @return
             */
    
            virtual double
    
            calculate_single_residual(std::vector<double>* input,
                                      std::vector<double>* output,
                                      std::vector<double>* parameters = nullptr) = 0;
    
            NeuralNetwork* net = nullptr;
    
            /**
             *
             */
            DataSet* ds = nullptr;
    
            /**
             *
             */
            DataSet* ds_full = nullptr;
    
            /**
             *
             */
            DataSet* ds_test = nullptr;
    
        class MSE : public ErrorFunction{
    
    
        public:
            /**
             * Constructor for single neural network
             * @param net
             * @param ds
             */
    
            LIB4NEURO_API MSE(NeuralNetwork* net, DataSet* ds);
    
    //        LIB4NEURO_API double eval(std::vector<double>* weights = nullptr,
    //                                  bool denormalize_data = false,
    //                                  bool verbose = false) override;
            LIB4NEURO_API double eval(std::vector<double>* weights = nullptr,
    
                                      bool denormalize_data = false,
                                      bool verbose = false) override;
    
            /**
             *
             * @param params
             * @param grad
    
             */
            LIB4NEURO_API void
    
            calculate_error_gradient(std::vector<double>& params,
                                     std::vector<double>& grad,
    
                                     double alpha = 1.0,
                                     size_t batch = 0) override;
    
            /**
             *
             * @param params
             * @param grad
             * @param alpha
             * @param batch
             */
            LIB4NEURO_API void
            analyze_error_gradient(std::vector<double>& params,
                                     std::vector<double>& grad,
                                     double alpha = 1.0,
                                     size_t batch = 0) override;
    
    
             * Evaluates the function f(x) = 0 - MSE(x) for a
             * specified input x
             *
             * @param input
             * @return
             */
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            LIB4NEURO_API
    
             double calculate_single_residual(std::vector<double>* input,
                                                     std::vector<double>* output,
                                                     std::vector<double>* parameters) override;
    
    
            /**
             * Compute gradient of the residual function f(x) = 0 - MSE(x) for a specific input x.
    
             * The method uses the central difference method.
             *
             * @param[in] input Vector being a single input
             * @param[out] gradient Resulting gradient
             * @param[in] h Step used in the central difference
             */
            LIB4NEURO_API void
    
            calculate_residual_gradient(std::vector<double>* input,
                                        std::vector<double>* output,
                                        std::vector<double>* gradient,
    
            LIB4NEURO_API double eval_on_single_input(std::vector<double>* input,
                                                      std::vector<double>* output,
                                                      std::vector<double>* weights = nullptr);
    
             * @return
             */
    
            LIB4NEURO_API double eval_on_test_data(std::vector<double>* weights = nullptr, bool verbose = false) override;
    
            /**
             *
             * @param results_file_path
             * @param weights
             * @return
             */
    
            LIB4NEURO_API double eval_on_test_data(std::string results_file_path = nullptr,
    
                                                   std::vector<double>* weights = nullptr,
    
            /**
             *
             * @param results_file_path
             * @param weights
             * @return
             */
    
            LIB4NEURO_API double eval_on_test_data(std::ofstream* results_file_path,
    
                                                   std::vector<double>* weights = nullptr,
    
            /**
             *
             * @param data_set
             * @param results_file_path
             * @param weights
             * @return
             */
            LIB4NEURO_API double eval_on_data_set(DataSet* data_set,
                                                  std::ofstream* results_file_path,
    
                                                  std::vector<double>* weights = nullptr,
    
                                                  bool denormalize_data = false,
                                                  bool verbose = false) override;
    
            LIB4NEURO_API double eval_on_data_set(DataSet* data_set,
    
                                                  std::vector<double>* weights = nullptr,
    
    
            /**
             *
             * @param data_set
             * @param results_file_path
             * @param weights
             * @return
             */
    
            LIB4NEURO_API double eval_on_data_set(DataSet* data_set,
                                                  std::string results_file_path,
    
                                                  std::vector<double>* weights = nullptr,
    
            LIB4NEURO_API double eval_single_item_by_idx(size_t  i, std::vector<double>* parameter_vector, std::vector<double> &error_vector) override;
    
            LIB4NEURO_API void calculate_error_gradient_single(std::vector<double> &error_vector, std::vector<double> &gradient_vector) override;
    
        };
    
        class ErrorSum : public ErrorFunction {
        public:
            /**
             *
             */
            LIB4NEURO_API ErrorSum();
    
            /**
             *
             */
            LIB4NEURO_API ~ErrorSum();
    
            /**
             *
             * @param weights
             * @return
             */
    
            LIB4NEURO_API double eval(std::vector<double>* weights = nullptr,
    
                                      bool verbose = false);
    
            LIB4NEURO_API double eval_on_test_data(std::vector<double>* weights = nullptr, bool verbose = false) override;
    
            LIB4NEURO_API double eval_on_test_data(std::string results_file_path,
    
                                                   std::vector<double>* weights = nullptr,
    
             * @param weights
             * @return
             */
    
            LIB4NEURO_API double eval_on_test_data(std::ofstream* results_file_path,
    
                                                   std::vector<double>* weights = nullptr,
    
            LIB4NEURO_API double eval_on_data_set(DataSet* data_set,
    
                                                  std::vector<double>* weights = nullptr,
    
    
            /**
             *
             * @param data_set
             * @param results_file_path
             * @param weights
             * @return
             */
    
            LIB4NEURO_API double eval_on_data_set(DataSet* data_set,
                                                  std::string results_file_path,
    
                                                  std::vector<double>* weights = nullptr,
    
    
            /**
             *
             * @param data_set
             * @param results_file_path
             * @param weights
             * @return
             */
            LIB4NEURO_API double eval_on_data_set(DataSet* data_set,
                                                  std::ofstream* results_file_path,
    
                                                  std::vector<double>* weights = nullptr,
    
                                                  bool denormalize_data = true,
                                                  bool verbose = false) override;
    
            LIB4NEURO_API virtual double eval_single_item_by_idx(size_t  i, std::vector<double>* parameter_vector, std::vector<double> &error_vector) override;
    
    
            /**
             *
             * @param error_vector
             * @param gradient_vector
             */
            LIB4NEURO_API virtual void calculate_error_gradient_single(std::vector<double> &error_vector, std::vector<double> &gradient_vector) override;
    
    
            LIB4NEURO_API void add_error_function(ErrorFunction* F, double alpha = 1.0);
    
            /**
             *
             * @param params
             * @param grad
    
             */
            LIB4NEURO_API void
    
            calculate_error_gradient(std::vector<double>& params,
                                     std::vector<double>& grad,
    
                                     double alpha = 1.0,
                                     size_t batch = 0) override;
    
            /**
             *
             * @param params
             * @param grad
             * @param alpha
             * @param batch
             */
            LIB4NEURO_API void
            analyze_error_gradient(std::vector<double>& params,
                                     std::vector<double>& grad,
                                     double alpha = 1.0,
                                     size_t batch = 0) override;
    
    
            LIB4NEURO_API void
    
            calculate_residual_gradient(std::vector<double>* input,
                                        std::vector<double>* output,
                                        std::vector<double>* gradient,
    
                                        double h = 1e-3) override;
    
            LIB4NEURO_API double
    
            calculate_single_residual(std::vector<double>* input,
                                      std::vector<double>* output,
                                      std::vector<double>* parameters = nullptr) override;
    
            LIB4NEURO_API std::vector<double> get_parameters() override;
    
            /**
             *
             * @return
             */
            LIB4NEURO_API DataSet* get_dataset() override;
    
            std::vector<double> summand_coefficient;
    
    
    #endif //INC_4NEURO_ERRORFUNCTION_H