Newer
Older
/**
* Example of saving neural network to a file and loading it.
* Network creation and training is copied from net_test_1.
*
* @author Martin Beseda
* @date 9.8.18
*/
#include <vector>
Martin Beseda
committed
#include "4neuro.h"

Michal Kravcenko
committed
std::cout << "Running lib4neuro Serialization example 1" << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
std::cout << "First, it finds an approximate solution to the system of equations below:" << std::endl;
std::cout << "0 * w1 + 1 * w2 = 0.50 + b" << std::endl;
std::cout << "1 * w1 + 0.5*w2 = 0.75 + b" << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
std::cout << "Then it stores the network with its weights into a file via serialization" <<std::endl;
std::cout << "Then it loads the network from a file via serialization" <<std::endl;
std::cout << "Finally it tests the loaded network parameters by evaluating the error function" <<std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
/* TRAIN DATA DEFINITION */
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec;
std::vector<double> inp, out;
inp = {0, 1};
out = {0.5};
data_vec.emplace_back(std::make_pair(inp, out));
inp = {1, 0.5};
out = {0.75};
data_vec.emplace_back(std::make_pair(inp, out));
DataSet ds(&data_vec);
/* NETWORK DEFINITION */
NeuralNetwork net;
/* Input neurons */
NeuronLinear *i1 = new NeuronLinear( ); //f(x) = x
NeuronLinear *i2 = new NeuronLinear( ); //f(x) = x
/* Output neuron */

Michal Kravcenko
committed
NeuronLinear *o1 = new NeuronLinear( ); //f(x) = x
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/* Adding neurons to the net */
size_t idx1 = net.add_neuron(i1, BIAS_TYPE::NO_BIAS);
size_t idx2 = net.add_neuron(i2, BIAS_TYPE::NO_BIAS);
size_t idx3 = net.add_neuron(o1, BIAS_TYPE::NEXT_BIAS);
std::vector<double> *bv = net.get_parameter_ptr_biases();
for(size_t i = 0; i < 1; ++i){
bv->at(i) = 1.0;
}
/* Adding connections */
net.add_connection_simple(idx1, idx3, SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT);
net.add_connection_simple(idx2, idx3, SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT);
//net.randomize_weights();
/* specification of the input/output neurons */
std::vector<size_t> net_input_neurons_indices(2);
std::vector<size_t> net_output_neurons_indices(1);
net_input_neurons_indices[0] = idx1;
net_input_neurons_indices[1] = idx2;
net_output_neurons_indices[0] = idx3;
net.specify_input_neurons(net_input_neurons_indices);
net.specify_output_neurons(net_output_neurons_indices);
/* ERROR FUNCTION SPECIFICATION */
MSE mse(&net, &ds);
/* TRAINING METHOD SETUP */

Michal Kravcenko
committed
std::vector<double> domain_bounds = {-10.0, 10.0, -10.0, 10.0, -10.0, 10.0};
ParticleSwarm swarm_01(&mse, &domain_bounds);
/* if the maximal velocity from the previous step is less than 'gamma' times the current maximal velocity, then one
* terminating criterion is met */
double gamma = 0.5;

Michal Kravcenko
committed
/* if 'delta' times 'n' particles are in the centroid neighborhood given by the radius 'epsilon', then the second
* terminating criterion is met ('n' is the total number of particles) */
double epsilon = 0.02;
double delta = 0.9;
swarm_01.optimize(gamma, epsilon, delta);

Michal Kravcenko
committed
std::vector<double> *parameters = swarm_01.get_solution();
net.copy_parameter_space(parameters);

Michal Kravcenko
committed
printf("w1 = %10.7f\n", parameters->at( 0 ));
printf("w2 = %10.7f\n", parameters->at( 1 ));
printf(" b = %10.7f\n", parameters->at( 2 ));
/* SAVE NETWORK TO THE FILE */

Michal Kravcenko
committed
std::cout << "********************************************************************************************************************************************" <<std::endl;
std::cout << "Network generated by the example" << std::endl;
net.print_stats();
net.save_text("saved_network.4nt");

Michal Kravcenko
committed
std::cout << "--------------------------------------------------------------------------------------------------------------------------------------------" <<std::endl;
double error = 0.0;
inp = {0, 1};
net.eval_single( inp, out );
error += (0.5 - out[0]) * (0.5 - out[0]);
std::cout << "x = (0, 1), expected output: 0.50, real output: " << out[0] << std::endl;

Michal Kravcenko
committed
inp = {1, 0.5};
net.eval_single( inp, out );
error += (0.75 - out[0]) * (0.75 - out[0]);
std::cout << "x = (1, 0.5), expected output: 0.75, real output: " << out[0] << std::endl;
std::cout << "Error of the network: " << 0.5 * error << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;
std::cout << "Network loaded from a file" << std::endl;
NeuralNetwork net2("saved_network.4nt");
net2.print_stats();

Michal Kravcenko
committed
std::cout << "--------------------------------------------------------------------------------------------------------------------------------------------" <<std::endl;
error = 0.0;
inp = {0, 1};
net2.eval_single( inp, out );

Michal Kravcenko
committed
error += (0.5 - out[0]) * (0.5 - out[0]);
std::cout << "x = (0, 1), expected output: 0.50, real output: " << out[0] << std::endl;

Michal Kravcenko
committed
inp = {1, 0.5};
net2.eval_single( inp, out );

Michal Kravcenko
committed
error += (0.75 - out[0]) * (0.75 - out[0]);
std::cout << "x = (1, 0.5), expected output: 0.75, real output: " << out[0] << std::endl;
std::cout << "Error of the network: " << 0.5 * error << std::endl;
std::cout << "********************************************************************************************************************************************" <<std::endl;